Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (5): 111-118.DOI: 10.13304/j.nykjdb.2021.0935
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Jianwei WU1,2,3(), Jie HUANG1, Xiaofei XIONG1,2,3, Han GAO3, Xiangyang QIN1(
)
Received:
2021-11-03
Accepted:
2022-01-18
Online:
2022-05-15
Published:
2022-06-06
Contact:
Xiangyang QIN
吴建伟1,2,3(), 黄杰1, 熊晓菲1,2,3, 高晗3, 秦向阳1(
)
通讯作者:
秦向阳
作者简介:
吴建伟 E-mail:wujw@nercita.org.cn;
基金资助:
CLC Number:
Jianwei WU, Jie HUANG, Xiaofei XIONG, Han GAO, Xiangyang QIN. Research and Application of Intelligent Recognition Method of Peach Tree Diseases Based on AI[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 111-118.
吴建伟, 黄杰, 熊晓菲, 高晗, 秦向阳. 基于AI的桃树病害智能识别方法研究与应用[J]. 中国农业科技导报, 2022, 24(5): 111-118.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0935
桃树病害类型 Type of peach tree disease | 样本数 Number of samples | 准确率 Accuracy rate/% |
---|---|---|
桃黑斑病 Peach black spot | 569 | 98.28 |
桃褐腐病 Peach brown rot | 336 | 94.12 |
桃黑星病 Peach scab | 280 | 92.86 |
桃炭疽病 Peach anthracnose | 282 | 96.55 |
桃缩叶病 Peach leaf curl | 268 | 92.31 |
桃灰霉病 Peach botrytis cinerea | 235 | 86.96 |
桃褐斑穿孔病 Peach brown spot perforation | 208 | 85.00 |
桃霉斑穿孔病 Peach mildew and perforation | 290 | 86.21 |
桃细菌性穿孔病 Peach bacterial perforation | 283 | 85.71 |
桃树流胶病 Peach gummosis | 268 | 92.31 |
桃树木腐病 Peach wood rot | 244 | 95.83 |
负样本 Negative sample | 1 000 | 98.00 |
总计 Total | 4 263 | 93.65 |
Tab.1 Test results of DenseNet-169 improved model for peach tree diseases image recognition
桃树病害类型 Type of peach tree disease | 样本数 Number of samples | 准确率 Accuracy rate/% |
---|---|---|
桃黑斑病 Peach black spot | 569 | 98.28 |
桃褐腐病 Peach brown rot | 336 | 94.12 |
桃黑星病 Peach scab | 280 | 92.86 |
桃炭疽病 Peach anthracnose | 282 | 96.55 |
桃缩叶病 Peach leaf curl | 268 | 92.31 |
桃灰霉病 Peach botrytis cinerea | 235 | 86.96 |
桃褐斑穿孔病 Peach brown spot perforation | 208 | 85.00 |
桃霉斑穿孔病 Peach mildew and perforation | 290 | 86.21 |
桃细菌性穿孔病 Peach bacterial perforation | 283 | 85.71 |
桃树流胶病 Peach gummosis | 268 | 92.31 |
桃树木腐病 Peach wood rot | 244 | 95.83 |
负样本 Negative sample | 1 000 | 98.00 |
总计 Total | 4 263 | 93.65 |
1 | 毕金峰,吕健,刘璇,等.国内外桃加工科技与产业现状及展望[J].食品科学技术学报, 2019,37(5):7-15. |
BI J F, LU J, LIU X, et al.. Research on techniques and industry situation and prospect for peach processing in domestic and aboard [J]. J. Food Sci. Technol., 2019,37(5):7-15. | |
2 | 朱更瑞.我国桃产业转型升级的思考[J].中国果树,2019(6):6-11. |
ZHU G R. Insights into transformation and upgrading of peach industry in China [J]. China Fruits, 2019 (6):6-11. | |
3 | 马革农,李建勋,张相斌,等.桃树病虫害防治中存在的问题及对策[J].现代农村科技, 2021(3):29-30. |
4 | 刘圣华.果树病虫害的识别方法及防治策略[J].农业与技术, 2017,37(19):54,70. |
LIU S H. Identification methods and control strategies of fruit tree diseases and pests [J]. Agric. Technol., 2017,37(19):54,70. | |
5 | 朱伊平,管孝锋,黄海龙,等.农业病虫害远程诊断平台[J].浙江农业科学, 2020,61(09):1819-1820, 1832. |
ZHU Y P, GUAN X F, HUANG H L, et al. Research on remote diagnosis platform of agricultural diseases and insect pests [J]. J. Zhejiang Agric. Sci., 2020,61(9):1819-1820, 1832. | |
6 | 张嫚嫚,张武,金秀,等.农作物病虫害专家系统中的知识表示方法[J].江汉大学学报(自然科学版), 2019,47(4):378-384. |
ZHANG M M, ZHANG W, JIN X, et al. Knowledge representation methods of expert systems for crop pests and diseases [J]. J. Jianghan Univ. (Nat. Sci.), 2019,47(4):378-384. | |
7 | 赵春江.对发展农业智能科技的思考[J].机器人产业, 2020,(4):36-40. |
ZHAO C J. Thinking on the development of agricultural intelligent science and technology [J]. Robot Ind., 2020,(4):36-40. | |
8 | 张宇,王翠宁,秦妮妮.优化识别植物病虫害的方法[J].种子科技, 2020,38(7):77-78. |
ZHANG Y, WANG C N, QIN N N. Methods for optimizing identification of plant diseases and insect pests [J]. Seed Sci. Technol., 2020,38(7):77-78. | |
9 | 康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学, 2020,48(22):22-27. |
