Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (6): 22-29.DOI: 10.13304/j.nykjdb.2023.0012
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Zhongxiang LIU(), Wenqi ZHOU, Yongsheng LI, Xiaojuan WANG, Yanzhong YANG, Xiaorong LIAN, Haijun HE, Yuqian ZHOU(
)
Received:
2023-01-04
Accepted:
2023-03-07
Online:
2024-06-15
Published:
2024-06-12
Contact:
Yuqian ZHOU
刘忠祥(), 周文期, 李永生, 王晓娟, 杨彦忠, 连晓荣, 何海军, 周玉乾(
)
通讯作者:
周玉乾
作者简介:
刘忠祥 E-mail: lzhxiang@sina.com;
基金资助:
CLC Number:
Zhongxiang LIU, Wenqi ZHOU, Yongsheng LI, Xiaojuan WANG, Yanzhong YANG, Xiaorong LIAN, Haijun HE, Yuqian ZHOU. Phenotypic Identification and Genetic Analysis of a Dwarf Mutant 20F421 inMaize[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 22-29.
刘忠祥, 周文期, 李永生, 王晓娟, 杨彦忠, 连晓荣, 何海军, 周玉乾. 玉米矮秆突变体20F421的表型鉴定及遗传分析[J]. 中国农业科技导报, 2024, 26(6): 22-29.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2023.0012
Fig. 1 Phenotypes of dwarf mutant 20F421 in maizeA: Phenotypesat adult stage; B: Internode phenotypes at adult stage; C: Ear phenotypes; D: Grain; E: Plant height; F: Ear height; G: Internode length. *** indicates significant difference compared with 20F421 at P<0.001 level, ns indicates no significant difference
突变体20F421 Mutant20F421 | 野生型KWS49 Wild type KWS49 | P值 P value | 样本容量 Sample size(20F421/KWS49) | |
---|---|---|---|---|
株高Plant height/cm | 95.2±4.3 | 182.7±11.0 | 2.600 142×10-8 | 21/20 |
穗位Ear height/cm | 23.9±1.9 | 67.4±7.5 | 4.371 427×10-10 | 21/20 |
穗长Ear length/cm | 12.3±0.7 | 14.5±1.4 | 0.055 606 | 21/20 |
穗粗Ear diameter/cm | 3.7±0.2 | 3.9±0.2 | 0.849 836 | 21/20 |
穗行数 Row number per ear | 13.6±1.0 | 14.3±1.0 | 1.000 000 | 21/20 |
行粒数 Kernels per row | 19.3±2.8 | 30.1±12.1 | 0.005 992 | 21/20 |
秃尖长Rare ear length/cm | 1.4±0.6 | 1.2±0.4 | 0.122 239 | 21/20 |
雄穗长 Tassel length/cm | 27.0±2.3 | 32.2±2.4 | 0.037 186 | 21/20 |
雄穗分枝数 Number of tassel branches | 4.0±1.9 | 4.9±1.9 | 0.302 534 | 21/20 |
叶片数 Number of leaves | 13.5±0.6 | 13.5±0.7 | 0.343 959 | 21/20 |
倒3叶长Length of the third leaf/cm | 42.0±6.5 | 48.1±3.7 | 0.257 108 | 21/20 |
倒3叶宽 Width of the third leaf/cm | 6.4±0.5 | 6.7±0.7 | 0.979 684 | 21/20 |
Table 1 Agronomic traits of dwarf mutant 20F421 and wild type KWS49
突变体20F421 Mutant20F421 | 野生型KWS49 Wild type KWS49 | P值 P value | 样本容量 Sample size(20F421/KWS49) | |
---|---|---|---|---|
株高Plant height/cm | 95.2±4.3 | 182.7±11.0 | 2.600 142×10-8 | 21/20 |
穗位Ear height/cm | 23.9±1.9 | 67.4±7.5 | 4.371 427×10-10 | 21/20 |
穗长Ear length/cm | 12.3±0.7 | 14.5±1.4 | 0.055 606 | 21/20 |
穗粗Ear diameter/cm | 3.7±0.2 | 3.9±0.2 | 0.849 836 | 21/20 |
穗行数 Row number per ear | 13.6±1.0 | 14.3±1.0 | 1.000 000 | 21/20 |
行粒数 Kernels per row | 19.3±2.8 | 30.1±12.1 | 0.005 992 | 21/20 |
秃尖长Rare ear length/cm | 1.4±0.6 | 1.2±0.4 | 0.122 239 | 21/20 |
雄穗长 Tassel length/cm | 27.0±2.3 | 32.2±2.4 | 0.037 186 | 21/20 |
