








Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (1): 100-108.DOI: 10.13304/j.nykjdb.2021.1002
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Fangliang LI(
), Qingbo KONG(
), Qing ZHANG
Received:2021-11-25
Accepted:2022-04-15
Online:2023-01-15
Published:2023-04-17
Contact:
Qingbo KONG
通讯作者:
孔庆波
作者简介:栗方亮 E-mail:lifl007@qq.com;
基金资助:CLC Number:
Fangliang LI, Qingbo KONG, Qing ZHANG. Estimation Models of Phosphorus Contents in Guanxi Honey Pomelo Leaves Based on Hyperspectral Data[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 100-108.
栗方亮, 孔庆波, 张青. 基于高光谱的琯溪蜜柚叶片磷素含量估算模型研究[J]. 中国农业科技导报, 2023, 25(1): 100-108.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.1002
Fig. 1 Correlation between P contents and original spectral reflectance of honey pomelo leavesNote: The solid line in the figure indicates the P<0.01 test level, and the dotted line indicates the P<0.05 test level.
Fig. 2 Correlation between P contents and first-order spectral reflectance of honey pomelo leavesNote: The solid line in the figure indicates the P<0.01 test level, and the dotted line indicates the P<0.05 test level.
高光谱参数 Hyperspectal parameters | 高光谱参数 Hyperspectal parameters | 估测模型 Estimation model | R2 |
|---|---|---|---|
原始光谱反射率 Original spectral reflectance 一阶微分光谱反射率 First order differential spectral reflectance 差值植被指数 Difference vegetation index(DVI) 比值植被指数 Ratio vegetation index (RVI) 归一化植被指数 Normalized difference vegetation index (NDVI) | R549 R718 R′528 R′703 R′591 DVI549,718 DVI′528,703 DVI′528,591 DVI′591,703 RVI549,718 RVI′528,703 RVI′528,591 RVI′591,703 NDVI549,718 NDVI′528,703 NDVI′528,591 NDVI′591,703 | y=1.235+1.058x y=1.311-0.215x+1.522x2 y=1.224+63.371x+7 557.861x2 y=1.216+7.188x+1 090.415x2 y=1.229-431.775x+31 262.4x2 y=1.390+1.646x+8.793x2 y=1.176-18.666x+1 428.425x2 y=1.177+92.916x y=1.207-9.167x+886.813x2 y=0.480+4.017x-3.597x2 y=0.296+8.543x-13.194x2 y=e0.133-1.127/x y=1.145-1.722x+129.981x2 y=1.720-0.041x-1.341x2 y=0.69-4.494x-4.989x2 y=2.415-2.431x+1.185x2 y=28.369+55.163x+27.954x2 | 0.380 0.385 0.347 0.275 0.430 0.150 0.221 0.373 0.289 0.510 0.278 0.182 0.563 0.530 0.265 0.242 0.564 |
Table 1 Univariate estimation models of honey pomelo leaves P contents
高光谱参数 Hyperspectal parameters | 高光谱参数 Hyperspectal parameters | 估测模型 Estimation model | R2 |
|---|---|---|---|
原始光谱反射率 Original spectral reflectance 一阶微分光谱反射率 First order differential spectral reflectance 差值植被指数 Difference vegetation index(DVI) 比值植被指数 Ratio vegetation index (RVI) 归一化植被指数 Normalized difference vegetation index (NDVI) | R549 R718 R′528 R′703 R′591 DVI549,718 DVI′528,703 DVI′528,591 DVI′591,703 RVI549,718 RVI′528,703 RVI′528,591 RVI′591,703 NDVI549,718 NDVI′528,703 NDVI′528,591 NDVI′591,703 | y=1.235+1.058x y=1.311-0.215x+1.522x2 y=1.224+63.371x+7 557.861x2 y=1.216+7.188x+1 090.415x2 y=1.229-431.775x+31 262.4x2 y=1.390+1.646x+8.793x2 y=1.176-18.666x+1 428.425x2 y=1.177+92.916x y=1.207-9.167x+886.813x2 y=0.480+4.017x-3.597x2 y=0.296+8.543x-13.194x2 y=e0.133-1.127/x y=1.145-1.722x+129.981x2 y=1.720-0.041x-1.341x2 y=0.69-4.494x-4.989x2 y=2.415-2.431x+1.185x2 y=28.369+55.163x+27.954x2 | 0.380 0.385 0.347 0.275 0.430 0.150 0.221 0.373 0.289 0.510 0.278 0.182 0.563 0.530 0.265 0.242 0.564 |
回归模型方式 Regression model method | R2 | RMSE | RE/% | |
|---|---|---|---|---|
单变量回归 Univariate regression | NDVI′591,703 | 0.649 1 | 0.17 | 9.50 |
| RVI′591,703 | 0.648 7 | 0.17 | 9.48 | |
| NDVI549,718 | 0.602 3 | 1.23 | 8.56 | |
| RVI549,718 | 0.606 7 | 0.15 | 8.51 | |
| 偏最小二乘法PLS | 0.749 9 | 0.14 | 7.11 | |
| BP神经网络BPNN | 0.775 9 | 0.13 | 6.99 |
