[1] |
郭婧驰, 张明源. 经济政策稳定性对我国生猪产业链价格的影响[J].经济纵横, 2021(1): 98-110.
|
|
GUO J C, ZHANG M Y. The impact of economic policy stability on the price of China’s pig industry chain [J]. Econ. Rev. J., 2021(1): 98-110.
|
[2] |
MA C, DENG M H, YIN Y L. Pig face recognition based on improved YOLOv4 lightweight neural network [J]. Inf. Process. Agric., 2024, 11(3): 356-371.
|
[3] |
CHEN C, ZHU W X, STEIBEL J, et al.. Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory [J/OL].Comput. Electron. Agric., 2020,169:105166 [2025-01-06]. .
|
[4] |
CHEN C, ZHU W X, MA C H, et al.. Image motion feature extraction for recognition of aggressive behaviors among group-housed pigs [J]. Comput. Electron. Agric., 2017, 142: 380-387.
|
[5] |
CHEN C, ZHU W X, GUO Y Z, et al.. A kinetic energy model based on machine vision for recognition of aggressive behaviours among group-housed pigs [J]. Livest. Sci., 2018,218: 70-78.
|
[6] |
CHEN C, ZHU W X, NORTON T. Behaviour recognition of pigs and cattle:journey from computer vision to deep learning [J/OL]. Comput. Electron. Agric., 2021,187:106255 [2025-01-06]. .
|
[7] |
TZANIDAKIS C, SIMITZIS P, ARVANITIS K, et al.. An overview of the current trends in precision pig farming technologies [J/OL]. Livest. Sci., 2021,249:104530 [2025-01-06]. .
|
[8] |
VOULODIMOS A S, PATRIKAKIS C Z, SIDERIDIS A B, et al.. A complete farm management system based on animal identification using RFID technology [J]. Comput. Electron. Agric., 2010,70(2): 380-388.
|
[9] |
HUANG W J, ZHU W X, MA C H, et al.. Identification of group-housed pigs based on Gabor and local binary pattern features [J]. Biosyst. Eng., 2018,166: 90-100.
|
[10] |
BERGQVIST A S, FORSBERG F, ELIASSON C, et al.. Individual identification of pigs during rearing and at slaughter using microchips [J]. Livest. Sci., 2015,180: 233-236.
|
[11] |
KASHIHA M, BAHR C, OTT S, et al.. Automatic identification of marked pigs in a pen using image pattern recognition [J].Comput. Electron. Agric., 2013, 93: 111-120.
|
[12] |
GUO Y Z, ZHU W X, JIAO P P, et al.. Foreground detection of group-housed pigs based on the combination of mixture of Gaussians using prediction mechanism and threshold segmentation [J]. Biosyst. Eng., 2014,125: 98-104.
|
[13] |
HANSEN M F, SMITH M L, SMITH L N,et al.. Towards on-farm pig face recognition using convolutional neural networks [J]. Comput. Ind., 2018, 98: 145-152.
|
[14] |
WANG Z Y, LIU T H. Two-stage method based on triplet margin loss for pig face recognition [J/OL]. Comput. Electron. Agric., 2022,194:106737 [2025-01-06]. .
|
[15] |
李勇,王杨,方夏,等.基于改进BiFPN的微特电机电枢表面缺陷检测方法[J].机床与液压, 2022, 50(6): 1-8.
|
|
LI Y, WANG Y, FANG X, et al.. Micro-motor armature surface defect detection method based on improved BiFPN [J]. Mach. Tool Hydraul., 2022, 50(6): 1-8.
|
[16] |
WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9:learning what you want to learn using programmable gradient information [C]//Computer Vision-ECCV 2024.Cham:Springer Nature Switzerland, 2024: 1-21.
|
[17] |
ZHONG J, CHEN J, MIAN A. DualConv:dual convolutional kernels for lightweight deep neural networks [J]. IEEE Trans. Neural Netw Learn. Syst., 2023, 34(11): 9528-9535.
|
[18] |
WANG A, CHEN H, LIU L H, et al.. Yolov10: real-time end-to-end object detection [J]. Adv. Neural Inform. Process. Syst., 2024, 37: 107984-108011.
|
[19] |
马娜, 徐苗.基于卷积神经网络的猪只个体身份识别研究[J].计算机时代, 2022(4): 51-54.
|
|
MA N, XU M. Research on pig individual identity based on convolutional neural networks [J]. Comput. Era, 2022(4): 51-54.
|