








Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (1): 92-99.DOI: 10.13304/j.nykjdb.2021.1001
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Xin LU(
), Guiping LIAO(
), Fan LIU
Received:2021-11-25
Accepted:2022-03-03
Online:2023-01-15
Published:2023-04-17
Contact:
Guiping LIAO
通讯作者:
廖桂平
作者简介:卢信 E-mail:1103291439@qq.com;
基金资助:CLC Number:
Xin LU, Guiping LIAO, Fan LIU. Inversion Model of Oleic Acid Content in Rape Seeds Based on Hyperspectral Imaging Technology[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 92-99.
卢信, 廖桂平, 刘凡. 基于高光谱成像技术的油菜种子油酸含量反演模型[J]. 中国农业科技导报, 2023, 25(1): 92-99.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.1001
样本 Sample | 样本数 Sample number | 均值 Mean/% | 最大值 Max/% | 最小值 Min/% | 标准偏差 Standard deviation | 变异系数 Coefficient of variation/% |
|---|---|---|---|---|---|---|
| 校正集Correction set | 66 | 64.176 | 70.582 | 60.152 | 3.867 | 0.578 |
| 预测集Prediction set | 33 | 64.573 | 71.256 | 59.262 | 3.526 | 0.599 |
Table 1 Statistical characteristic of oleic acid content rapeseed samples
样本 Sample | 样本数 Sample number | 均值 Mean/% | 最大值 Max/% | 最小值 Min/% | 标准偏差 Standard deviation | 变异系数 Coefficient of variation/% |
|---|---|---|---|---|---|---|
| 校正集Correction set | 66 | 64.176 | 70.582 | 60.152 | 3.867 | 0.578 |
| 预测集Prediction set | 33 | 64.573 | 71.256 | 59.262 | 3.526 | 0.599 |
| 方法Method | 校正集Correction set | 预测集Prediction set | |||||
|---|---|---|---|---|---|---|---|
| PC | RC | RMSEC | RP | RMSEP | RPD | ||
| 均值中心化MC | 6 | 0.811 | 1.281 | 0.563 | 1.477 | 1.532 | |
| 标准化Autoscales | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
| 标准正态变量交化SNV | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
| SG平滑Savitzk-golay | 5 | 0.534 | 2.935 | 0.601 | 2.514 | 1.554 | |
| 多元散射校正MSC | 5 | 0.765 | 1.214 | 0.743 | 1.421 | 2.124 | |
| 移动平均平滑MA | 7 | 0.721 | 1.645 | 0.563 | 1.458 | 1.542 | |
| 归一化Normalize | 10 | 0.779 | 1.911 | 0.350 | 2.212 | 1.143 | |
| 直接差分二阶求导DDSD | 8 | 0.685 | 1.412 | 0.523 | 1.442 | 1.723 | |
| 直接差分一阶求导DDFD | 9 | 0.652 | 1.321 | 0.624 | 2.031 | 1.586 | |
| 二阶求导2nd-derivative | 14 | 0.356 | 3.451 | 0.528 | 1.584 | 1.295 | |
| 一阶求导1st-derivative | 12 | 0.632 | 1.356 | 0.634 | 1.536 | 1.846 | |
Table 2 PLS model of acidity content by different pretreatment methods
| 方法Method | 校正集Correction set | 预测集Prediction set | |||||
|---|---|---|---|---|---|---|---|
| PC | RC | RMSEC | RP | RMSEP | RPD | ||
| 均值中心化MC | 6 | 0.811 | 1.281 | 0.563 | 1.477 | 1.532 | |
| 标准化Autoscales | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
| 标准正态变量交化SNV | 9 | 0.644 | 1.323 | 0.632 | 1.543 | 1.845 | |
| SG平滑Savitzk-golay | 5 | 0.534 | 2.935 | 0.601 | 2.514 | 1.554 | |
| 多元散射校正MSC | 5 | 0.765 | 1.214 | 0.743 | 1.421 | 2.124 | |
| 移动平均平滑MA | 7 | 0.721 | 1.645 | 0.563 | 1.458 | 1.542 | |
| 归一化Normalize | 10 | 0.779 | 1.911 | 0.350 | 2.212 | 1.143 | |
