Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (8): 154-160.DOI: 10.13304/j.nykjdb.2022.0115
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Ruiqi JIA1(), Ziang GUO1, Chen YAO1, Pu LI2, Guixiao LA3, Xiazi LU1, Hongyu GUO1, Xuanzhen LI1(
)
Received:
2022-02-21
Accepted:
2022-04-12
Online:
2022-08-15
Published:
2022-08-22
Contact:
Xuanzhen LI
贾睿琪1(), 郭子昂1, 姚晨1, 李璞2, 腊贵晓3, 陆夏梓1, 郭虹妤1, 李烜桢1(
)
通讯作者:
李烜桢
作者简介:
贾睿琪 E-mail:jiaruiqi96@outlook.com;
基金资助:
CLC Number:
Ruiqi JIA, Ziang GUO, Chen YAO, Pu LI, Guixiao LA, Xiazi LU, Hongyu GUO, Xuanzhen LI. Effect of Low Phosphorus Stress on Cadmium Uptake in Wheat[J]. Journal of Agricultural Science and Technology, 2022, 24(8): 154-160.
贾睿琪, 郭子昂, 姚晨, 李璞, 腊贵晓, 陆夏梓, 郭虹妤, 李烜桢. 低磷胁迫对小麦镉吸收的影响[J]. 中国农业科技导报, 2022, 24(8): 154-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0115
Fig. 1 Effects of low phosphorus stress on wheat biomass and root morphological indicatorsNote:Different lowercase letters indicate significant differences between treatments (P<0.05).
Fig. 2 Effect of low phosphorus stress on phosphorus and cadmium contents in wheatNote:Different lowercase letters indicate significant differences between treatments (P<0.05).
Fig. 3 Effect of low phosphorus stress on the distribution of phosphorus and cadmium in wheat-culture medium systemNote:Different English letters indicate significant differences between treatments (P<0.05),different Greek letters indicate significant differences between total activation (P<0.05).
Fig. 4 Effect of low phosphorus stress on medium pH, organic acid and organic acids in wheat rootsNote:Different lowercase letters indicate significant differences between treatments (P<0.05).
1 | HUSSAIN B, ASHRAF M N, SHAFEEQ UR R, et al.. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies [J/OL]. Sci. Total Environ. , 2021, 754: 142188 [2022-02-20]. . |
2 | ZHAO F J, MA Y, ZHU Y G, et al.. Soil contamination in China: current status and mitigation strategies [J]. Environ. Sci. Technol., 2015, 49(2): 750-759. |
3 | SUN Y, XU Y, XU Y, et al.. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials [J]. Environ. Pollut., 2016, 208: 739-746. |
4 | SHI T, MA J, WU X, et al.. Inventories of heavy metal inputs and outputs to and from agricultural soils: a review [J]. Ecotoxicol. Environ. Saf., 2018, 164: 118-124. |
5 | QIAO K, WANG F, LIANG S, et al.. New biofortification tool: wheat TaCNR5 enhances zinc and manganese tolerance and increases zinc and manganese accumulation in rice grains [J]. J. Agric. Food Chem., 2019, 67(35): 9877-9884. |
6 | ZHANG L, ZHANG C, DU B, et al.. Effects of node restriction on cadmium accumulation in eight Chinese wheat (Triticum turgidum) cultivars [J/OL]. Sci. Total Environ. , 2020, 725: 138358[2022-02-20]. . |
7 | LIANG X, STRAWN D G, CHEN J, et al.. Variation in cadmium accumulation in spring wheat cultivars: uptake and redistribution to grain [J]. Plant Soil, 2017, 421(1-2): 219-231. |
8 | LIU N, HUANG X, SUN L, et al.. Screening stably low cadmium and moderately high micronutrients wheat cultivars under three different agricultural environments of China [J/OL]. Chemosphere, 2020, 241: 125065 [2022-02-20]. . |
9 | RIZWAN M, ALI S, ABBAS T, et al.. Cadmium minimization in wheat: a critical review [J]. Ecotoxicol. Environ. Saf., 2016, 130: 43-53. |
10 | GRUTER R, COSTEROUSSE B, MAYER J, et al.. Long-term organic matter application reduces cadmium but not zinc concentrations in wheat [J]. Sci. Total Environ., 2019, 669: 608-620. |
11 | ROMANYA J, BLANCO-MORENO J M, SANS F X. Phosphorus mobilization in low-P arable soils may involve soil organic C depletion [J]. Soil Biol. Biochem., 2017, 113: 250-259. |
