Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (10): 63-71.DOI: 10.13304/j.nykjdb.2024.0215
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Ke SUI1(), Zeyu LIU1, Yuxia ZHANG1(
), Tingyu LIU1, Xinhe SHAN2, Zhiyong ZHANG3, Xianguo WANG2
Received:
2024-03-20
Accepted:
2024-06-21
Online:
2025-10-15
Published:
2025-10-15
Contact:
Yuxia ZHANG
隋可1(), 刘泽宇1, 张玉霞1(
), 刘庭玉1, 单新河2, 张智勇3, 王显国2
通讯作者:
张玉霞
作者简介:
隋可 E-mail:keke15804750161@163.com;
基金资助:
CLC Number:
Ke SUI, Zeyu LIU, Yuxia ZHANG, Tingyu LIU, Xinhe SHAN, Zhiyong ZHANG, Xianguo WANG. Effects of Low Temperature Stress on Non-structural Carbon and Nitrogen Content and Relative Conductivity of ‘WL’ Alfalfa Varieties[J]. Journal of Agricultural Science and Technology, 2025, 27(10): 63-71.
隋可, 刘泽宇, 张玉霞, 刘庭玉, 单新河, 张智勇, 王显国. 低温胁迫对‘WL’系列苜蓿品种碳氮物质含量和相对电导率的影响[J]. 中国农业科技导报, 2025, 27(10): 63-71.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2024.0215
品种Variety | 处理 Treatment | |
---|---|---|
低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | |
WL168HQ | 13.55±1.73 bβ | 31.79±0.75 cα |
WL319HQ | 15.65±2.33 bβ | 33.21±1.07 bcα |
WL298HQ | 13.04±1.09 bβ | 32.95±3.11 cα |
WL329HQ | 15.35±3.07 bβ | 34.16±1.09 bα |
WL349HQ | 15.80±3.14 bβ | 35.31±1.30 abα |
WL354HQ | 17.37±2.31 abβ | 36.36±0.57 aα |
WL358HQ | 15.10±0.70 bβ | 33.15±6.24 bcα |
WL343HQ | 17.42±1.90 abβ | 33.48±0.71 bα |
WL377HQ | 16.19±2.33 abβ | 33.49±5.58 bα |
WL363HQ | 17.33±2.08 abβ | 35.49±2.02 abα |
WL366HQ | 22.80±2.53 aβ | 36.75±2.87 aα |
WL440HQ | 16.85±1.86 abβ | 35.26±2.54 abα |
Table 1 Relative conductivity of alfalfa root neck under low temperature refrigeration stress
品种Variety | 处理 Treatment | |
---|---|---|
低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | |
WL168HQ | 13.55±1.73 bβ | 31.79±0.75 cα |
WL319HQ | 15.65±2.33 bβ | 33.21±1.07 bcα |
WL298HQ | 13.04±1.09 bβ | 32.95±3.11 cα |
WL329HQ | 15.35±3.07 bβ | 34.16±1.09 bα |
WL349HQ | 15.80±3.14 bβ | 35.31±1.30 abα |
WL354HQ | 17.37±2.31 abβ | 36.36±0.57 aα |
WL358HQ | 15.10±0.70 bβ | 33.15±6.24 bcα |
WL343HQ | 17.42±1.90 abβ | 33.48±0.71 bα |
WL377HQ | 16.19±2.33 abβ | 33.49±5.58 bα |
WL363HQ | 17.33±2.08 abβ | 35.49±2.02 abα |
WL366HQ | 22.80±2.53 aβ | 36.75±2.87 aα |
WL440HQ | 16.85±1.86 abβ | 35.26±2.54 abα |
品种 Variety | 淀粉含量Starch content | 可溶性糖含量Soluble sugar content | ||
---|---|---|---|---|
低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | 低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | |
WL168HQ | 63.12±5.50 abα | 24.38±2.19 abβ | 35.10±3.15 abβ | 88.37±5.93 aα |
WL319HQ | 65.35±5.54 aα | 25.73±3.13 abβ | 34.05±3.20 abβ | 67.98±2.78 abcdeα |
WL298HQ | 64.08±4.32 abα | 23.50±3.21 bβ | 39.74±5.08 aβ | 62.73±12.20 cdeα |