| 直接差分二阶求导DDSD | 8 | 0.685 | 1.412 | 0.523 | 1.442 | 1.723 | |
| 直接差分一阶求导DDFD | 9 | 0.652 | 1.321 | 0.624 | 2.031 | 1.586 | |
| 二阶求导2nd-derivative | 14 | 0.356 | 3.451 | 0.528 | 1.584 | 1.295 | |
| 一阶求导1st-derivative | 12 | 0.632 | 1.356 | 0.634 | 1.536 | 1.846 | |
主成分 Principal component | 贡献率 Contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
|---|---|---|
| P1 | 87.77 | 87.77 |
| P2 | 9.77 | 97.54 |
| P3 | 1.26 | 98.81 |
| P4 | 0.27 | 99.08 |
| P5 | 0.14 | 99.23 |
Table 3 Cumulative contribution rate of the first five principal components
主成分 Principal component | 贡献率 Contribution rate/% | 累计贡献率 Cumulative contribution rate/% |
|---|---|---|
| P1 | 87.77 | 87.77 |
| P2 | 9.77 | 97.54 |
| P3 | 1.26 | 98.81 |
| P4 | 0.27 | 99.08 |
| P5 | 0.14 | 99.23 |
模型 Model | 处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
|---|---|---|---|---|---|
| Rc | RMSEC | Rp | RMSEP | ||
| SVM | MSC+PCA+SVM | 0.844 | 1.124 4 | 0.648 | 3.563 8 |
| MSC+CARS+SVM | 0.796 | 4.234 7 | 0.721 | 3.894 5 | |
| MSC+SPA+SVM | 0.772 | 2.423 5 | 0.760 | 2.562 6 | |
| ELM | MSC+PCA+ELM | 0.774 | 3.473 4 | 0.735 | 2.143 4 |
| MSC+CARS+ELM | 0.894 | 0.993 4 | 0.868 | 1.069 8 | |
| MSC+SPA+ELM | 0.763 | 1.836 2 | 0.778 | 1.783 4 | |
| LSSVM | MSC+PCA+LSSVM | 0.820 | 1.146 3 | 0.596 | 4.233 9 |
| MSC+CARS+LSSVM | 0.742 | 1.968 2 | 0.667 | 3.847 2 | |
| MSC+SPA+LSSVM | 0.801 | 1.804 5 | 0.791 | 1.769 8 | |
Table 4 Modeling and prediction effect of spectral variable processing
模型 Model | 处理方法 Processing method | 校正集 Calibration set | 预测集 Prediction set | ||
|---|---|---|---|---|---|
| Rc | RMSEC | Rp | RMSEP | ||
| SVM | MSC+PCA+SVM | 0.844 | 1.124 4 | 0.648 | 3.563 8 |
| MSC+CARS+SVM | 0.796 | 4.234 7 | 0.721 | 3.894 5 | |
| MSC+SPA+SVM | 0.772 | 2.423 5 | 0.760 | 2.562 6 | |
| ELM | MSC+PCA+ELM | 0.774 | 3.473 4 | 0.735 | 2.143 4 |
| MSC+CARS+ELM | 0.894 | 0.993 4 | 0.868 | 1.069 8 | |
| MSC+SPA+ELM | 0.763 | 1.836 2 | 0.778 | 1.783 4 | |
| LSSVM | MSC+PCA+LSSVM | 0.820 | 1.146 3 | 0.596 | 4.233 9 |
| MSC+CARS+LSSVM | 0.742 | 1.968 2 | 0.667 | 3.847 2 | |
| MSC+SPA+LSSVM | 0.801 | 1.804 5 | 0.791 | 1.769 8 | |
| 1 | 李娜,杨涛.我国油菜籽产业发展现状及趋势展望[J].农业生产展望,2009,5 (2):15-17. |
| LI N, YANG T. Rapeseed industry development present situation and trend in our country [J]. Agric. Production Outlook, 2009,5 (2):15-17. | |
| 2 | 张垚,李云昌,梅德圣,等.油菜油脂研究进展[J].植物学通报,2007,24(4):435-443. |
| ZHANG Y, LI Y C, MEI D S, et al.. Advances in liplid research of rapesced [J]. Chin. Bull. Bot., 2007,24(4):435-443. | |
| 3 | 王东,王坤,吴静珠,等.基于光谱及成像技术的种子品质无损速测研究进展[J].光谱学与光谱分析,2021,41(1):52-59. |
| WANG D, WANG K, WU J Z, et al.. Progress in nondestructive rapid measurement of seed quality based on spectroscopy and imaging technology [J]. Spect. Spectral. Anal., 2021,41(1):52-59. | |
| 4 | 徐扬帆,张秋平,徐明水,等.高含油高油酸油菜新品种‘帆鸣1号’选育及品质分析[J].分子植物育种,2020,18(15):5184-5190. |