12 | WEYERS E, STRAWN D G, PEAK D, et al.. Phosphorus speciation in calcareous soils following annual dairy manure amendments [J]. Soil Sci. Soc. Am. J., 2016, 80(6): 1531-1542. |
13 | OBURGER E, LEITNER D, JONES D L, et al.. Adsorption and desorption dynamics of citric acid anions in soil [J]. Eur. J. Soil Sci., 2011, 62(5): 733-742. |
14 | HU Y, GAO Z, HUANG Y, et al.. Impact of poplar-based phytomanagement on metal bioavailability in low-phosphorus calcareous soil with multi-metal contamination [J]. Sci. Total Environ., 2019, 686: 848-855. |
15 | CONG W F, SURIYAGODA L D B, LAMBERS H. Tightening the phosphorus cycle through phosphorus-efficient crop genotypes [J]. Trends Plant Sci., 2020, 25(10): 967-975. |
16 | VANCE C P, UHDE-STONE C, ALLAN D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource [J]. New Phytol., 2003, 157(3): 423-447. |
17 | POSTMA J A, DATHE A, LYNCH J P. The optimal lateral root branching density for maize depends on nitrogen and phosphorus availability [J]. Plant Physiol., 2014, 166(2): 590-602. |
18 | HALING R E, BROWN L K, STEFANSKI A, et al.. Differences in nutrient foraging among Trifolium subterraneum cultivars deliver improved P-acquisition efficiency [J]. Plant Soil, 2018, 424(1): 539-554. |
19 | HINSINGER P, PLASSARD C, TANG C X, et al.. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review [J]. Plant Soil, 2003, 248(1): 43-59. |
20 | RICHARDSON A E, LYNCH J P, RYAN P R, et al.. Plant and microbial strategies to improve the phosphorus efficiency of agriculture [J]. Plant Soil, 2011, 349(1): 121-156. |
21 | PANG J, BANSAL R, ZHAO H, et al.. The carboxylate-releasing phosphorus-mobilizing strategy can be proxied by foliar manganese concentration in a large set of chickpea germplasm under low phosphorus supply [J]. New Phytol., 2018, 219(2): 518-529. |
22 | 邢维芹, 张红毅, SCHECKEL Kirk G., 等. 铅冶炼污染区小麦籽粒镉含量及低积累品种筛选 [J]. 农业环境科学学报, 2015, 34(10): 2039-2040. |
XING W Q, ZHANG H Y, SCHECKEL K G, et al.. Grain Cd concentrations of 100 wheat(Triticum aestivum L.) varieties and strains grown on lead-smelting contaminated soils and screening for low Cd varieties [J]. J. Agro-Environ. Sci., 2015, 34(10): 2039-2040. | |
23 | MA S, NAN Z, HU Y, et al.. Phosphorus supply level is more important than wheat variety in safe utilization of cadmium-contaminated calcareous soil [J/OL]. J. Hazard. Mater., 2022, 424: 127224 [2022-02-20]. . |
24 | LUO L, MA Y, SANDERS R L, et al.. Phosphorus speciation and transformation in long-term fertilized soil: evidence from chemical fractionation and P K-edge XANES spectroscopy [J]. Nutr. Cycl. Agroecosystems, 2017, 107(2): 215-226. |
25 | 屈锋,牟世芬,侯小平,等. 小麦根系中有机酸的离子色谱法分析研究 [J]. 色谱, 1995(5): 395-397. |
QU F, MOU S F, HOU X P, et al.. Determination of organic acids in wheat-root by lon chromatography [J]. Chin. J. Chromatography, 1995(5): 395-397. | |
26 | LAMBERS H, SHANE M W, CRAMER M D, et al.. Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits [J]. Ann. Bot., 2006, 98(4): 693-713. |
27 | SHEN J, YUAN L, ZHANG J, et al.. Phosphorus dynamics: from soil to plant [J]. Plant Physiol., 2011, 156(3): 997-1005. |
28 | MANSKE G, ORTIZ-MONASTERIO J, MVAN GINKEL, et al.. Traits associated with improved P-uptake efficiency in CIMMYT’s semidwarf spring bread wheat grown on an acid Andisol in Mexico [J]. Plant Soil, 2000, 221(2): 189-204. |
29 | TENG W, DENG Y, CHEN X P, et al.. Characterization of root response to phosphorus supply from morphology to gene analysis in field-grown wheat [J]. J. Exp. Bot., 2013, 64(5): 1403-1411. |