WL329HQ | 65.39±3.81 aα | 24.12±0.82 abβ | 38.82±2.97 aβ | 53.07±6.19 eα |
WL349HQ | 40.07±2.06 bα | 23.38±2.92 bαβ | 39.07±4.38 aβ | 61.17±8.40 deα |
WL354HQ | 64.85±4.50 abα | 24.62±1.80 abβ | 32.69±7.32 bβ | 75.08±7.86 abcdα |
WL358HQ | 58.87±2.87 bα | 30.12±1.07 abβ | 31.01±4.44 bβ | 81.90±3.68 abcα |
WL343HQ | 62.94±2.77 abα | 26.63±1.11 abβ | 38.04±3.56 abα | 57.40±1.99 deα |
WL377HQ | 50.39±2.31 bα | 30.93±1.46 aαβ | 34.41±6.79 abβ | 56.62±3.27 deα |
WL363HQ | 60.20±7.38 aα | 28.11±1.71 abβ | 38.70±2.97 aβ | 68.98±4.70 abcdeα |
WL366HQ | 63.17±9.45 abα | 28.84±0.48 abβ | 34.35±6.53 abβ | 67.21±1.64 bcdeα |
WL440HQ | 56.99±4.68 bα | 30.12±2.22 abβ | 34.81±5.67 abβ | 84.96±3.59 abα |
Table 2 Carbohydrate content in alfalfa root neck under low temperature refrigeration stress
品种 Variety | 淀粉含量Starch content | 可溶性糖含量Soluble sugar content | ||
---|---|---|---|---|
低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | 低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | |
WL168HQ | 63.12±5.50 abα | 24.38±2.19 abβ | 35.10±3.15 abβ | 88.37±5.93 aα |
WL319HQ | 65.35±5.54 aα | 25.73±3.13 abβ | 34.05±3.20 abβ | 67.98±2.78 abcdeα |
WL298HQ | 64.08±4.32 abα | 23.50±3.21 bβ | 39.74±5.08 aβ | 62.73±12.20 cdeα |
WL329HQ | 65.39±3.81 aα | 24.12±0.82 abβ | 38.82±2.97 aβ | 53.07±6.19 eα |
WL349HQ | 40.07±2.06 bα | 23.38±2.92 bαβ | 39.07±4.38 aβ | 61.17±8.40 deα |
WL354HQ | 64.85±4.50 abα | 24.62±1.80 abβ | 32.69±7.32 bβ | 75.08±7.86 abcdα |
WL358HQ | 58.87±2.87 bα | 30.12±1.07 abβ | 31.01±4.44 bβ | 81.90±3.68 abcα |
WL343HQ | 62.94±2.77 abα | 26.63±1.11 abβ | 38.04±3.56 abα | 57.40±1.99 deα |
WL377HQ | 50.39±2.31 bα | 30.93±1.46 aαβ | 34.41±6.79 abβ | 56.62±3.27 deα |
WL363HQ | 60.20±7.38 aα | 28.11±1.71 abβ | 38.70±2.97 aβ | 68.98±4.70 abcdeα |
WL366HQ | 63.17±9.45 abα | 28.84±0.48 abβ | 34.35±6.53 abβ | 67.21±1.64 bcdeα |
WL440HQ | 56.99±4.68 bα | 30.12±2.22 abβ | 34.81±5.67 abβ | 84.96±3.59 abα |
品种 Variety | 游离氨基酸含量Free amino acid content | 可溶性蛋白含量Soluble protein content | ||
---|---|---|---|---|
低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | 低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | |
WL168HQ | 0.65±0.05 dβ | 0.90±0.01 cα | 18.99±3.85 bcβ | 32.96±2.60 aα |
WL319HQ | 1.35±0.16 aβ | 1.80±0.17 aα | 18.49±2.40 cβ | 32.16±4.37 abα |
WL298HQ | 1.16±0.46 bcβ | 1.59±0.30 abα | 25.41±3.99 abαβ | 30.03±3.37 abα |
WL329HQ | 1.30±0.20 aαβ | 1.42±0.47 aα | 26.53±1.03 aβ | 30.68±3.49 abα |
WL349HQ | 1.26±0.67 abαβ | 1.43±0.30 abcα | 16.60±1.50 cβ | 27.80±1.47 abcdα |
WL354HQ | 1.10±0.42 bcαβ | 1.13±0.06 bcα | 17.61±0.99 cβ | 24.09±2.81 bcdα |
WL358HQ | 1.22±0.28 abα | 1.37±0.11 abcα | 20.75±3.36 abcβ | 30.23±3.20 abα |
WL343HQ | 1.19±0.10 bcβ | 1.37±0.17 abcα | 14.32±1.81 cβ | 29.09±3.01 abcα |