Table 2 Comparison of fitting accuracy between measured and estimated P contents of honey pomelo leaves
回归模型方式 Regression model method | R2 | RMSE | RE/% | |
|---|---|---|---|---|
单变量回归 Univariate regression | NDVI′591,703 | 0.649 1 | 0.17 | 9.50 |
| RVI′591,703 | 0.648 7 | 0.17 | 9.48 | |
| NDVI549,718 | 0.602 3 | 1.23 | 8.56 | |
| RVI549,718 | 0.606 7 | 0.15 | 8.51 | |
| 偏最小二乘法PLS | 0.749 9 | 0.14 | 7.11 | |
| BP神经网络BPNN | 0.775 9 | 0.13 | 6.99 |
| 1 | 平和地方志研究室.平和年鉴(2020)[C].福州:海峡书局, 2021:167. |
| 2 | 叶林蔚,唐荣年,李创.基于AE-FFNN神经网络的橡胶树叶片磷含量定性研究[J].中国农业科技导报,2021,23(7):117-124. |
| YE L W, TANG R N, LI C. Qualitative study on phosphorus content in rubber leaves based on AE-FFNN neural work [J]. J. Agric. Sci. Technol., 2021,23 (7):117-124. | |
| 3 | SIEDLISKA A, BARANOWSKI P, PASTUSZKA-WOŹNIAK J, et al.. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance [J]. BMC Plant Biol., 2021, 21(1):28-45. |
| 4 | 李岚涛,汪善勤,任涛,等.基于高光谱的冬油菜叶片磷含量诊断模型[J].农业工程学报,2016,32(14):209-218. |
| LI L T, WANG S Q, REN T, et al.. Evaluating models of leaf phosphorus content of winter oilseed rape based on hyperspectral data [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(14): 209-218. | |
| 5 | VIÉGAS I D J M, CORDEIRO R A M, ALMEIDA G M D, et al.. Growth and visual symptoms of nutrients deficiency in Mangos teens (Garcinia mangostana L.) [J]. Am. J. Plant Sci., 2018,5:1014-1028. |
| 6 | DUNN B L, SINGH H, PAYTON M, et al.. Effects of nitrogen, phosphorus, and potassium on SPAD-502 and at LEAF sensor readings of Salvia [J]. J. Plant Nutr., 2018,41(13):1674-1683. |
| 7 | 栗方亮,孔庆波,张青.光谱分析技术在作物氮素诊断上的应用研究进展[J].江西农业学报,2020,32(9):6-12. |
| LI F L, KONG Q B, ZHANG Q. Research progress in application of spectral analysis technology in crop nitrogen diagnosis [J]. Acta Agric. Jiangxi, 2020, 32(9):6-12. | |
| 8 | KOVAR M, BRESTIC M, SYTAR O, et al.. Evaluation of hyperspectral reflectance parameters to assess the leaf water content in soybean [J]. Water, 2019, 443(11):443-456. |
| 9 | LI F, WANG L, LIU J, et al.. Evaluation of leaf N concentration in winter wheat based on discrete wavelet transform analysis [J]. Remote Sens., 2019, 11(11): 1331-1341. |
| 10 | SYTAR O, ZIVCAK M, NEUGART S, et al.. Assessment of hyperspectral indicators related to the content of phenolic compounds and multispectral fluorescence records in chicory leaves exposed to various light environments [J]. Plant Physiol. Biochem., 2020,154: 429-438. |
| 11 | WANG J, WANG T, SKIDMORE A K, et al.. Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance [J]. Remote Sens., 2015,7(5): 5901-5917. |
| 12 | MAHAJAN G R, SAHOO R N, PANDEY R N, et al.. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.) [J]. Precision Agric., 2014,15: 499-522. |
| 13 | 冯海宽,杨福芹,李振海,等.最优权重组合模型和高光谱估算苹果叶片全磷含量[J].农业工程学报,2016,32(7):173-180. |
| FENG H K, YANG F Q, LI Z H, et al.. Hyperspectral estimation of leaf total phosphorus content in apple tree based on optimal weights combination model [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(7): 173-180. | |
| 14 | 程立真,朱西存,高璐璐,等.基于随机森林模型的苹果叶片磷素含量高光谱估测[J].果树学报,2016,33(10):1219-1229. |
| CHENG L Z, ZHU X C, GAO L L, et al.. Hyperspectral estimation of phosphorus content for apple leaves based on the random forest model [J]. J. Fruit Sci., 2016,33(10):1219-1229. | |
| 15 | LIU J, HAN J C, CHEN X, et al.. Nondestructive detection of rape leaf chlorophyll level based on Vis-NIR spectroscopy [J/OL]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 222: 117202 [2022-10-22]. 2. |
| 16 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学技术出版社,2000:312-314. |
| LU R K. Agrochemical Analysis Methods of Soil [M]. Beijing: China Agricultural Science and Technology Press, 2000: 312-314. | |