30 | SHEN Q, WEN Z, DONG Y, et al.. The responses of root morphology and phosphorus-mobilizing exudations in wheat to increasing shoot phosphorus concentration [J/OL]. Aob Plants, 2018, 10(5): ply054 [2022-02-20]. . |
31 | LIU D. Root developmental responses to phosphorus nutrition [J]. J. Integr. Plant Biol., 2021, 63(6): 1065-1090. |
32 | LIU B, LI H, ZHU B, et al.. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species [J]. New Phytol., 2015, 208(1): 125-136. |
33 | CHEN W, KOIDE R T, ADAMS T S, et al.. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees [J]. Proc. Nat. Acad. Sci. USA, 2016, 113(31): 8741-8746. |
34 | LI H, LIU B, MCCORMACK M L, et al.. Diverse belowground resource strategies underlie plant species coexistence and spatial distribution in three grasslands along a precipitation gradient [J]. New Phytol., 2017, 216(4): 1140-1150. |
35 | MA Z, GUO D, XU X, et al.. Evolutionary history resolves global organization of root functional traits [J]. Nature, 2018, 555(7694): 94-97. |
36 | LAMBERS H, HAYES P E, LALIBERTE E, et al.. Leaf manganese accumulation and phosphorus-acquisition efficiency [J]. Trends Plant Sci., 2015, 20(2): 83-90. |
37 | WANG Y, LAMBERS H. Root-released organic anions in response to low phosphorus availability: recent progress, challenges and future perspectives [J]. Plant Soil, 2020, 447(1): 135-156. |
38 | 刘胜亮, 朱舒亮, 李静, 等. 不同有机酸对磷酸三钙溶解能力的研究 [J]. 江西农业大学学报, 2017, 39(5): 1010-1016. |
LIU S L, ZHU S L, LI J, et al.. A study on the ability of different organic acids to dissolve tricalcium phosphate [J]. Acta Agric. Univ. Jiangxiensis, 2017, 39(5): 1010-1016. | |
39 | ROBIN A L, SANKHLA D. Essential Guide to Food Additives. [M]. 4th Ed n. London: The Royal Society of Chemistry, 2013: 44-64. |
40 | YANG P, CHEN H J, FAN H Y, et al.. Phosphorus supply alters the root metabolism of Chinese flowering cabbage (Brassica campestris L. ssp. varchinensis. utilis Tsen et Lee) and the mobilization of Cd bound to lepidocrocite in soil [J/OL]. Environ. Exp. Bot., 2019, 167: 103827 [2020-02-20]. . |
41 | EDAYILAM N, MONTGOMERY D, FERGUSON B, et al.. Phosphorus stress-induced changes in plant root exudation could potentially facilitate uranium mobilization from stable mineral forms [J]. Environ. Sci. Technol., 2018, 52(14): 7652-7662. |
42 | MAGDZIAK Z, MLECZEK M, RUTKOWSKI P, et al.. Diversity of low-molecular weight organic acids synthesized by salix growing in soils characterized by different Cu, Pb and Zn concentrations [J]. Acta Physiol. Plant, 2017, 39(6): 1-15. |
43 | 刘桂华, 敖明, 柴冠群, 等. 低分子有机酸对贵州黄壤中镉释放及形态的影响[J]. 土壤通报, 2018, 49(6): 1473-1479. |
LIU G H, AO M, CHAI G Q, et al.. Effects of organic acids with low molecular weight on the extraction and fractionations of cadmium in yellow soil of Guizhou [J]. Chin. J. Soil Sci., 2018, 49(6): 1473-1479. | |
44 | 胡浩, 潘杰, 曾清如, 等. 低分子有机酸淋溶对土壤中重金属Pb Cd Cu和Zn的影响[J]. 农业环境科学学报, 2008 (4): 1611-1616. |
HU H, PAN J, ZENG Q R, et al.. The effects of soil leaching with low molecular weight organic acids on Pb, Cd, Cu and Zn [J]. J. Agro-Environ. Sci., 2008(4): 1611-1616. | |
45 | 魏佳, 李取生, 徐智敏, 等. 多种有机酸对土壤中碳酸镉的活化效应[J]. 环境工程学报, 2017, 11(9): 5298-5306. |
WEI J, LI Q S, XU Z M, et al.. Mobilization effects of various organic acids on cadmium carbonate in soil [J]. Chin. J. Environ. Eng., 2017, 11(9): 5298-5306. |
[1] | Yanxin HUANG, Xiang WU, Yan CAO, Xuyu YAN, Ling LI. Research Progress on Effect and Mechanism of Exogenous Calcium Induced Plant Response to Cadmium Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 165-171. |
