Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (8): 99-108.DOI: 10.13304/j.nykjdb.2021.0536
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Haitao LIU1(), Xin HAN1(
), Yubin LAN1,2, Lili YI1, Baoju WANG1, Lihua CUI3
Received:
2021-07-02
Accepted:
2021-09-22
Online:
2022-08-15
Published:
2022-08-22
Contact:
Xin HAN
刘海涛1(), 韩鑫1(
), 兰玉彬1,2, 伊丽丽1, 王宝聚1, 崔立华3
通讯作者:
韩鑫
作者简介:
刘海涛 E-mail:1243051772@qq.com;
基金资助:
CLC Number:
Haitao LIU, Xin HAN, Yubin LAN, Lili YI, Baoju WANG, Lihua CUI. Precise Recognition Method of Cotton Top Buds Based on YOLOv4 Network[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 99-108.
刘海涛, 韩鑫, 兰玉彬, 伊丽丽, 王宝聚, 崔立华. 基于YOLOv4网络的棉花顶芽精准识别方法[J]. 中国农业科技导报, 2022, 24(8): 99-108.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0536
光照 Light | 植株状态 Plant status | 图像数量 Number of images |
---|---|---|
晴天 Sunny | 单株 Single plant | 1 538 |
多株 Multiple plants | 429 | |
遮挡 Shelter | 170 | |
阴天 Cloudy | 单株 Single plant | 318 |
多株 Multiple plants | 24 | |
遮挡 Shelter | 67 | |
雨天 Rainy | 单株 Single plant | 254 |
多株 Multiple plants | 25 | |
遮挡 Shelter | 75 | |
总计Total | 2 900 |
Table 1 Statistics of cotton top leaves under different conditions
光照 Light | 植株状态 Plant status | 图像数量 Number of images |
---|---|---|
晴天 Sunny | 单株 Single plant | 1 538 |
多株 Multiple plants | 429 | |
遮挡 Shelter | 170 | |
阴天 Cloudy | 单株 Single plant | 318 |
多株 Multiple plants | 24 | |
遮挡 Shelter | 67 | |
雨天 Rainy | 单株 Single plant | 254 |
多株 Multiple plants | 25 | |
遮挡 Shelter | 75 | |
总计Total | 2 900 |
模型Model | 精确率 Precision/% | 召回率 Recall/% | 调和平均值 F1/% | 平均精度 Average precision/% |
---|---|---|---|---|
1 | 87.82 | 99.30 | 93.21 | 98.86 |
2 | 92.52 | 99.43 | 95.85 | 99.23 |
3 | 92.14 | 99.36 | 95.61 | 99.16 |
4 | 94.21 | 99.62 | 96.84 | 99.40 |
5 | 92.15 | 99.55 | 95.71 | 99.38 |
6 | 90.17 | 99.36 | 94.54 | 99.15 |
7 | 91.75 | 99.24 | 95.35 | 99.05 |
8 | 90.92 | 99.62 | 95.07 | 99.44 |
9 | 92.73 | 99.17 | 95.84 | 98.90 |
Table 2 Comparison of training weight models
模型Model | 精确率 Precision/% | 召回率 Recall/% | 调和平均值 F1/% | 平均精度 Average precision/% |
---|---|---|---|---|
1 | 87.82 | 99.30 | 93.21 | 98.86 |
2 | 92.52 | 99.43 | 95.85 | 99.23 |
3 | 92.14 | 99.36 | 95.61 | 99.16 |
4 | 94.21 | 99.62 | 96.84 | 99.40 |
5 | 92.15 | 99.55 | 95.71 | 99.38 |
6 | 90.17 | 99.36 | 94.54 | 99.15 |
7 | 91.75 | 99.24 | 95.35 | 99.05 |
8 | 90.92 | 99.62 | 95.07 | 99.44 |
9 | 92.73 | 99.17 | 95.84 | 98.90 |
模型 Model | 精确率 Precision/% | 召回率 Recall/% | 调和平均值 F1/% | 平均精度 Average precision/% | 检测时间 Time/s |
---|---|---|---|---|---|
优化前 Before optimization | 92.48 | 99.10 | 95.68 | 99.04 | 0.93 |
优化后 After optimization | 94.21 | 99.62 | 96.84 | 99.40 | 0.65 |
Table 3 Comparison of the performance indexes of the model before and after optimization
模型 Model | 精确率 Precision/% | 召回率 Recall/% | 调和平均值 F1/% | 平均精度 Average precision/% | 检测时间 Time/s |
---|---|---|---|---|---|
优化前 Before optimization | 92.48 | 99.10 | 95.68 | 99.04 | 0.93 |
优化后 After optimization | 94.21 | 99.62 | 96.84 | 99.40 | 0.65 |
模型 Model | 精确率 Precision/% | 召回率 Recall/% | 调和平均值 F1/% | 平均精度 Average precision/% | 检测时间 Time/s |
---|---|---|---|---|---|
YOLOv4 | 94.21 | 99.62 | 96.84 | 99.40 | 0.65 |
YOLOv3 | 93.73 | 99.23 | 96.40 | 99.17 | 0.84 |
Tiny-YOLOv4 | 72.56 | 99.70 | 83.99 | 99.48 | 0.53 |
SSD | 72.03 | 99.80 | 83.67 | 99.51 | 0.78 |