| XU Y F, ZHANG Q P, XU M S, et al.. The breeding and quality analysis of a new rape va iety fanming 1 with high oil conte nt and oleic acid content [J]. Mol. Plant Breeding, 2020,18(15):5184-5190. | |
| 5 | 杨柳,李东欣,谭太龙.不同油酸含量油菜脂肪酸含量分析[J].作物研究,2018,32(5):390-394, 402. |
| YANG L, LI D X, TAN T L. Analysis of fat ty acid content in rapeseed with different oleic acid contents [Jl. Crop Res., 2018,32(5):390-394, 402. | |
| 6 | 曾静,伊雄海,曲栗,等.基于脂肪酸含量分析结合化学计量学的橄榄油等级鉴别方法[J].分析测试学报,2021,40(10):1432-1438. |
| ZENG J, YI X H, QU L, et al.. Identification of olive oil grade based on fatty acid content analysis combined with stoichiometry [J]. J. Anal. Test., 2021,40(10):1432-1438. | |
| 7 | 李施蒙,王耐红,张敏.等 .甘蓝型油菜脂肪酸组分近红外分析模型构建[J].广东农业科学,2014(21):22-27. |
| LI S M, WANG N H, ZHANG M, et al.. Establishment of near infrared analytic model formajor fatty acids content of Brassica napus L. [J]. Guangdong Agric. Sci., 2014(21):22-27. | |
| 8 | 吴永清,李明,张波,等. 高光谱成像技术在谷物品质检测中的应用进展[J]. 中国粮油学报. 2021,36(5)165-173. |
| WU Y Q, LI M, ZHANG B, et al.. Progress in application of hyperspectral imaging technology in grain quality detection [J]. J. Chin. Cereals Oils, 2021,36(5)165-173. | |
| 9 | SUN J F, WANG G X, ZHANG H, et al.. Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology [J/OL]. Infrared Phys. Technol., 2020,105:103226 [2022-10-21]. . |
| 10 | TALLADA J G, PALACIOS-ROJAS N, ARMSTRONG P R. Prediction of maize seed attributes using a rapid single kernel near infrared instrument [J]. J. Cereal Sci., 2009,50(3):381-387. |
| 11 | 芦兵,孙俊,杨宁,等.基于SAGA-SVR 预测模型的水稻种子水分含量高光谱检测[J].南方农业学报,2018,49(11):2342-2348. |
| LU B, SUN J, YANG N, et al.. Hyperspectral detection of water content in rice seeds based on Saga-SVR prediction model [J]. J. Southern Agric., 2018,49(11):2342-2348. | |
| 12 | 刘婷,王传堂,唐月异,等.花生自然风干种子维生素E含量近红外分析模型构建[J].山东农业科学,2018,50(6):163-166. |
| LIU T, WANG C T, TANG Y Y, et al.. Construction of near-infrared analysis model for vitamin E content in peanut naturally dried seeds [J]. Shandong Agric. Sci., 2018,50(6):163-166. | |
| 13 | 唐月异,王秀贞,刘婷,等.花生自然风干种子蔗糖含量近红外定量分析模型构建[J].山东农业科学,2018,50(6):159-162. |
| TANG Y Y, WANG X Z, LIU T, et al.. Establishment of near-infrared quantitative a nalysis model for sucrose content in peanut naturally air-dried seeds [J]. Shandong Agric. Sci.,2018,50(6):159-162. | |
| 14 | 张欣,唐月异,胡东青,等.花生自然风干种子芥酸含量近红外分析模型构建[J].山东农业科学,2018,50(10):138-141. |
| ZHANG X, TANG Y Y, HU D Q, et al.. Construction of near infrared analysis model for erucic acid content in peanut naturally dried seeds [J]. Shandong Agric. Sci., 2018,50(10):138-141. | |
| 15 | 吴静珠,申舒,董晶晶,等.AOTF 高光谱成像探测作物氮素含量方法[J].传感器与微系统,2017,36(11):64-66, 69. |
| WU J Z, SHEN S, DONG J J, et al.. Detection of nitrogen content in crops by AOTF hyperspectral imaging [J]. Sensors Microsys., 2017,36(11):64-66, 69. | |
| 16 | 蒋蘋,罗亚辉,胡文武,等.基于高光谱的油茶籽内部品质检测最优预测模型研究[J].农机化研究,2015,37(7):56-60. |