[2] | Yifan LIU, Shaoshuai LIU, Rui ZANG, Yang LI, Wei LIU, Tingting LI, Danmei LIU, Dengcai LIU, Aili LI, Long MAO, Xiang WANG, Shuaifeng GENG. Analysis of Quality Traits of 168 Wheat Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 44-57. |
[3] | Caixia LYU, Yongfu LI, Huinan XIN, Na LI, Ning LAI, Qinglong GENG, Shuhuang CHEN. Effects of Slow Release Nitrogen Fertilizer on Yield of Winter Wheat and Soil Nitrate/Ammonium Nitrogen Under Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 179-186. |
[4] | Qiang ZHU, Zongxian CHE, Heng CUI, Jiudong ZHANG, Xingguo BAO. Effect of Green Manure Replacing Nitrogen Fertilizer on Greenhouse Gases in Wheat Fields [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 182-189. |
[5] | Yi HU, Jie GONG, Wei ZHAO, Rong CHENG, Zhongyu LIU, Shiqing GAO, Yazhen YANG. Identification of PHY Gene Family in Wheat (Triticum aestivum L.)and Their Expression Analysis Under Heat Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 30-43. |
[6] | Sile HU, Yulong BAO, Tubuxinbayaer, Jifeng TAO, Enliang GUO. Chlorophyll Content Inversion of Spring Wheat Based on Unmanned Aerial Vehicle Hyperspectral and Integrated Learning [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 93-103. |
[7] | Shuo SHI, Yu FENG, Liang LI, Rui MENG, Yanze ZHANG, Xiurong YANG. Transcriptome Analysis of Resistance to Sharp Eyespot of Wheat Mediated by Piriformospora indica and Key Genes Screening [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 133-145. |
[8] | Xin ZHAO, Zilong WU, Chao HAN, Hao ZHANG, Wei SONG, Ziyi LI. Effects of Arbuscular Mycorrhizal Fungi on Growth and Cadmium Enrichment of Setaria viridis Under Cadmium Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 193-202. |
[9] | Zihao WANG, Xue ZHOU, Donghan ZHANG, Hongyi LIANG, Yan WANG, Ziang ZHAO, Qing CHEN. Effect of Water-soluble Fertilizers Containing Humic-acids on Maize Seedlings Growth and Soil Properties [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 209-220. |
[10] | Bei MA, Jie GONG, Yinke DU, Yuwei GAN, Rong CHENG, Bo ZHU, Lixia YI, Jinxiu MA, Shiqing GAO. Identification and Expression Analysis of TaINP1 Gene Related to Pollen Pore Development in Wheat [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 22-35. |
[11] | Chunjiao MI, Hongren SUN, Jiping ZHANG, Yucai LYU, Yandi ZHANG. Abundance-deficiency Index of Soil Available Phosphorus and Recommended Phosphorus Fertilizer Application Rates for Tomato in China [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 222-232. |
[12] | Zhenyu XUE, Kangkang ZHANG, Yuanyuan ZHANG, Qiangqiang YAN, Lirong YAO, Hong ZHANG, Yaxiong MENG, Erjing SI, Baochun LI, Xiaole MA, Huajun WANG, Juncheng WANG. Screening and Functional Gene Detection of High-quality and Drought-resistant Wheat Germplasms [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 35-49. |
[13] | Xianyin SUN, Qiuhuan MU, Yong MI, Guangde LYU, Xiaolei QI, Yingying SUN, Xundong YIN, Ruixia WANG, Ke WU, Zhaoguo QIAN, Yan ZHAO, Minggang GAO. Classification and Evaluation of New Wheat Lines Based on GT Biplot [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 14-24. |
[14] | Xinyue BAO, Hongmin CHEN, Weiwei WANG, Yimiao TANG, Zhaofeng FANG, Jinxiu MA, Dezhou WANG, Jinghong ZUO, Zhanjun YAO. Cloning and Expression Analysis of Wheat TaCOBL-5 Genes [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 11-21. |
[15] | Yangyang DU, Yuanyuan BAO, Xiangyu LIU, Xinyong ZHANG. Effects of Tartary Buckwheat Rotation on Enzyme Activities and Microorganisms in Rhizosphere Soil of Cultivated Potato in Yunnan Province [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 192-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||