雄穗分枝数 Number of tassel branches | 4.0±1.9 | 4.9±1.9 | 0.302 534 | 21/20 |
叶片数 Number of leaves | 13.5±0.6 | 13.5±0.7 | 0.343 959 | 21/20 |
倒3叶长Length of the third leaf/cm | 42.0±6.5 | 48.1±3.7 | 0.257 108 | 21/20 |
倒3叶宽 Width of the third leaf/cm | 6.4±0.5 | 6.7±0.7 | 0.979 684 | 21/20 |
群体 Population | 观察值Observed values | 期望值Expected values | 卡方 χ2 | ||
---|---|---|---|---|---|
野生型Wild type | 突变体Mutant | 野生型Wild type | 突变体Mutant | ||
(PH6WC×20F421) F2 | 85 | 36 | 90.75 | 30.25 | 1.215 |
(B73×20F421) F2 | 357 | 104 | 345.75 | 115.25 | 1.337 |
(MO17×20F421) F2 | 328 | 107 | 326.25 | 108.75 | 0.019 |
(KWS49×20F421) F2 | 56 | 25 | 60.75 | 20.25 | 1.189 |
Table 2 Segregation analysis and Chi?square test of F2 segregating plants
群体 Population | 观察值Observed values | 期望值Expected values | 卡方 χ2 | ||
---|---|---|---|---|---|
野生型Wild type | 突变体Mutant | 野生型Wild type | 突变体Mutant | ||
(PH6WC×20F421) F2 | 85 | 36 | 90.75 | 30.25 | 1.215 |
(B73×20F421) F2 | 357 | 104 | 345.75 | 115.25 | 1.337 |
(MO17×20F421) F2 | 328 | 107 | 326.25 | 108.75 | 0.019 |
(KWS49×20F421) F2 | 56 | 25 | 60.75 | 20.25 | 1.189 |
Fig. 2 Initial mapping of a dwarf mutant 20F421 in maizeNote:The blue line indicates the difference of SNP-index between two mixed pools; the red line represents 99% confidence interval; the yellow line indicates 95% confidence interval.
Fig. 3 Allelic detection of a dwarf mutant 20F421 and br2 in maizeA: Phenotypes of KWS49,20F421,(20F421×br2) F1 and br2 at adult stage; B:Internode length of KWS49, 20F421,(20F421×br2)F1and br2; C: Internode phenotypes of KWS49, 20F421,(20F421×br2) F1and br2; D: Phenotypes of(20F421×br2) F1 in the field; E:Phenotypes of (20F421×br2) F2 in the field
1 | TENG F, ZHAI L H, LIU R X, et al.. ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize [J]. Plant J., 2013, 73: 405-416. |
2 | 刘忠祥. 玉米株高主效QTL定位研究综述[J].甘肃农业科技, 2018 (9): 62-69. |
LIU Z X. A review of research on major QTL mapping for plant height in corn [J]. Gansu Agric. Sci. Technol., 2018 (9): 62-69. | |
3 | 宋朝玉, 张继余, 张清霞, 等. 玉米倒伏的类型、原因及预防治理措施[J]. 作物杂志, 2006(5): 36-38. |
4 | 勾玲, 黄建军, 张宾, 等. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688-1695. |
GOU L, HUANG J J, ZHANG B, et al.. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize [J]. Acta Agron. Sin., 2007, 33(10): 1688-1695. | |
5 | 邱正高. 玉米矮秆突变体dm676的遗传分析及育种潜势研究[D]. 成都:四川农业大学, 2016. |
QIU Z G. Study on genetic analysis and breeding potentially for maize dwarf mutant dm676 [D]. Chengdu: Sichuan Agricultural University, 2016. | |
6 | 徐敏, 石海春, 余学杰, 等. 一个玉米矮秆突变体K123d的遗传鉴定[J]. 植物遗传资源学报, 2017, 18(1): 155-163. |
XU M, SHI H C, YU X J, et al.. Genetic identification of a dwarf mutant K123d in maize ( Zea mays L.) [J]. J. Plant Genet. Resour., 2017, 18(1): 155-163. | |
7 | 余传元. 论水稻新株型育种与绿色革命[J]. 江西农业学报, 1998, 10(1): 60-64. |
YU C Y. Discussion on breeding for new plant type rice and green revolution [J]. Acta Agric. Jiangxi, 1998, 10(1): 60-64. | |