WL377HQ | 1.16±0.49 bcβ | 1.62±0.14 abα | 19.41±1.15 bcβ | 25.83±2.31 bcdα |
WL363HQ | 1.19±0.23 bcαβ | 1.25±0.21 aα | 15.11±2.72 cβ | 28.79±5.54 abcα |
WL366HQ | 1.15±0.12 bcαβ | 1.25±0.20 abcα | 16.44±1.86 cαβ | 18.34±2.52 dα |
WL440HQ | 0.99±0.05 cdβ | 1.68±0.43 abα | 17.00±2.01 cβ | 29.12±3.12 abcα |
Table 3 Soluble nitrogen content in alfalfa root collar under low temperature refrigeration stress
品种 Variety | 游离氨基酸含量Free amino acid content | 可溶性蛋白含量Soluble protein content | ||
---|---|---|---|---|
低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | 低温冷藏Low temperature storage | 低温冷冻Low temperature refrigeration | |
WL168HQ | 0.65±0.05 dβ | 0.90±0.01 cα | 18.99±3.85 bcβ | 32.96±2.60 aα |
WL319HQ | 1.35±0.16 aβ | 1.80±0.17 aα | 18.49±2.40 cβ | 32.16±4.37 abα |
WL298HQ | 1.16±0.46 bcβ | 1.59±0.30 abα | 25.41±3.99 abαβ | 30.03±3.37 abα |
WL329HQ | 1.30±0.20 aαβ | 1.42±0.47 aα | 26.53±1.03 aβ | 30.68±3.49 abα |
WL349HQ | 1.26±0.67 abαβ | 1.43±0.30 abcα | 16.60±1.50 cβ | 27.80±1.47 abcdα |
WL354HQ | 1.10±0.42 bcαβ | 1.13±0.06 bcα | 17.61±0.99 cβ | 24.09±2.81 bcdα |
WL358HQ | 1.22±0.28 abα | 1.37±0.11 abcα | 20.75±3.36 abcβ | 30.23±3.20 abα |
WL343HQ | 1.19±0.10 bcβ | 1.37±0.17 abcα | 14.32±1.81 cβ | 29.09±3.01 abcα |
WL377HQ | 1.16±0.49 bcβ | 1.62±0.14 abα | 19.41±1.15 bcβ | 25.83±2.31 bcdα |
WL363HQ | 1.19±0.23 bcαβ | 1.25±0.21 aα | 15.11±2.72 cβ | 28.79±5.54 abcα |
WL366HQ | 1.15±0.12 bcαβ | 1.25±0.20 abcα | 16.44±1.86 cαβ | 18.34±2.52 dα |
WL440HQ | 0.99±0.05 cdβ | 1.68±0.43 abα | 17.00±2.01 cβ | 29.12±3.12 abcα |
处理 Treatemnt | 指标 Index | 相对电导率 Relative conductivity | 淀粉含量 Starch content | 可溶性糖含量Soluble sugar content | 可溶性蛋白含量Soluble protein content |
---|---|---|---|---|---|
低温冷藏 Low temperature storage | 淀粉含量 Starch content | -0.281* | |||
可溶性糖含量 Soluble sugar content | 0.336 | 0.034 | |||
可溶性蛋白含量 Soluble protein content | 0.595* | 0.063 | 0.130 | ||
游离氨基酸含量 Free amino acid content | -0.055 | -0.288 | -0.323* | -0.005 | |
低温冷冻 Low temperature refrigeration | 淀粉含量 Starch content | -0.157* | |||
可溶性糖含量 Soluble sugar content | -0.092 | -0.147 | |||
可溶性蛋白含量 Soluble protein content | -0.549* | -0.407 | 0.106 | ||
游离氨基酸含量 Free amino acid content | -0.196 | 0.065 | -0.684** | -0.073 |
Table 4 Correlation between relative conductivity of alfalfa root neck and non-structural carbon and nitrogen substances
处理 Treatemnt | 指标 Index | 相对电导率 Relative conductivity | 淀粉含量 Starch content | 可溶性糖含量Soluble sugar content | 可溶性蛋白含量Soluble protein content |
---|---|---|---|---|---|
低温冷藏 Low temperature storage | 淀粉含量 Starch content | -0.281* | |||
可溶性糖含量 Soluble sugar content | 0.336 | 0.034 | |||
可溶性蛋白含量 Soluble protein content | 0.595* | 0.063 | 0.130 | ||