| 17 | 刘冰峰,李军,贺佳.玉米叶片全磷含量高光谱遥感监测诊断模型研究[J].农业机械学报,2015,46(8):252-280. |
| LIU B F, LI J, HE J. Total phosphorus content estimation models of summer maize leaves based on hyperspectral remote sensing [J]. Trans. Chin. Soc. Agric. Mach., 2015, 46(8): 252-280. | |
| 18 | 潘蓓,赵庚星,朱西存,等.基于高光谱的苹果树冠层磷素状况估测模型研究[J].红外,2012,33(6):27-31. |
| PAN B, ZHAO G X, ZHU X C, et al.. Estimation of phosphorus content in apple tree canopy based on hyperspectral [J]. Infrared, 2012, 33(6): 27-31. | |
| 19 | 岳学军,全东平,洪添胜,等.不同生长期柑橘叶片磷含量的高光谱预测模型[J].农业工程学报,2015,31(8):207-213. |
| YUE X J, QUAN D P, HONG T S, et al.. Prediction model of phosphorus content for citrus leaves during different growth periods based on hyperspectrum [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(8): 207-213. | |
| 20 | 柴仲平,王雪梅,陈波浪,等.库尔勒香梨叶片全磷含量高光谱估算模型研究[J].西部林业科学,2013,42(5):7-12. |
| CHAI Z P, WANG X M, CHEN B L, et al.. Hyperspectral estimation models for total phosphorus content of Kuerle Fragrant pear leaves [J]. J. West China For. Sci., 2013, 42(5): 7-12. | |
| 21 | WANG J, SHI T, LIU H, et al.. Successive projections algorithm-based three-band vegetation index for foliar phosphorus estimation [J]. Ecol. Indic., 2016, 67:12-20. |
| 22 | 邢东兴,常庆瑞.基于光谱分析的果树叶片全氮、全磷、全钾含量估测研究-以红富士苹果树为例[J].西北农林科技大学学报(自然科学版),2009,37(2):141-154. |
| XING D X, CHANG Q R. Research on predicting the TN, TP, TK contents of fresh fruit tree leaves by spectral analysis with Red Fuji Apple tree as an example [J]. J. Northwest A&F Univ. (Nat. Sci.), 2009, 37(2): 141-154. | |
| 23 | 易时来,邓烈,何绍兰,等.基于冠层光谱的锦橙叶片磷素营养监测研究[J].核农学报,2013,27(2):225-230. |
| YI S L, DENG L, HE S L, et al.. Monitoring leaf phosphorus nutrition based on canopy spectrum of Jincheng orange[Citrus sinensis ( L. )] [J]. Acta Agric. Nucl. Sin., 2013, 27(2):225-230. | |
| 24 | 朱西存,赵庚星,董芳,等.基于高光谱的苹果花磷素含量监测模型[J].应用生态学报,2009,20(10):2424-2430. |
| ZHU X C, ZHAO G X, DONG F, et al.. Monitoring models for phosphorus content of apple flowers based on hyperspectrum [J]. Chin. J. Appl. Ecol., 2009, 20(10): 2424-2430. | |
| 25 | 刘云根,余哲修,张超,等.基于高光谱技术剑湖湿地茭草磷含量估算模型研究[J].西南林业大学学报(自然科学),2019,39(1): 123-131. |
| LIU Y G, YU Z X, ZHANG C, et al..The estimation model for phosphorus content of Zizania Cuciflora in Jianhu wetland based on hyperspectral technology [J]. J. Southwest For. Univ., 2019, 39(1): 123-131. | |
| 26 | 黄双萍,洪添胜,岳学军,等.基于高光谱的柑橘叶片磷含量估算模型实验[J].农业机械学报,2013,44(4):202-207. |
| HUANG S P, HONG T S, YUE X J,et al.. Hyperspectral estimation model of total phosphorus content for citrus leaves [J]. Trans. Chin. Soc. Agric. Mach., 2013,44(4):202-207. | |
| 27 | CHEN L, HUANG J F, WANG F M, et al.. Comparison between back propagation neural network and regression models for the estimation of pigment content in rice leaves and panicles using hyperspectral data [J]. Int. J. Remote Sens., 2007, 28(16):3457-3478. |
| 28 | 高洪燕,毛罕平,张晓东.生菜叶中磷含量的光谱定量分析[J].农业机械学报,2014,45(增):276-280. |
| GAO H Y, MAO H P, ZHANG X D. Quantitative determination of phosphorus in lettuce leaf using spectroscopy [J]. Trans. Chin. Soc. Agric. Mach., 2014, 45(S):276-280. |
| [1] | Chunjiao MI, Hongren SUN, Jiping ZHANG, Yucai LYU, Yandi ZHANG. Abundance-deficiency Index of Soil Available Phosphorus and Recommended Phosphorus Fertilizer Application Rates for Tomato in China [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 222-232. |
| [2] | Xiaobing LIN, Binqiang WANG, Yanhong CHENG, Lijun ZHOU, Shangshu HUANG, Lin WU, Qianru HUANG, Shaolang HE. Soil Heavy Metals Pollution Characteristics and Risk Assessment in Main Production Area of Jinggang Honey Pomelo [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 188-200. |