8 | MONNA L, KITAZAWA N, YOSHINO R, et al.. Positional cloning of rice semidwarfing gene, sd-1: rice ‘green revolution gene’encodes a mutant enzyme involved in gibberellin synthesis [J]. DNA Res., 2002, 9(1): 11-17. |
9 | SASAKI A, ASHIKARI M, UEGUCHI-TANAKA M, et al.. Green revolution: a mutant gibberellin-synthesis gene in rice [J]. Nature, 2002, 416 (6682): 701-702. |
10 | SPIELMEYER W F, ELLIS M H, CHANDLER P M, et al.. Semidwarf (sd-1), ‘green revolution’rice, contains a defective gibberellins 20-oxidase gene [J]. Proc. Natl. Acad. Sci. USA, 2002, 99(13): 9043 -9048. |
11 | 周文期, 连晓荣, 刘忠祥, 等. 玉米株高和穗位高的调控机理研究[J]. 分子植物育种, 2021, 19(23): 7965-7976. |
ZHOU W Q, LIAN X R, LIU Z X, et al.. Research progress on the mechanism of controlling maize plant height and ear height [J]. Mol. Plant Breeding, 2021, 19(23): 7965-7976. | |
12 | PENG J, RICHARDS D E, HARTLEY N M, et al.. ‘Green revolution’ genes encode mutant gibberellin response modulators [J]. Nature, 1999, 400(6741): 256-261. |
13 | 徐敏. 一个玉米矮秆突变体K123d的遗传鉴定[D]. 成都: 四川农业大学, 2016. |
XU M. Genetic identification of a dwarf mutant K123d in maize (Zea mays L.) [D]. Chengdu: Sichuan Agricultural University, 2016. | |
14 | 王立静. 玉米矮秆基因Dt和坏死基因net⁃t的图位克隆与功能分析[D]. 泰安: 山东农业大学, 2012. |
WANG L J. Map-based cloning and functional analysis of dwarf gene Dt and necrotic gene nec⁃t in maize [D]. Tai’an: Shandong Agricultural University, 2012. | |
15 | 王益军, 苗楠, 施亚婷, 等. 一份玉米显性矮杆突变体的遗传分析[J]. 华北农学报, 2010, 25(5) : 90-93. |
WANG Y J, MIAO N, SHI Y T, et al.. Genetic analysis of a dominant dwarf mutant in maize [J]. Acta Agric. Boreali-Sin., 2010, 25(5): 90-93. | |
16 | WANG Y I, DENG D X, DING H D, et al.. Gibberellin biosynthetic deficiency is responsible for maize dominant dwarf 11 ( D11 ) mutant phenotype: physiological and transcriptomic evidence [J/OL]. PLoS One, 2013, 8(6): e66466[2022-12-22]. . |
17 | CASSANI E, BERTOLINI E, BADONE F C, et al.. Characterization of the frst dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf 8 gene [J]. Mol. Breeding, 2009, 24: 375-385. |
18 | BENSEN R J, JOHAL G S, CRANE V C, et al.. Cloning and charac-terization of the maize An1 gene [J]. Plant Cell, 1995, 7(1): 75-84. |
19 | LAWIT S J, WYCH H M, XU D, et al.. Maize DELLA proteins dwarf plant 8 and dwarf plant 9 as modulators of plant development [J]. Plant Cell Physiol., 2010, 51(11): 1854-1868. |
20 | 樊景胜. 玉米矮生基因遗传及其利用[J]. 黑龙江农业科学, 1999 (1) : 29-30. |
21 | 刘忠祥, 寇思荣, 连晓荣, 等. 玉米黄绿叶突变体表型鉴定及基因初步定位[J]. 植物遗传资源学报, 2020, 21(2): 452-458. |
LIU Z X, KOU S R, LIAN X R, et al.. Phenotypic identification and low-resolution mapping of a yellow-green leaf mutant in maize [J]. J. Plant Genet. Resour., 2020, (21)2: 452-458. | |
22 | 王晓娟, 何海军, 刘忠祥,等. 一个玉米叶夹角突变体的表型鉴定及遗传分析[J].西北农业学报, 2019, 28(8): 1226-1231. |
