Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (3): 103-110.DOI: 10.13304/j.nykjdb.2021.0335
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Yinyan GAO1(), Yi SUN2, Baochun LI1,3(
)
Received:
2021-04-20
Accepted:
2021-07-07
Online:
2022-03-15
Published:
2022-03-14
Contact:
Baochun LI
通讯作者:
李葆春
作者简介:
高姻燕 E-mail: gaoyyan@126.com;
基金资助:
CLC Number:
Yinyan GAO, Yi SUN, Baochun LI. Estimating of Wheat Ears Number in Field Based on RGB Images Using Unmanned Aerial Vehicle[J]. Journal of Agricultural Science and Technology, 2022, 24(3): 103-110.
高姻燕, 孙义, 李葆春. 基于无人机RGB影像估测田间小麦穗数[J]. 中国农业科技导报, 2022, 24(3): 103-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0335
Fig.5 Relationship between recognition accuracy of training models and sample number and iterationsNote: Different letters indicate significant differences at P<0.05 level.
1 | 赵广才,常旭虹,王德梅,等.小麦生产概况及其发展[J].作物杂志,2018,185(4):1-7. |
ZHAO G C, CHANG X H, WANG D M, et al.. General situation and development of wheat production [J]. Crops, 2018, 185(4):1-7. | |
2 | 杜颖,蔡义承,谭昌伟,等.基于超像素分割的田间小麦穗数统计方法[J].中国农业科学,2019,52(1):21-33. |
DU Y, CAI Y C, TAN C W, et al.. Field wheat ears counting based on superpixel segmentation method [J]. Sci. Agric. Sin., 2019, 52(1):21-33. | |
3 | 王永春,李静,王秀东.新中国成立以来我国粮食生产变动规律研究及趋势展望[J].中国农业科技导报,2021,23(1):1-11. |
WANG Y C, LI J, WANG X D. Change law and trend of gain production in china since the founding of the People’s Republic of China [J]. J. Agric. Sci. Technol., 2021, 23(1):1-11. | |
4 | 丁国辉,许昊,温明星,等.基于经济型低空无人机对小麦重要产量表型性状的多生育时期获取和自动化分析[J].农业大数据学报,2019,1(2):19-31. |
DING G H, XU H, WEN M X, et al.. Developing cost-effective and low-altitude UAV aerial phenotyping and automated phenotypic analysis to measure key yield-related traits for bread wheat [J]. J. Agric. Big Data, 2019, 1(2):19-31. | |
5 | FENGMEI G, WEIE W, JINDONG L, et al.. Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross zhou 8425B/Chinese spring [J/OL]. Front. Plant Sci., 2020, 6:1099 [2021-12-15]. . |
6 | EDAE E A, BYRNE P, HALEY S, et al.. Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes [J]. Theor. Appl. Genet., 2014, 127(4):791-807. |
7 | ZHAO R, ZHAO A. Chinese main crops yield estimate by remote sensing [C]// Proceedings of the Euro-Asia Space Week on Cooperation in Spece. 1999, 430:275. |
8 | 刘欣谊,仲晓春,陈晨,等.利用无人机图像颜色与纹理特征数据在小麦生育前期对产量进行预测[J].麦类作物学报,2020,40(8):1002-1007. |
LIU X Y, ZHONG X C, CHEN C, et al.. Prediction of wheat yield using color and texture feature data of UAV image at early growth stage [J]. J. Triticeae Crops, 2020, 40(8):1002-1007. | |
9 | 周清波.国内外农情遥感现状与发展趋势[J].中国农业资源与区划,2004,25(5):9-14. |
ZHOU Q B. Status and tendency for development in remote sensing of agriculture situation [J]. Chin. J. Agric. Resour. Reg. Plan., 2004, 25(5):9-14. | |
10 | 吕书强,晏磊,张兵,等.无人机遥感系统的集成与飞行试验研究[J].测绘科学,2007,32(1):84-86. |
LYU S Q, YAN L, ZHANG B, et al.. The integration and flight experiment of UAV remote sensing systems [J]. Sci. Surv. Map., 2007, 32(1):84-86. | |
11 | BARETH G, AASEN H, BENGIG J, et al.. Low-weight and UAV-based hyperspectral full-frame cameras for monitoring crops: spectral comparison with portable spectroradiometer measurements [J]. Photogramm Fernerkun, 2015, (1):69-79. |
12 | GENTLE M, FINCH N, SPEED J, et al.. A comparison of unmanned aerial vehicles (drones) and manned helicopters for monitoring macropod populations [J]. Wildlife Res., 2018, 45(7):586-594. |
13 | CHRISTIE K S, GILBERT S L, BROWN C L, et al.. Unmanned aircraft systems in wildlife research: current and future applications of a transformative technology [J]. Front. Ecol. Environ., 2016, 14(5):241-251. |