游离氨基酸含量 Free amino acid content | -0.055 | -0.288 | -0.323* | -0.005 | |
低温冷冻 Low temperature refrigeration | 淀粉含量 Starch content | -0.157* | |||
可溶性糖含量 Soluble sugar content | -0.092 | -0.147 | |||
可溶性蛋白含量 Soluble protein content | -0.549* | -0.407 | 0.106 | ||
游离氨基酸含量 Free amino acid content | -0.196 | 0.065 | -0.684** | -0.073 |
主成分Principal component | 特征值Eigen value | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | 特征向量 Eigenvector | ||||
---|---|---|---|---|---|---|---|---|
相对电导率 Relative conductivity | 淀粉含量Starch content | 可溶性糖 含量 Soluble sugar content | 游离氨基酸含量 Free amino acid content | 可溶性蛋白含量 Soluble protein content | ||||
1 | 1.846 | 36.91 | 36.91 | 0.45 | 0.29 | -0.06 | -0.50 | -0.81 |
2 | 1.357 | 27.14 | 64.01 | 0.07 | 0.14 | -0.56 | -0.23 | 0.63 |
3 | 1.123 | 22.46 | 86.51 | -0.33 | 0.68 | 0.47 | 0.10 | 0.31 |
Table 5 Principal component analysis
主成分Principal component | 特征值Eigen value | 贡献率Contribution rate/% | 累计贡献率Cumulative contribution rate/% | 特征向量 Eigenvector | ||||
---|---|---|---|---|---|---|---|---|
相对电导率 Relative conductivity | 淀粉含量Starch content | 可溶性糖 含量 Soluble sugar content | 游离氨基酸含量 Free amino acid content | 可溶性蛋白含量 Soluble protein content | ||||
1 | 1.846 | 36.91 | 36.91 | 0.45 | 0.29 | -0.06 | -0.50 | -0.81 |
2 | 1.357 | 27.14 | 64.01 | 0.07 | 0.14 | -0.56 | -0.23 | 0.63 |
3 | 1.123 | 22.46 | 86.51 | -0.33 | 0.68 | 0.47 | 0.10 | 0.31 |
品种 Variety | 隶属函数值 Membership function value | 综合评价值Comprehensive score | 排名Ranking | ||
---|---|---|---|---|---|
μ(X1) | μ(X2) | μ(X3) | |||
WL168HQ | 0.57 | 1.00 | 0.53 | 0.51 | 3 |
WL319HQ | 0.10 | 0.89 | 0.63 | 0.60 | 1 |
WL298HQ | 0.69 | 0.79 | 1.00 | 0.55 | 2 |
WL329HQ | 0.00 | 0.33 | 0.10 | 0.48 | 5 |
WL349HQ | 0.38 | 0.73 | 0.22 | 0.50 | 4 |
WL354HQ | 0.68 | 0.39 | 0.06 | 0.44 | 6 |
WL358HQ | 0.35 | 0.49 | 0.99 | 0.42 | 8 |
WL343HQ | 0.27 | 0.76 | 0.33 | 0.43 | 7 |
WL377HQ | 0.22 | 0.56 | 0.76 | 0.35 | 10 |
WL363HQ | 0.53 | 0.58 | 0.42 | 0.30 | 11 |
WL366HQ | 0.32 | 0.64 | 0.28 | 0.39 | 9 |
WL440HQ | 0.55 | 0.68 | 0.00 | 0.25 | 12 |
Table 6 Membership function analysis
品种 Variety | 隶属函数值 Membership function value | 综合评价值Comprehensive score | 排名Ranking | ||
---|---|---|---|---|---|
μ(X1) | μ(X2) | μ(X3) | |||
WL168HQ | 0.57 | 1.00 | 0.53 | 0.51 | 3 |
WL319HQ | 0.10 | 0.89 | 0.63 | 0.60 | 1 |
WL298HQ | 0.69 | 0.79 | 1.00 | 0.55 | 2 |
WL329HQ | 0.00 | 0.33 | 0.10 | 0.48 | 5 |
WL349HQ | 0.38 | 0.73 | 0.22 | 0.50 | 4 |
WL354HQ | 0.68 | 0.39 | 0.06 | 0.44 | 6 |
WL358HQ | 0.35 | 0.49 | 0.99 | 0.42 | 8 |
WL343HQ | 0.27 | 0.76 | 0.33 | 0.43 | 7 |
WL377HQ | 0.22 | 0.56 | 0.76 | 0.35 | 10 |
WL363HQ | 0.53 | 0.58 | 0.42 | 0.30 | 11 |