Table 4 Recognition results of four models for cotton top
模型 Model | 精确率 Precision/% | 召回率 Recall/% | 调和平均值 F1/% | 平均精度 Average precision/% | 检测时间 Time/s |
---|---|---|---|---|---|
YOLOv4 | 94.21 | 99.62 | 96.84 | 99.40 | 0.65 |
YOLOv3 | 93.73 | 99.23 | 96.40 | 99.17 | 0.84 |
Tiny-YOLOv4 | 72.56 | 99.70 | 83.99 | 99.48 | 0.53 |
SSD | 72.03 | 99.80 | 83.67 | 99.51 | 0.78 |
模型 Model | 逆光状态 Backlight environment | 遮挡状态 Shelter environment | ||||||
---|---|---|---|---|---|---|---|---|
精确率 Precision | 召回率 Recall | 调和平均值 F1 | 平均精度 Average precision | 精确率 Precision | 召回率 Recall | 调和平均值 F1 | 平均精度 Average precision | |
YOLOv3 | 92.82 | 99.48 | 96.03 | 99.41 | 92.31 | 99.31 | 95.68 | 98.93 |
YOLOv4 | 90.28 | 100.00 | 94.89 | 99.91 | 89.27 | 99.31 | 94.02 | 99.18 |
Tiny-YOLOv4 | 72.89 | 99.74 | 84.23 | 99.62 | 75.79 | 99.31 | 85.97 | 98.49 |
SSD | 68.30 | 100.00 | 81.16 | 99.92 | 79.67 | 100.00 | 88.68 | 99.22 |
Table 5 Test results of backlight and occlusion state test sets by different models
模型 Model | 逆光状态 Backlight environment | 遮挡状态 Shelter environment | ||||||
---|---|---|---|---|---|---|---|---|
精确率 Precision | 召回率 Recall | 调和平均值 F1 | 平均精度 Average precision | 精确率 Precision | 召回率 Recall | 调和平均值 F1 | 平均精度 Average precision | |
YOLOv3 | 92.82 | 99.48 | 96.03 | 99.41 | 92.31 | 99.31 | 95.68 | 98.93 |
YOLOv4 | 90.28 | 100.00 | 94.89 | 99.91 | 89.27 | 99.31 | 94.02 | 99.18 |
Tiny-YOLOv4 | 72.89 | 99.74 | 84.23 | 99.62 | 75.79 | 99.31 | 85.97 | 98.49 |
SSD | 68.30 | 100.00 | 81.16 | 99.92 | 79.67 | 100.00 | 88.68 | 99.22 |
1 | 喻树迅.我国棉花生产现状与发展趋势[J].中国工程科学,2013,15(4):9-13. |
YU S X. Present situation and development trend of cotton production in China [J]. Strategic Study CAE, 2013,15(4):9-13. | |
2 | 卢秀茹,贾肖月,牛佳慧.中国棉花产业发展现状及展望[J].中国农业科学,2018,51(1):26-36. |
LU X R, JIA X Y, NIU J H. The present situation and prospects of cotton industry development in China [J]. Sci. Agric. Sin., 2018,51(1):26-36. | |
3 | KONG H, YI L, LAN Y, et al.. Exploring the operation mode of spraying cotton defoliation agent by plant protection UAV [J]. Int. J. Precision Agric. Aviation, 2018, 1(1):19-24. |
4 | HAN X, YU J, LAN Y, et al.. Determination of application parameters for cotton defoliants in the Yellow River Basin [J]. Int. J. Precision Agric. Aviation, 2019, 2(1): 51-55. |
5 | YANG H, HU X, ZHAO J, et al.. Feature extraction of cotton plant height based on DSM difference method [J]. Int. J. Precision Agric. Aviation, 2018, 1(1):59-69. |
6 | 牛巧鱼.我国棉花机械打顶研究进展[J].中国棉花,2013,40(11):23-24. |
NIU Q Y. Research progress of cotton topping machinery in China [J]. China Cott., 2013,40(11):23-24. | |
7 | 周桂鹏,张晓辉,范国强,等.棉花打顶机械化的研究现状及发展趋势[J].农机化研究,2014,36(4):242-245. |
ZHOU G P, ZHANG X H, FANG G Q, et al.. The research status and development trend on the cotton top-cutting mechanization [J]. J. Agric. Mechan. Res., 2014,36(4):242-245. | |
8 | 滕华灯,王春耀,蒋永新,等.两种棉花打顶机单体仿形机构的对比分析[J].西北农林科技大学学报(自然科学版),2011,39(3):163-167. |
TENG H D, WANG C Y, JIANG Y X, et al.. Contrast and analysis of the profile modeling mechanisms of two kinds of cotton topping monomers [J]. J. Northwest A&F Univ. (Nat. Sci. ), 2011,39(3):163-167. | |
9 | 姚强强,黄勇,陈永,等.单体仿形棉花打顶机的设计与试验[J].甘肃农业大学学报,2018,53(1):174-180, 186. |
YAO Q Q, HUANG Y, CHEN Y, et al.. Design and experimental of single profiling the cotton topping machine [J]. J. Gansu Agric. Univ., 2018,53(1):174-180, 186. | |