14 | YI S. FragMAP: a tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle [J]. Int. J. Remote Sens., 2017, 38(8-10):2686-2697. |
15 | 刘刚,许宏健,马海涛,等.无人机航测系统在应急服务保障中的应用与前景[J].测绘与空间地理信息,2011,34(4):177-179. |
LIU G, XU H J, MA H T, et al.. Unmanned aerial aystem applications and prospects in the protection of emergency services [J]. Geom. Spatial Inform. Tech., 2011, 34(4):177-179. | |
16 | 杨贵军,李长春,于海洋,等.农用无人机多传感器遥感辅助小麦育种信息获取[J].农业工程学报,2015,31(21):184-90. |
YANG G J, LI C C, YU H Y, et al.. UAV based multi-load remote sensing technologies for wheat breeding information acquirement [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(21):184-90. | |
17 | 李艳花.提高冬小麦分蘖成穗率的几项关键措施[J].现代农村科技,2018,11:18. |
18 | 刘哲,袁冬根,王恩.基于改进Bayes抠图算法的麦穗小穗自动计数方法[J].中国农业科技导报,2020,22(8):75-82. |
LIU Z, YUAN D G, WANG E. Automatic counting method of wheat grain based on improved Bayes matting algorithm [J]. J. Agric. Sci. Technol., 2020, 22(8):75-82. | |
19 | 田纪春,邓志英,胡瑞波,等.不同类型超级小麦产量构成因素及籽粒产量的通径分析[J].作物学报,2006,32(11):1699-1705. |
TIAN J C, DENG Z Y, HU R B, et al.. Yield components of super wheat cultivars with different types and the path coefficient analysis on grain yield [J]. Acta Agron. Sin, 2006, 32(11):1699-1705. | |
20 | 方正,邵锡珍,李云海.从小麦的超高产实践谈良种选育的问题[J].作物杂志,1999,(1):20-21. |
FANG Z, SHAO X Z, LI Y H. Discuss breeding based on the super-high-yield practice of wheat [J]. Crops, 1999, 1: 20-21. | |
21 | 高宇,高军萍,李寒,等.植物表型监测技术研究进展及发展对策[J].江苏农业科学,2017,45(11):5-11. |
GAO Y, GAO J P, LI H, et al.. Research progress and development countermeasures [J]. Jiangsu Agric. Sci., 2017, 45(11): 5-11. | |
22 | 陈含,吕行军,田凤珍,等.基于Sobel算子边缘检测的麦穗图像分割[J].农机化研究,2013,35(3):33-36. |
CHEN H, LYU X J, TIAN F Z, et al.. Wheat panicle image segmentation based on Sobel operator-edge detection [J]. J. Agric. Mech. Res., 2013, 35(3):33-36. | |
23 | 路文超,罗斌,潘大宇,等.基于图像处理的小麦穗长和小穗数同步测量[J].中国农机化学报,2016, 37(6):210-215. |
LU W C, LUO B, PAN D Y, et al.. Synchronous measurement of wheat ear length and spikelets number based on image processing [J]. J. Chin. Agric. Mech., 2016, 37(6):210-215. | |
24 | LI Q, CAI J, BERGER B, et al.. Detecting spikes of wheat plants using neural networks with Laws texture energy [J/OL]. Plant Methods, 2017, 13(1):83 [2021-12-15]. . |
25 | 刘涛,孙成明,王力坚,等.基于图像处理技术的大田麦穗计数[J].农业机械学报,2014,45(2):232-290. |
LIU T, SUN C M, WANG L J, et al.. In-field wheatheat counting based on image processing technology [J]. Trans. Chin. Soc. Agric. Machinery, 2014, 45(2):232-290. | |
26 | 魏宏彬,张端金,杜广明,等.基于改进型YOLO v3的蔬菜识别算法[J].郑州大学学报,2020,41(2):7-12, 31. |
WEI H B, ZHANG D J, DU G M, et al.. Vegetable recognition algorithm based on improved YOLOv3 [J]. J. Zhengzhou Univ., 2020, 41(2):7-12, 31. | |
27 | 任嘉锋,熊卫华,吴之昊,等.基于改进YOLOv3的火灾检测与识别[J].计算机系统应用,2019,28(12):171-176. |
REN J F, XIONG W H, WU Z H, et al.. Fire detection and identification based on improved YOLOv3 [J]. Comput. Syst. Appl., 2019, 28(12):171-176. | |
28 | 崔博超,郑江华,刘忠军,等.无人机遥感影像的YOLOv3鼠洞识别技术[J].林业科学,2020,56(10):199-208. |
CUI B C, ZHENG J H, LIU Z J, et al.. YOLOv3 mouse hole recognition based on remote sensing images from technology for unmanned aerial vehicle [J]. Sci. Silv. Sin., 2020, 56(10):199-208. | |
29 | 范祥妍.临夏县冬小麦高产栽培技术[J].新农村,2018(26):109. |
30 | 何苏琴,金秀琳,鲁振超.甘肃省临夏州小麦脚腐病病原鉴定[J].植物保护,2006,32(3):35-38. |
HE S Q, JIN X L, LU Z C. Isolation and identification of the pathogens causing wheat foot rot in Linxia region of Gansu Province [J]. Plant Prot., 2006, 32(3):35-38. | |
31 | 王长耀,林文鹏.基于MODIS EVI的冬小麦产量遥感预测研究[J].农业工程学报,2005,21(10):90-94. |