| JIANG P, LUO Y H, HU W W, et al.. Study on optimal prediction model of camellia oleifera seed internal quality detection based on hyperspectrum [J]. J. Agric. Mechan. Res.,2015,37(7):56-60. | |
| 17 | 郝勇,吴文辉,商庆园,等.山茶油中油酸和亚油酸近红外光谱分析模型[J].光学学报,2019,39(9):381-386. |
| HAO Y, WU W H, SHANG Q Y, et al.. Analysis model of oleic acid and linoleic acid in camellia oil by near infrared spectroscopy [J]. Acta Optica Sin.,2019,39(9):381-386. | |
| 18 | 李建国,薛晓梦,张照华,等.单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J].作物学报,2019,45(12):1891-1898. |
| LI J G, XUE X M, ZHANG Z H, et al.. Establishment and application of near-infrared prediction model of main fatty acid content in single peanut [J]. Acta Agron. Sin.,2019,45(12):1891-1898. | |
| 19 | RAVIKANTH L, CHELLADURAI V, JAYAS D S, et al.. Detection of broken kernels content in Bulk wheat samples using near-infrared imaging [J]. Agric. Res., 2016,5(3):285-292. |
| 20 | 郭飞,许镇,马宏宏,等.基于PCA的土壤Cd含量高光谱反演模型对比研究[J]. 光谱学与光谱分析, 2021,41(5):1625-1630. |
| GUO F, XU Z, MA H H, et al.. Comparison of hyperspectral inversion models for soil Cd content based on PCA [J]. Spectroscopy Spectral Anal., 201,41(5):1625-1630. | |
| 21 | NAWAR S, MOUAZEN A M. Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scale s by using spiking and data mining techniques [J]. Catena, 2017,151:118-129. |
| 22 | 程介虹,陈争光,张庆华.不同波长选择方法在土壤有机质含量检测中对比研究[J].中国农业科技导报, 2020,22(1):162-170. |
| CHENG J H, CHEN Z G, ZHANG Q H. Comparative study of different wavelength selection methods in soil organic matter determination [J]. J. Agric. Sci. Technol., 2020,22(1):162-170. | |
| 23 | 张磊,陈国兴,何学文.基于改进的网格搜索法的SVM参数优化[J].应用科技,2012,39(3):28-31. |
| ZHANG L, CHEN G X, HE X W. A parameter optimization method for an SVM based on improved grid search algorithm [J]. Appl. Security, 2012,39(3):28-31. | |
| 24 | BAIANO A, TERRACONE C, PERI G, et al.. Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes [J]. Comput. Electron. Agric., 2012,87:142-151. |
| 25 | PU H, CHEN Z, WANG B, et al.. A novel spatial-spectral similarity measure of dimensionality reduction and classification of hyperspectral imagery [J]. IEEE Trans. Geosci. Remote Sens., 2014,52(11):7008-7022. |
| 26 | 李维香,张继光,吴万富,等.粮食脂肪酸值测定影响因素分析及优化[J].中国粮油学报, 2021,36(3): 154-160. |
| LI W X, ZHANG J G, WU W F, et al.. Analysis and optimization of influencing factors of fatty acid value in grain [J]. J. Chin. Cereals Oils Soc., 201,36(3):154-160. |
| [1] | Guangyong SONG, Yawen GUO, Jing XUE, Keqing YANG, Xuede SU, Long ZHOU. Effects of Different Fertilizer and Water Treatments on Fruit Quality of 7 Table Grapes in Greenhouses [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 229-240. |
| [2] | Shijian BAI, Jinge HU. Effects of Gibberellic Acid on Berry and Raisin of Perlette Grape [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 158-169. |