WANG X J, HE H J, LIU Z X, et al.. Phenotyping and genetic analysis of leaf angle mutant in maize(Zea mays L.) [J].Acta Agric. Bor-Occid. Sin., 2019, 28(8): 1226-1231. | |
23 | 刘忠祥, 何海军, 王晓娟, 等. 玉米叶夹角突变体 FU1603 的选育及遗传分析[J]. 甘肃农业科技,2019 (12): 1-4. |
LIU Z X, HE H J, WANG X J, et al.. Breeding and genetic analysis of maize leaf angle mutant FU1603 [J]. Gansu Agric. Sci. Technol., 2019 (12): 1-4. | |
24 | 李玉荣. BSR-Seq方法定位玉米黄化突变基因[D]. 武汉: 华中农业大学, 2014. |
LI Y R. Etiolation mutant gene mapping via bulked segregant RNA-Seq(BSR-Seq) method in maize [D]. Wuhan: Huazhong Agricultural University, 2014. | |
25 | 杨秀. 玉米矮生突变体das的鉴定和基因定位[D]. 北京: 中国农业科学院, 2019. |
YING X. Characterization and gene mapping of das mutant in maize (Zea mays L.) [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
26 | 岳洪. 新的玉米矮秆突变基因的鉴定与遗传分析[D]. 泰安: 山东农业大学, 2008. |
YUE H. Identification and genetic analysis of a new dwarf mutant gene in maize [D]. Tai’an: Shandong Agricultural University, 2008. | |
27 | 桑贤春, 杜川, 王晓雯, 等. 水稻矮秆脆性突变体dbc1的鉴定与基因定位[J]. 作物学报, 2013, 39(4): 626-631. |
SANG X C, DU C, WANG X W, et al.. Identification and gene mapping of dwarf and brittle culm mutant dbc1 in Oryza sativa [J]. Acta Agron. Sin., 2013, 39(4): 626-63. | |
28 | SALVI S, CORNETI S, BELLOTTI M, et al.. Genetic dissection of maize phenology using an intraspecific introgression library [J/OL]. BMC Plant Biol., 2011, 11: 4 [2022-12-22]. . |
29 | LYU H, ZHENG J, WANG T, et al.. The maize d2003, a novel allele of VP8, is required for maize internode elongation [J]. Plant Mol. Biol., 2014, 84: 243-257. |
30 | 刘忠祥, 杨梅, 殷鹏程, 等. 玉米株高主效QTL qPH3.2 精细定位及遗传效应分析[J]. 作物学报, 2018, 44(9): 1357-1366 . |
LIU Z X, YANG M, YIN P C, et al.. Fine mapping and genetic effect analysis of a major QTL qPH3.2 associated with plant height in maize (Zea mays L.) [J]. Acta Agron. Sin., 2018, 44(9): 1357-1366. | |
31 | MULTANI D S, BRIGGS S P, CHAMBERLIN M A, et al.. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants [J]. Science, 2003, 302(5642): 81-84。 |
32 | 周文期,张贺通,何海军,等. 调控玉米株高和穗位高候选基因Zmdle1的定位[J]. 中国农业科学,2023, 56(5): 821-837. |
ZHOU W Q, ZHANG H T, HE H J, et al.. Candidate gene localization of ZmDLE1 gene regulating plant height and ear height in maize [J]. Sci. Agric. Sin., 2023, 56(5): 821-837. | |
33 | 蒋成功. 玉米矮杆突变体d12的表型分析及基因克隆[D]. 合肥:安徽农业大学,2020. |
JIANG C G. Phenotyping and gene cloning of a dwarf mutant d12 in maize [D]. Hefei: Anhui Agricultural University, 2020. | |
34 | 陈华伟, 石海春, 余学杰, 等. 1份60Co γ射线诱变玉米雄性不育突变体的遗传分析[J]. 核农学报, 2016, 30(5): 829-834. |
CHEN H W, SHI H C, YU X J, et al.. Genetic analysis of a maize male sterile mutant induced by 60Co-γ irradiation [J]. Nucl. Agric. Sci., 2016, 30(5): 829-834. | |
35 | 刘平, 杨慧, 孟雪, 等. 植物矮化研究进展[J]. 安徽农业科学, 2010, 38(27): 15442-15446. |
LIU P, YANG H, MENG X . et al .. Research advance of plant dwarfing [J]. Anhui Agric., Sci., 2010, 38(27): 15442-15446. | |