WL366HQ | 0.32 | 0.64 | 0.28 | 0.39 | 9 |
WL440HQ | 0.55 | 0.68 | 0.00 | 0.25 | 12 |
[1] | 于康震.适应新形势抓住新机遇开创“十三五”草牧业发展新局面[J].草地学报,2016,24(4):715-717. |
[2] | 李振松,高茜,徐洪雨,等.灌溉制度对科尔沁沙地紫花苜蓿生产性能的影响[J].草地学报, 2019, 27(2):389-396. |
LI Z S, GAO Q, XU H Y, et al.. Effect of irrigation system on production performance of alfalfa in horqin sandy land [J]. Acta Agrestia Sin., 2019, 27(2):389-396. | |
[3] | 邬佳宾,苗澍,张瑞强,等.紫花苜蓿越冬期抗寒机理研究进展[C]//上海来溪会务服务有限公司.2016年国际农业科学与生物技术大会论文集.内蒙古大学生命科学学院;灌溉与排水技术研究室水利部牧区水利科学研究所,2016:68-72. |
[4] | LIU M J, MIAO Y, ZHANG L J, et al.. Mitochondrial structure and respiratory metabolism in cold resistance of alfalfa seedling root [J]. Theor. Exp. Plant Physiol., 2023, 35(4):319-330. |
[5] | ALZAHRANI O R, ALSHEHRI M A, ALASMARI A, et al.. Evaluation of genetic diversity among Saudi Arabian and Egyptian cultivars of alfalfa (Medicago sativa L.) using ISSR and SCoT markers [J/OL]. J. Taibah Univ. Sci., 2023, 17(1):22194187 [2024-02-20] . . |
[6] | PEIPEI Z, SHUANGSHUANG L, PENGCEHNG Z, et al.. Comparative physiological analysis reveals the role of NR-derived nitric oxide in the cold tolerance of forage legume [J/OL]. Int. J. Mol. Sci., 2019, 20(6):1368 [2024-02-20]. . |
[7] | 孙明雪,张玉霞,丛百明,等.不同苜蓿的抗寒性差异及其与糖类物质含量的相关性研究[J].草地学报,2021,29(2):303-308. |
SUN M X, ZHANG Y X, CONG B M, et al.. Study on the difference in cold resistance of different alfalfa and its correlation with carbohydrate content [J]. Acta Agrestia Sin., 2021, 29(2):303-308. | |
[8] | 陈卫东.末次刈割时间调控苜蓿越冬的生理机制及抗寒性综合评价[D]. 通辽:内蒙古民族大学,2022. |
CHEN W D. The physiological mechanism of the last cutting time regulating alfalfa overwintering and comprehensive evaluation of cold esistance [D].Tongliao: Inner Mongolia Minzu University, 2022. | |
[9] | 王晓龙,杨曌,来永才,等.8个苜蓿品种对低温胁迫的生理响应及抗寒性评价[J].中国草地学报,2023,45(8):60-69. |
WANG X L, YANG Z, LAI Y C, et al.. Physiological response and cold resistance evaluation of eight alfalfa varieties to low temperature stress [J]. Chin. J. Grassland, 2023, 45(8):60-69. | |
[10] | 陈卫东,张玉霞,丛百明,等.低温胁迫对不同苜蓿品种生理特性的影响[J].中国草地学报,2021,43(7):115-120. |
CHEN W D, ZHANG Y X, CONG B M, et al.. Effects of cold stress on different alfalfa varieties' physiological characteristics [J]. Chin. J. Grassland, 2021, 43(7):115-120. | |
[11] | 赵莹,杨克军,赵长江,等.外源糖调控玉米光合系统和活性氧代谢缓解盐胁迫[J].中国农业科学,2014,47(20):3962-3972. |
ZHAO Y, YANG K J, ZHAO C J, et al.. Alleviation of the adverse effects of salt stress by regulating photosynthetic system and active oxygen metabolism in maize seedlings [J]. Sci. Agric. Sin., 2014, 47(20):3962-3972. | |
[12] | 刘志英,李西良,李峰,等.紫花苜蓿秋眠性对低温驯化过程与越冬耐寒适应的作用机理[J].植物生态学报,2015,39(6):635-648. |