10 | 周海燕,尹素珍,朱立成,等.3WDZ-6型自走式棉花打顶机设计[J].农业机械学报,2010,41(S1):86-89. |
ZHOU H Y, YIN S Z, ZHU L C, et al.. Design of 3WDZ-6 self-propelled cotton top cutting [J]. Trans. Chin. Soc. Agric. Mach., 2010,41(S1):86-89. | |
11 | 彭强吉,荐世春,宋和平,等.3MDZJ-1型电力驱动式棉花智能精准打顶机的研制[J].农机化研究,2016,38(12):117-121. |
PENG Q J, JIAN S C, SONG H P, et al.. Development of 3MDZJ-1 type power driven intelligent precision cotton topping machine [J]. J. Agric. Mechan. Res., 2016,38(12):117-121. | |
12 | 宋欢,王维新,李霞,等.棉花打顶机械手的Fuzzy-PID控制[J].江苏农业科学,2017,45(3):172-175. |
13 | 郝延杰,石磊,曹龙龙,等.棉花顶芽识别定位技术研究现状及展望[J].中国农机化学报,2018,39(11):72-78. |
HAO Y J, SHI L, CAO L L, et al.. Research status and prospect of cotton terminal bud identification and location technology [J]. J. Chin. Agric. Mechan., 2018,39(11):72-78. | |
14 | 刘俊奇. 棉花株顶识别系统的研究[D].石河子:石河子大学,2009. |
LIU J Q. The research of automatic recognition of cotton’s top [D]. Shihezi: Shihezi University, 2009. | |
15 | 瞿端阳.基于机器视觉技术的棉株识别系统研究[D].石河子:石河子大学,2013. |
QU D Y. Cotton plant recognition system based on the machine vision technology [D]. Shihezi: Shihezi University, 2013. | |
16 | 沈晓晨. 棉花打顶机棉株高度识别技术的研究[D].石河子:石河子大学,2018. |
SHEN X C. The height of the cotton plant identification technology for cotton top-cutting machine [D]. Shihezi: Shihezi University, 2018. | |
17 | 刘洋,战荫伟.基于深度学习的小目标检测算法综述[J].计算机工程与应用,2021,57(2):37-48. |
LIU Y, ZHAN Y W. Survey of small object detection algorithms based on deep learning [J]. Comput. Eng. Appl., 2021,57(2):37-48. | |
18 | 方路平,何杭江,周国民.目标检测算法研究综述[J].计算机工程与应用,2018,54(13):11-18, 33. |
FANG L P, HE H J, ZHOU G M. Research overview of object detection methods [J]. Comput. Eng. Appl., 2018,54(13):11-18, 33. | |
19 | KRIZHEVSKY A, SUTSKEVER I, E.HINTON G. Image net classification with deep convolutional neural networks [J]. Adv. Neural Inform. Proc. Syst., 2012, 25(2)??. |
20 | BOCHKOVSKIY A, WANG C Y, LIAO H. YOLOv4: optimal speed and accuracy of object detection [J/OL]. 2020,10934 [2022-05-25]. . |
21 | 刘小刚,范诚,李加念,等.基于卷积神经网络的草莓识别方法[J].农业机械学报,2020,51(2):237-244. |
LIU X G, FANG C, LI J N, et al.. Identification method of strawberry based on convolutional neural network [J]. Trans. Chin. Soc. Agric. Machinery, 2020,51(2):237-244. | |
22 | 吕石磊, 卢思华, 李震,等. 基于改进YOLOv3-LITE轻量级神经网络的柑橘识别方法[J]. 农业工程学报, 2019, 35(17):205-214. |
LYU S L, LU S H, LI Z, et al.. Orange recognition method using improved YOLOv3-LIT lightweight neural network [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(17):205-214. | |
23 | 赵德安, 吴任迪, 刘晓洋,等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3):172-181. |
ZHAO D A, WU R D, LIU X Y, et al.. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(3):172-181. | |
24 | 武星,齐泽宇,王龙军,等.基于轻量化YOLOv3卷积神经网络的苹果检测方法[J].农业机械学报,2020,51(8):17-25. |
WU X, QI Z Y, WANG L J, et al.. Apple detection method based on light-YOLOv3 convolutional neural network [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(8):17-25. | |
25 | 燕红文,刘振宇,崔清亮,等.基于特征金字塔注意力与深度卷积网络的多目标生猪检测[J].农业工程学报,2020,36(11):193-202. |
YAN H W, LIU Z Y, CUI Q L, et al.. Multi-target detection based on feature pyramid attention and deep convolution network for pigs [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(11):193-202. | |
26 | HE K, ZHANG X, REN S, et al.. Spatial pyramid pooling in deep convolutional networks for visual recognition [J]. IEEE Trans. Pattern Anal. Mach. Int., 2015, 37(9):1904-1916. |