| [3] | Xiaoyu QI, Yanjie GUO, Lu LIU, Zitao ZHANG, Lijuan ZHANG, Yanzhi JI. Effects of Planting Years on Soil Salinization and Microbial Community in Facility Vineyards [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 218-228. |
| [4] | Huilai WANG, Shuai LI, Yin WANG, Dongtao WU, Jiawei MA, Zhengqian YE, Yongqing CHI, Mei WANG. Effect of Long-term Fertilization on Diversity of Bacterial Community and Distribution of ARGs in Grape Soil [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 229-239. |
| [5] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
| [6] | Jiping WANG, Tiedong LU, Zhiheng LIANG, Ye ZHANG, Tianming SU, Tieguang HE. Effects of Microorganisms from Different Sources on the Composting Process of Grape Branches and Pig Manure [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 224-233. |
| [7] | Shijian BAI, Jinge HU, Chao LI, Junshe CAI. Effects of 3 Trellis Systems on Cultivation Characters and Berry Quality of ‘Xinyu’ Grape [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 63-73. |
| [8] | Yanbo FU, Bingbing LENG, Qingyong BIAN, Zhiduo DONG, Guohong LIU, Haifeng LI, Yunmeng WEN, Wenbo GUO, Wanxu ZHANG. Passivation Effect of Biochar on Soil Cadmium Pollution and Rape Growth [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 183-190. |
| [9] | Lifang SONG, Guiping LIAO, Min CHEN, Yuyang HE-LUO. Hyperspectral Estimation of Rape Leaf Water Content Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 110-119. |
| [10] | Tingting YANG, Xiaoqin TIAN, Zhuo LI, Yonghong LIU, Wei LI. Effects of Different Types of Mulch Film on Soil Moisture and Heat and Rape Yield [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 157-163. |
| [11] | Haijun ZHANG, Juan ZHANG, Yinan JIA, Jianglong WANG, Li FENG. Effect of Different Frame Type on Aroma Components and Berry Quality of ‘Nantaihutezao’ [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 201-213. |
| [12] | Fengxia BIAN, Kaige LIU, Xinmin RONG. Development and Verification of Prediction Model for Grape Downy Mildew Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 126-137. |
| [13] | Shijian BAI, Jinge HU, Jiuyun WU, Wen ZHANG, Hui XIE, Ronghua ZHAO, Guang CHEN, Junshe CAI. Effects of Rootstocks on the Growth Characteristics and Fruit Quality of ‘Crimson Seedless’ Grapes in Turpan Region [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 76-87. |
| [14] | Qianqian LU, Abuduwaili Abulimiti, Yixing HOU, Zhihui LI, Shuang WANG, Long ZHOU. Research of the Photosynthetic Characteristics of 7 Table Grape Varieties Under Compound Salt-alkali Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 63-76. |
| [15] | Shuang WANG, Yixing HOU, Linjiao FENG, Qianqian LU, Long ZHOU. Effect of Drought Stress on Anatomical Structure of Leaves in Table Grape Varieties [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 40-49. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010802021197号