36 | 张志胜, 谢利, 萧爱兴, 等. 秋水仙素处理兰花原球茎对其生长和诱变效应的影响[J]. 核农学报, 2005,19 (1): 19-23. |
ZHANG Z S, XIE L, XIAO A X, et al.. Effects of colchicine treatment on growth differentiation and mutagenseis of protocorm-like-body(plb) of orchid [J]. Acta Agric. Nucl. Sin., 2005, 19(1): 19-23. | |
37 | 赵长云,白光庭,何少勇,等.玉米矮秆基因d15的克隆及表达分析[J].植物遗传资源学报, 2023,24(4):1141-1150. |
ZHAO C Y, BAI G T, HE S Y, et al.. Cloning and expression analysis of dwarf gene d15 in maize [J]. J. Plant Genet. Resour., 2023,24(4):1141-1150. | |
38 | PILU R, CASSANI E, VILLA D, et al.. Isolation and characterization of a new mutant allele of brachytic2 maize gene [J]. Mol. Breeding, 2007, 20(2): 83-91. |
39 | WEI L, ZHANG X, ZHANG Z, et al.. A new allele of the Brachytic2 gene in maize can efficiently modify plant architecture [J]. Heredity, 2018, 121(1): 75-86. |
40 | 石云素, 于永涛, 宋燕春, 等. 一个新矮生玉米种质资源的发现与遗传鉴定[J]. 植物遗传资源学报, 2008, 9(4): 521-524. |
SHI Y S, YU Y T, SONG Y C, et al.. Discovery and genetic identification of a new dwarf germplasm in maize [J]. J. Plant Genet. Resour., 2008, 9(4): 521-524. | |
41 | 石云素, 于永涛, 宋燕春, 等. 一个新矮生玉米种质资源矮生性状QTL的定位[J]. 作物学报, 2010, 36(2): 256-260. |
SHI Y S, YU Y T, SONG Y C, et al.. QTL identification for plant height in a new dwarf germplasm of maize [J]. Acta Agron. Sin., 2010, 36(2): 256-260. | |
42 | ROBERTO P, ELENA C, DANIELE V, et al.. Isolation and characterization of a new mutant allele of brachytic 2 maize gene [J]. Mol. Breeding, 2007, 20: 83-91. |
43 | CASSANI E, VILLA D, DURANTE M, et al.. The brachytic 2 and 3 maize double mutant shows alterations in plant growth and embryo development [J]. Plant Growth Regul., 2011, 64(2):185-192. |
44 | 戴景瑞. 玉米的矮生基因及其遗传效应[J]. 遗传, 1979, 1 (5) :40-43. |
45 | TOMOYA N K, TAKAAKI N, MASAYOSKI N, et al.. Production of dwarf lettuce by overexpressing a pumpkin gibberellin 20-oxidase gene [J]. Plant Physiol., 2001, 126: 965-972. |
[1] | Haitao XU, Hongzhen MA, Wenwen WANG, Wenxiang FAN, Bo XU, Jungang ZHANG, Haibin GUO, Youhua WANG. Research on Dynamic Development and Accumulated Temperature Model of Maize Plant Height and Stem Diameter Based on Effective Accumulated Temperature [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 187-201. |
[2] | Xiang SUN, Liyang ZHANG, Jiying YIN, Kaiyi WANG, Meirong GUO, Heju HUAI. Problems and Countermeasures of Digital Transformation of Maize Seed Production Base [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 8-17. |
[3] | Taotao MAO, Xiaoqiang ZHAO, Xiaodong BAI, Bin YU. Effect of Low Temperature Stress on Photosynthetic Performance, Antioxidant Enzyme System and Related Gene Expression in Maize Seedlings [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 49-60. |
[4] | Saisai HOU, Shanshan TONG, Pengqi WANG, Bingxue XIE, Ruifang ZHANG, Xinxin WANG. Effects of Biochar and Straw on Growth Characteristics and Nutrient Uptake of Different Crops [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 179-191. |