27 | LIU S, QI L, QIN H, et al.. Path aggregation network for instance segmentation [C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2018. |
28 | ZHENG Z, WANG P, LIU W, et al.. Distance-iou loss: faster and better learning for bounding box regression [C]// Proceedings of AAAI Conference on Artificial Intelligence. AAAI, 2020. |
29 | 李菊霞,李艳文,牛帆,等.基于YOLOv4的猪只饮食行为检测方法[J].农业机械学报,2021,52(3):251-256. |
LI J X, LI Y W, NIU F, et al.. Pig diet behavior detection method based on YOLOv4 [J]. Transact. Chin. Soc. Agric. Mach., 2021,52(3):251-256. | |
30 | REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// Proceedings of IEEE Conference on Computer Vision & Pattern Recognition. IEEE, 2017:6517-6525. |
31 | REDMON J, DIVVALA S, GIRSHICK R, et al.. You only look once: unified, real-time object detection [J/OL]. 2016,02640[2022-05-25]. . |
[1] | Guangyao LI, Shenglong YANG, Tianfei CHENG, Xuesen CUI, Weifeng ZHOU, Shengmao ZHANG. Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 203-221. |
[2] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[3] | Zhuoran XING, Songshuang DING, Kai ZHANG, Ming MA, Wenlong GUO, Xudong LIU, Xiangdong SHI. Research Progress of Deep Learning and Computer Vision in Tobacco Leaf Production [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 96-106. |
[4] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[5] | Xiaofei XIONG, Xiuqin WANG, Cuizhen ZHUANG, Jiaxian GUO, Xinrui XIE, Jianwei WU, Qifeng LI. Research on Diagnostic Method of Citrus Anthracnose Based on Image ROI Fusion Feature [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 83-92. |
[6] | Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130. |
[7] | Ruifeng LI, Yunfu YANG, Yongfa YANG, Yongshun YU. Rose Flower Detection and Feature Extraction Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 106-113. |
[8] | Zhiyuan ZHU, Haifeng WANG, Bin LI, Wenwen ZHAO, Jun ZHU, Nan JIA, Yuliang ZHAO. Research Progress of Deep Learning in Typical Behavior Recognition of Livestock and Poultry [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 110-124. |
[9] | Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98. |
[10] | Ning ZHAO, Xing LI, Yong JIANG, Zhixiu WANG, Yulin BI, Guohong CHEN, Hao BAI, Guobin CHANG. Application of Image Recognition Technology in the Field of Chicken Breeding [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 13-22. |
[11] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[12] | Chao YANG, Haibin HAN, Bo WEI, Heng ZHANG, Chen SHANG, Bing SU, Siyuan LIU, Peiwei JIANG, Delong XIANG. Construction of Method for Age Identification of Sardinops sagax in the North Pacific Ocean [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 225-233. |
[13] | Yantong ZHANG, Qianmin SU. Image Recognition of Corn Disease Based on Transfer Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 119-125. |
[14] | Wenhao ZHAO, Jiangtao JI, Hao MA, Xin JIN, Xue LI, Haigang MA. Extraction of Winter Wheat Coverage Based on Improved K-means Algorithm [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 83-91. |
[15] | Yue ZHAO, Yong WEI, Huiyong SHAN, Zhimin MU, ZHANGJianxin, Haiyun WU, Hui ZHAO, Jianlong HU. Wheat Ear Detection Method Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 96-105. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||