LIU Z Y, LI X L, LI F, et al.. Mechanisms underlying the effects of fall dormancy on the cold acclimation and winter hard-iness of Medicago sativa [J]. Chin. J. Plant Ecol., 2015, 39(6):635-648. | |
[13] | 朱爱民,张玉霞,王显国,等.沙地生境不同苜蓿品种形态特征对低温的响应及其与抗寒性关系[J].草地学报,2018,26(6):1400-1408. |
ZHU A M, ZHANG Y X, WANG X G, et al.. Responses of morphological characteristics of different alfalfa varieties to low temperature and their relationship with cold resistance in sandy habitats [J]. Acta Agrestia Sin., 2018, 26(6):1400-1408. | |
[14] | 邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000:129-174. |
[15] | 武祎,宋彦涛,田雨. 不同秋眠等级苜蓿品种幼苗的抗冻性研究[J].中国草地学报,2020,42(1):169-173. |
WU Y, SONG Y T, TIAN Y. Research on freezing tolerance of alfalfa seedlings with different fall dormancy class [J]. Chin. J. Grassland, 2020,42(1):169-173. | |
[16] | 朱爱民,张玉霞,王显国,等.8个苜蓿品种抗寒性的比较[J].西北农林科技大学学报(自然科学版),2019,47(1):45-52. |
ZHU A M, ZHANG Y X, WANG X G, et al.. Comparison of cold resistance of 8 alfalfa varieties [J]. J. Northwest A&F Univ.(Nat. Sci.), 2019, 47(1):45-52. | |
[17] | 陈晶晶,王英哲,金艳,等.不同紫花苜蓿杂交组合对冻害胁迫的生理响应[J].草业科学,2018,35(5):1138-1144. |
CHEN J J, WANG Y Z, JIN Y, et al.. Physiological responses of different alfalfa hybrid combinations to freezing stress [J]. Pratac. Sci., 2018, 35(5):1138-1144. | |
[18] | 付晓伟,张倩,刘崇怀,等.评价葡萄根系抗寒性指标的确定[J].果树学报,2014,31(1):52-59, 2. |
FU X W, ZHANG Q, LIUC H, et al.. Index for the evaluation of grape root cold-resistance [J]. J. Fruit Sci., 2014, 31(1):52-59, 2. | |
[19] | 乔洁,刘元和,姚永华,等.4种豆科牧草抗寒性能比较研究[J].草原与草坪,2010,30(1):68-73. |
QIAO J, LIU Y H, YAO Y H, et al.. Characters of cold resistance of four perennial Legumes species [J]. Grassland Turf, 2010, 30(1):68-73. | |
[20] | 崔国文.紫花苜蓿田间越冬期抗寒生理研究[J].草地学报,2009,17(2):145-150. |
CUI G W. The physiological responses of cold resistance in alfalfa during ovetwintering period in the field [J]. Acta Agrestia Sin., 2009, 17(2):145-150. | |
[21] | 刘香萍,崔国文,李国良,等.紫花苜蓿主根内非结构性碳水化合物累积及其与抗寒性的关系[J].中国草地学报,2010,32(2):113-115, 120. |
LIU X P, CUI G W, LI G L, et al.. Relationships between non-structure carbohydrates accumulation in taproot of alfalfa and coldhardiness [J]. Chin. J. Grassland, 2010, 32(2):113-115, 120. | |
[22] | 申晓慧,姜成,冯鹏,等.6种紫花苜蓿越冬前后几个抗寒生理指标变化研究[J].农学学报,2015,5(12):94-98. |
SHEN X H, JIANG C, FENG P, et al.. Changing of several cold resistance physiological indexes of 6 kinds of alfalfa before and after overwintering [J]. J. Agric., 2015, 5(12):94-98. | |
[23] | 韩瑞宏,卢欣石,余建斌,等.苜蓿抗寒性研究进展[J].中国草地,2005,27(2):60-65. |
HAN R H, LU X S, YU J B, et al.. Research progress in freezing resistance of lucerne [J]. Chin. J. Grassland, 2005, 27(2):60-65. | |
[24] | 滕泽,张玉霞,陈卫东,等.壳聚糖对苜蓿抗寒性及抗寒保护物质含量的影响[J].中国农业科技导报,2023,25(2):192-198. |