[5] | Zihao WANG, Xue ZHOU, Donghan ZHANG, Hongyi LIANG, Yan WANG, Ziang ZHAO, Qing CHEN. Effect of Water-soluble Fertilizers Containing Humic-acids on Maize Seedlings Growth and Soil Properties [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 209-220. |
[6] | Yumang ZHANG, Guijuan CHEN, Hongyan CHANG, Yongheng WANG, Shuxia LIU, Yunxiu YING. Effect of New Degradable Soil Water-retaining Agent on Growth and Development of Maize Seedlings Under Water Stress at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 201-210. |
[7] | Wenxuan SHI, Jinfang TAN, Qian ZHANG, Lantao LI, Yilun WANG. Effect of One-off Fertilization on Yield and Nitrogen Fertilizer Efficiency of Summer Maize in Different Ecological Regions [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 193-202. |
[8] | Mei WU, Jinzhu ZHANG, Zhenhua WANG, Jian LIU, Yue WEN, Xuanzhi LI. Effects of Water and Air Interaction on Physiological Growth and Yield of Maize Under Mulched Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 189-200. |
[9] | Yan CAO, Yantao YANG, Guogang WANG. Spatial-temporal Pattern Evolution and Matching Analysis of Maize Production and Consumption in China [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 1-10. |
[10] | Yafeng ZHAO, Mengxue WANG, Deshuai WANG, Dongdong WANG, Yuan LI, Junfeng HU. Maize Root Image Segmentation Based on CP-DeepLabv3+ [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 110-116. |
[11] | Zhanqing WU, Wei CHEN, Zhan ZHAO, Hailiang XU, Haoyuan LI, Xingxing PENG, Dongxu CHEN, Mingyue ZHANG. Genome-wide Identification and Bioinformatics Analysis of GRAS Gene Family in Maize [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 15-25. |
[12] | Jianguang ZENG, Taoli LIU, Linjuan SUN, Dingyang YUAN, Yubo HUANG, Chenzhong JIN, Yanning TAN. Analysis of Character and GibberellinSensitivity of Rice Dwarfism and Late-Heading Mutant d534 [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 7-14. |
[13] | Yuan HE, Xiaotong GU, Liqing FENG, Huijun DUAN, Yongsheng TAO. Screening and Evaluation of Drought Resistance Index for Maize Hybrids During Seedling and Germination Stages [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 30-40. |
[14] | Yunhong WANG, Qi MIAO, Junchao LI, Hongye WANG, Jishi ZHANG, Zhenling CUI. Effect of Comprehensive Management Measures on Productivity of Medium and Low Yield Farmland in Coastal Saline Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 163-172. |
[15] | Jianmin YAO, Junkui MA, Zhongxiang WANG, Xinyuan BI, Ruizhen LI, Ruiping YANG, Zhao LIU, Fenghui GUO. Application Effect of Full Biodegradable Water Permeable Plastic Film in Soybean-Maize Belt Composite Planting [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 178-185. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||