WANG C Y, LIN W P. Winter wheat yield estimation based on MODIS EVI [J]. Trans. Chin. Soc. Agric. Eng., 2005, 21(10):90-94. | |
32 | BENDIG J, BOLTEN A, BARETH G. UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability [J]. Photogramm. Fernerkun., 2013 (6):551-562. |
33 | JANNOURA R, BRINKMANN K, UTEAU D, et al.. Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter [J]. Biosyst. Eng., 2015, 129:341-351. |
34 | 周恺,周彤,丁峰,等.基于无人机图像的小麦主要生育时期LAI估算[J].中国农业科技导报,2021,23(1):89-97. |
ZHOU K, ZHOU T, DING F, et al.. Wheat LAI estimation in main growth period based on UAV images [J]. J. Agric. Sci. Technol., 2021, 23(1):89-97. | |
35 | ZHANG J G, LIU D W, MENG B P, et al.. Using UAVs to assess the relationship between alpine meadow bare patches and disturbance by pikas in the source region of Yellow River on the Qinghai-Tibetan Plateau [J/OL]. Glob. Ecol. Conserv., 2021, 26(6):e01517[2021-12-16]. . |
36 | 高露,马元婧.基于Faster R-CNN的设备故障检测与识别[J].计算机系统应用,2019,28(4):170-175. |
GAO L, MA Y J. Equipment fault detection and recognition based on faster R-CNN [J]. Comput. Syst. Appl., 2019, 28(4):170-175. | |
37 | WIEDERHOLD B K. Citizen scientists generate benefits for researchers, educators, society, and themselves [J]. Cyberpsychol. Behav. Soc. Netv., 2011, 14(12):703-704. |
[1] | Guangyao LI, Shenglong YANG, Tianfei CHENG, Xuesen CUI, Weifeng ZHOU, Shengmao ZHANG. Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 203-221. |
[2] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[3] | Zhuoran XING, Songshuang DING, Kai ZHANG, Ming MA, Wenlong GUO, Xudong LIU, Xiangdong SHI. Research Progress of Deep Learning and Computer Vision in Tobacco Leaf Production [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 96-106. |
[4] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[5] | Xiaofei XIONG, Xiuqin WANG, Cuizhen ZHUANG, Jiaxian GUO, Xinrui XIE, Jianwei WU, Qifeng LI. Research on Diagnostic Method of Citrus Anthracnose Based on Image ROI Fusion Feature [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 83-92. |
[6] | Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130. |
[7] | Zhiyuan ZHU, Haifeng WANG, Bin LI, Wenwen ZHAO, Jun ZHU, Nan JIA, Yuliang ZHAO. Research Progress of Deep Learning in Typical Behavior Recognition of Livestock and Poultry [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 110-124. |
[8] | Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98. |
[9] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[10] | Chao YANG, Haibin HAN, Bo WEI, Heng ZHANG, Chen SHANG, Bing SU, Siyuan LIU, Peiwei JIANG, Delong XIANG. Construction of Method for Age Identification of Sardinops sagax in the North Pacific Ocean [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 225-233. |
[11] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
[12] | Haitao LIU, Xin HAN, Yubin LAN, Lili YI, Baoju WANG, Lihua CUI. Precise Recognition Method of Cotton Top Buds Based on YOLOv4 Network [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 99-108. |
[13] | Jianwei WU, Jie HUANG, Xiaofei XIONG, Han GAO, Xiangyang QIN. Research and Application of Intelligent Recognition Method of Peach Tree Diseases Based on AI [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 111-118. |
[14] | Hao HUANG, Shengqiao XIE, Du CHEN, Heng WANG. Application and Research Advances on Deep Learning in Apple’s Industry Chain [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 79-89. |
[15] | ZHOU Huiru, WU Boming. Advances in Research on Deep Learning for Crop Disease Image Recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||