KANG F L, LI J, LIU T, et al.. Application technology of image recognition for various crop diseases and insect pests: a review [J]. Jiangsu Agric. Sci., 2020,48(22):22-27. | |
10 | 饶晓燕,吴建伟,李春朋,等.智慧苹果园“空-天-地”一体化监控系统设计与研究[J].中国农业科技导报, 2021,23(6):59-66. |
RAO X Y, WU J W, LI C P, et al. Design and research on “space-air-ground” integrated monitoring system for intelligent orchard [J]. J. Agric. Sci. Technol., 2021,23(6):59-66. | |
11 | 李素,郭兆春,王聪,等.信息技术在农作物病虫害监测预警中的应用综述[J].江苏农业科学, 2018,46(22):1-6. |
LI S, GUO Z C, WANG C, et al. Application of information technology in monitoring and early warning of crop diseases and insect pests [J]. Jiangsu Agric. Sci., 2018,46(22):1-6. | |
12 | 李禾.AI变身农业“医生”问诊作物病虫害[J].当代农机, 2018(12):20-21. |
LI H. AI turns into an agricultural “doctor” to inquire about crop diseases and pests [J]. Contemporary Farm Machinery, 2018(12):20-21. | |
13 | 王彦翔,张艳,杨成娅,等.基于深度学习的农作物病害图像识别技术进展[J].浙江农业学报, 2019,31(4):669-676. |
WANG Y X, ZHANG Y, YANG C Y, et al. Advances in new nondestructive detection and identification techniques of diseases based on deep learning [J]. Acta Agric. Zhejiangensis, 2019,31(4):669-676. | |
14 | 康飞龙,李佳,刘涛,等.多类农作物病虫害的图像识别应用技术研究综述[J].江苏农业科学, 2020,48(22):22-27. |
KANG F L, LI J, LIU T, et al. Application technology of image recognition for various crop diseases and insect pests: a review [J]. Jiangsu Agric. Sci., 2020,48(22):22-27. | |
15 | 边柯橙,杨海军,路永华.深度学习在农业病虫害检测识别中的应用综述[J].软件导刊, 2021,20(3):26-33. |
BIAN K C, YANG H J, LU Y H. Application review of deep learning in detection and identification of agricultural pests and diseases [J]. Software Guide, 2021,20(3):26-33. | |
16 | 周惠汝,吴波明.深度学习在作物病害图像识别方面应用的研究进展[J].中国农业科技导报, 2021,23(5):61-68. |
ZHOU H R, WU B M. Advances in research on deep learning for crop disease image recognition [J]. J. Agric. Sci. Technol., 2021,23(5):61-68. | |
17 | 盖荣丽,蔡建荣,王诗宇,等.卷积神经网络在图像识别中的应用研究综述[J].小型微型计算机系统, 2021,42(9):1980-1984. |
GAI L R, CAI J R, WANG S Y, et al.. Research review on image recognition based on deep learning [J]. J. Chin. Computer Sys., 2021,42(9):1980-1984. | |
18 | TOO C N, LI Y J, NJUKI S, et al.. A comparative study of fine-tuning deep learning models for plant disease identification [J]. Computers Electron. Agric., 2019,161:272-279. |
19 | 黄双萍,孙超,齐龙,等.基于深度卷积神经网络的水稻穗瘟病检测方法[J]. 农业工程学报, 2017,33(20):169-176. |
HUANG S P, SUN C, QI L, et al.. Rice panicle blast identification method based on deep convolution neural network [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(20):169-176. | |
20 | 刘阗宇,冯全,杨森.基于卷积神经网络的葡萄叶片病害检测方法[J].东北农业大学学报, 2018,49(3):73-83. |
LIU T Y, FENG Q, YANG S. Detecting grape diseases based on convolutional neural network [J]. J. Northeast Agric.Univ., 2018,49(3):73-83. | |
21 | 郭小清,范涛杰,舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J].农业工程学报, 2019,35(13):162-169. |
GUO X Q, FAN T J, SHU X. Tomato leaf diseases recognition based on improved multi-scale Alexnet [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(13):162-169. | |
22 | 张敏,刘杰,蔡高勇.基于卷积神经网络的柑橘溃疡病识别方法[J].计算机应用, 2018,38(S1):48-52, 76. |
ZHANG M, LIU J, CAI G Y. Recognition method of citrus canker disease based on convolution neural network [J]. J. Computer Appl., 2018,38(S1):48-52, 76. | |
23 | 金瑛,叶飒,李洪磊.基于ResNet-50深度卷积网络的果树病害智能诊断模型研究[J].农业图书情报学报, 2021,33(4):58-67. |
JIN Y, YE S, LI H L. The intelligent diagnosis model of fruit tree disease based on ResNet-50 [J]. J. Library Inform. Sci. Agric., 2021,33(4):58-67. | |
24 | 宋晨勇,白皓然,孙伟浩,等.基于GoogLeNet改进模型的苹果叶病诊断系统设计[J].中国农机化学报, 2021,42(7):148-155. |
SONG C Y, BAI H R, SUN W H, et al.. Design of apple leaf disease diagnosis system based on GoogLeNet improved model [J]. J. Chin. Agric. Mechanization, 2021,42(7):148-155. | |
25 | YAO N, NI F, WANG Z, et al.. L2 MXception: an improved Xception network for classification of peach diseases [J/OL]. Plant Methods, 2021,17: 36 [2022-04-12]. . |