TENG Z, ZHANG Y X, CHEN W D, et al.. Effect of chitosan on alfalfa's cold resistance and content of cold-resistant protective substances [J]. J. Agric Sci. Technol., 2023, 25(2):192-198. | |
[25] | 张仲鹃.6份苜蓿材料生物学特性及生理特性研究[D].北京:中国农业科学院,2019. |
ZHANG Z J. Study on biological and physiological characteristics of 6 alfalfa materials [D]. Beijing:Chinese Academy of Agricultural Sciences,2019. | |
[26] | 魏鑫,王升,王兴东,等.不同蓝莓品种对低温处理的生理响应及抗寒性评价[J].河南农业科学,2023,52(8):115-125. |
WEI X, WANG S, WANG X D, et al.. Physiological response and cold resistance evaluation of blueberry varieties under low temperature treatment [J]. J. Henan Agric. Sci., 2023, 52(8):115-125. | |
[27] | 赵一航,孟令东,张晓萌,等.4个紫花苜蓿品种对低温胁迫的生理响应及抗寒性评价[J].草业科学,2021,38(4):683-692. |
ZHAO Y H, MENG L D, ZHANG X M, et al.. Evaluation of physiological response and cold resistance of four alfalfa cultivars to low temperature stress [J]. Pratac. Sci., 2021, 38(4):683-692. | |
[28] | 马周文,秘一先,鲁学思,等.低温胁迫对紫花苜蓿生理指标的影响[J].草原与草坪,2016,36(6):60-67. |
MA Z W, BEI Y X, LU X S, et al.. The effective physiological response and index thresholds of Medicago sativa to low temperature [J]. Grassland Turf, 2016, 36(6):60-67. | |
[29] | 周福平,史红梅,张海燕,等.应用模糊隶属函数法对高粱种质资源的农艺性状和品质性状进行综合评价[J].种子,2022,41(1):94-98. |
ZHOU F P, SHI H M, ZHANG H Y, et al.. Comprehensive evaluation of agronomic and qualitative traits of Sorghum germplasm resources based on fuzzy membership function method [J]. Seed, 2022, 41(1):94-98. | |
[30] | 陈同森,古丽江,张东亚,等.基于隶属函数法的3个观赏树种抗寒性综合评价[J].防护林科技,2022(5):47-52. |
CHEN T S, GU L J, ZHANG D Y, et al.. Comprehensive evaluation on cold hardiness of three ornamental species by subordinate function [J]. Prot. For. Sci. Technol., 2022 (5):47-52. |
[1] | Feifei LIU, Wanrong HE, Qiang SUN, Linqiao XI, Jiean LIAO, Lu HAN. Effect of Alfalfa Green Manure on Diversity and Function of Soil Bacteria in Apple Orchards in Tarim Basin [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 223-233. |
[2] | Yu MIAO, Jie WANG, Yaoyao ZHAO, Lijia ZHANG, Meijun LIU. Study on Recovery Characteristics of Photosynthesis in Alfalfa Leaves After Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 80-89. |
[3] | Peng ZHONG, Lili MIAO, Jianli WANG, Jie LIU, Xiaolong WANG. Physiological Response and Cold Resistance Evaluation of Cyperus esculentus Germplasms Under Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 83-96. |
[4] | Qingxin ZHANG, Yuxia ZHANG, Mingxue SUN, Quanchao XIA, Xianguo WANG, Tingyu LIU, Xiaoyan DU. Effects of Potassium Fertilizer on Alfalfa Antioxidant Enzyme Activity Under Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 186-195. |
[5] | Yaqiang HU, Ya YUAN, Luwei YANG, Xuelai ZHANG, Shaopeng QIU, Xinyao YU. Study on Hot Air Drying System for Implantable Alfalfa Bales [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 105-112. |