| [3] | Weijian ZHANG, Jingyi FENG, Yue LI, Wanying HE, Yanjing CHE, Ziying WANG, Xueyan BAI, Siyu GU. Effect of Endogenous and Exogenous Organic Matter on Phosphorus Adsorption and Availability in Black Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 180-190. |
| [4] | Yingxuan JIA, Shulin ZHANG, Dajuan ZHANG, Wei DAI, Xiangdong BI. Effects of Phosphorus Recovery on Photosynthetic Pigments and Some Antioxidant Enzymes Activities of Phosphorus Starved Microcystis aeruginosa [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 70-77. |
| [5] | Yulu WU, Jiaxin HU, Yuxi CHEN, Bingsong ZHENG, DaoLiang YAN. Effects of External Application of α-Ketoglutarate on Growth, Carbon, Nitrogen and Phosphorus Accumulation and Their Stoichiometric Relationships in Kosteletzkya virginica Under Salt Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 170-177. |
| [6] | Denglong CHEN, Yuxiang ZHANG, Jiajia SONG, Pengyu CHEN, Xiangzhen WEN, Yaling LI. Study of Volcanic Rock Deposition on the Running of Aquaponics [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 207-214. |
| [7] | Zhonghua MA, Juan CHEN, Na WU, Benju MAN, Xiaogang WANG, Yongqing ZHE, Jili LIU. Effects of Salt Stress and Phosphorus Supply on Photosynthetic Characteristics and Total Biomass of Switchgrass at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 190-200. |
| [8] | Caixia HU, Hongen LIU, Chang LI, Shiyu QIN, Yuhuan ZHAO, Yupeng ZHANG, Haiyang LIU, Jiayang XU, Peng ZHAO, Zhaojun NIE, Qiuhong WANG. Effect of Phosphorus and Selenium Combined Application on Selenium Uptake, Translocation and Organic Selenium in Grain of Winter Wheat [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 182-191. |
| [9] | Yurong SHEN, Ran LI, Minggang XU, Huaiping ZHOU, Ping LIU, Nan SUN. Responses of Soil Available Phosphorus and Phosphorus Forms to Phosphorus Fertilizer Application Times [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 173-181. |
| [10] | Hongyan WU, Miao YU, Jian FENG, Hui LIU. Effect of Phosphorus Solubilizing Bio-fertilizer on Soil Phosphorus Availability and Pepper Yield in Greenhouse [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 189-197. |
| [11] | Juanjuan GUO, Shan WANG, Haoan LUAN, Han LI, Suping GUO, Guohui QI, Xuemei ZHANG. Effects of Microbial Inoculum on Red Raspberry Growth, Fruit Quality and Activating Soil Phosphorus and Potassium [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 198-209. |
| [12] | Yanli JIN, Xiaojun LAN, Tuo YAO, Xiaoqin DING. Screening and Characteristic Study of Angelicasinensis and Notopterygiumincisum Rhizosphere Growth-Promoting Bacteria [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 187-196. |
| [13] | Xiaodong LI, Li SU, Xiaojie LI, Jie LI, Yingjiang XU, Lirong CHANG, Rencheng YU, Dezhou YANG, Shaojun PANG. Comprehensive Analysis of Large-Scale Saccharina japonica Damage in the Principal Farming Area of Rongcheng in Shandong Province from 2021 to 2022 [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 206-222. |
| [14] | Ruiqi JIA, Ziang GUO, Chen YAO, Pu LI, Guixiao LA, Xiazi LU, Hongyu GUO, Xuanzhen LI. Effect of Low Phosphorus Stress on Cadmium Uptake in Wheat [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 154-160. |
| [15] | Lijuan ZHANG, Yukun QIN, Huihuang CHENG, Yongqi LI, Haihua LUO. Research on Characteristics of Nitrogen and Phosphorus Loss from Surface Runoff of Cotton Field in Northern Jiangxi Province of Poyang Lake Region [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 166-175. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010802021197号