26 | HUANG G, LIU Z, LAURENS V D M, et al. Densely connected convolutional networks [C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recongnition. Honolulu, USA, 2016:2261-2269. |
27 | 任胜男,孙钰,张海燕,等.基于one-shot学习的小样本植物病害识别[J].江苏农业学报, 2019,35(5):1061-1067. |
REN S N, SUN Y, ZHANG H Y, et al.. Plant disease identification for small sample based on one-shot learning [J]. Jiangsu J. Agric. Sci., 2019,35(5):1061-1067. | |
28 | 项小东,翟蔚,黄言态,等.基于Xception-CEMs神经网络的植物病害识别[J].中国农机化学报, 2021,42(8):177-186. |
XIANG X D, ZHAI W, HUANG Y T, et al.. Plant disease recognition based on Xception-CEMs neural network [J]. J. Chin. Agric. Mechanization, 2021,42(8):177-186. | |
29 | 宋余庆,谢熹,刘哲,等.基于多层EESP深度学习模型的农作物病虫害识别方法[J].农业机械学报, 2020,51(8):196-202. |
SONG Y Q, XIE X, LIU Z, et al.. Crop pests and diseases recognition method based on multi-level EESP model [J]. Trans. Chin. Soc. Agric. Machinery, 2020,51(8):196-202. | |
30 | 计雪伟,霍兴赢,薛端,等.基于深度学习的农作物病虫害识别方法[J].南方农机, 2020,51(23):182-183. |
JI X W, HUO X Y, XUE R, et al.. Identification of crop diseases and insect pests based on deep learning [J]. South Agric. Machinery, 2020,51(23):182-183. | |
31 | 敖良忠,马瑞阳,杨学文.基于DenseNet和ResNet融合的发动机孔探图像分类研究[J].计算技术与自动化, 2021,40(3):105-110, 183. |
AO L Z, MA R Y, YANG X W. Research on engine borescope images classification based on DenseNet and ResNet fusion [J]. Computing Technol. Autom., 2021,40(3):105-110, 183. |
[1] | Guangyao LI, Shenglong YANG, Tianfei CHENG, Xuesen CUI, Weifeng ZHOU, Shengmao ZHANG. Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 203-221. |
[2] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[3] | Zhuoran XING, Songshuang DING, Kai ZHANG, Ming MA, Wenlong GUO, Xudong LIU, Xiangdong SHI. Research Progress of Deep Learning and Computer Vision in Tobacco Leaf Production [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 96-106. |
[4] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[5] | Xiaofei XIONG, Xiuqin WANG, Cuizhen ZHUANG, Jiaxian GUO, Xinrui XIE, Jianwei WU, Qifeng LI. Research on Diagnostic Method of Citrus Anthracnose Based on Image ROI Fusion Feature [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 83-92. |
[6] | Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130. |
[7] | Ruifeng LI, Yunfu YANG, Yongfa YANG, Yongshun YU. Rose Flower Detection and Feature Extraction Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 106-113. |
[8] | Zhiyuan ZHU, Haifeng WANG, Bin LI, Wenwen ZHAO, Jun ZHU, Nan JIA, Yuliang ZHAO. Research Progress of Deep Learning in Typical Behavior Recognition of Livestock and Poultry [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 110-124. |
[9] | Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98. |
[10] | Ning ZHAO, Xing LI, Yong JIANG, Zhixiu WANG, Yulin BI, Guohong CHEN, Hao BAI, Guobin CHANG. Application of Image Recognition Technology in the Field of Chicken Breeding [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 13-22. |
[11] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[12] | Chao YANG, Haibin HAN, Bo WEI, Heng ZHANG, Chen SHANG, Bing SU, Siyuan LIU, Peiwei JIANG, Delong XIANG. Construction of Method for Age Identification of Sardinops sagax in the North Pacific Ocean [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 225-233. |
[13] | Yantong ZHANG, Qianmin SU. Image Recognition of Corn Disease Based on Transfer Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 119-125. |
[14] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
[15] | Haitao LIU, Xin HAN, Yubin LAN, Lili YI, Baoju WANG, Lihua CUI. Precise Recognition Method of Cotton Top Buds Based on YOLOv4 Network [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 99-108. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||