[6] | Yiwei YAN, Jie TIAN. Identification and Expression Analysis of NAC Gene Family Under Low Temperature in Allium sativum L. [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 67-76. |
[7] | Ze TENG, Yuxia ZHANG, Weidong CHEN, Baiming CONG, Yonglei TIAN, Qingxin ZHANG, Yongliang ZHANG, Dongru WANG. Effect of Chitosan on Alfalfa’s Cold Resistance and Content of Cold-resistant Protective Substances [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 192-198. |
[8] | Lifang HUANG, Yuzhou LONG, Jinqin LI, Yunping DONG, Xiaoyang WANG, Peng CHEN, Xianwen WANG, Lin YAN. Physiological and Biochemical Characteristics of Coffea arabica Seedling Under Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 60-67. |
[9] | Hui YAN. Response Mechanism of Chlorophyll Fluorescence to Low Temperature Stress in Brassica napus L. [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 58-64. |
[10] | Weidong CHEN, Yuxia ZHANG, Baiming CONG, Quanchao XIA, Yonglei TIAN, Qingxin ZHANG, Xiaoyan DU. Cold Resistance of Alfalfa Root Neck Under Different Phosphate Fertilizer Treatments and Changes of Carbohydrate Under Low Temperature Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 210-217. |
[11] | XIA Hongze, HUANG Wenzhi, ZHANG Linlin, ZHANG Xiaohan, CUI Zhanhong, LIU Shujie. Influences of Oat Hay and Alfalfa Hay Combination with Different Grading Indexes on Rumen Fermentation of Yak in Vitro [J]. Journal of Agricultural Science and Technology, 2021, 23(7): 199-201. |
[12] | SUN Yan, PU Wenxuan, WU Changzheng, HUANG Pingjun, SUN Mingxue, SONG Dean, LIU Laihua. Research Progress on Plant Growth, Development and Its Molecular Mechanism in Response to Sub-optimal Low Temperature [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 18-26. |
[13] | SUN Yan, HAN Bin, YUAN Junwei, LIU Changjiang, LI Minmin, YIN Yonggang, JIA Nan, GUO Zijuan, ZHAO Shengjian*. Difference Analysis of Morphology, Structure and Physiological Characteristics in Roots of Grapevines with Different Cold Resistance [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 47-57. |
[14] | WANG Ruigang, XU Weiping. Development Characteristics and Trend of Alfalfa Industry in China [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 7-12. |
[15] | GUO Jiahui, BAI Xionghui, WANG Aidong, LI Ruijie, SHI Xiaoxin, SHI Yongfeng, LI Ailian, WANG Xicheng, WANG Hongfu, GUO Jie. Identification and Evaluation Cold Resistance of the National Regional Test Winter Wheat Varieties in the Northern Part of Huang-Huai Winter Wheat Region [J]. Journal of Agricultural Science and Technology, 2021, 23(10): 25-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||