Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (11): 68-75.DOI: 10.13304/j.nykjdb.2022.0566
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Jinfeng ZHAO(), Aili YU(
), Yanfang LI, Yanwei DU, Gaohong WANG, Zhenhua WANG
Received:
2022-07-07
Accepted:
2022-08-22
Online:
2022-11-15
Published:
2022-11-29
Contact:
Aili YU
赵晋锋(), 余爱丽(
), 李颜方, 杜艳伟, 王高鸿, 王振华
通讯作者:
余爱丽
作者简介:
赵晋锋E-mail: zhaojfmail@126.com;
基金资助:
CLC Number:
Jinfeng ZHAO, Aili YU, Yanfang LI, Yanwei DU, Gaohong WANG, Zhenhua WANG. Response Characteristics of SiCBL3 to Abiotic Stresses in Foxtail Millet[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 68-75.
赵晋锋, 余爱丽, 李颜方, 杜艳伟, 王高鸿, 王振华. 谷子SiCBL3对非生物胁迫响应特征分析[J]. 中国农业科技导报, 2022, 24(11): 68-75.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0566
引物 Primer | 上游引物 Forward primer (5’-3’) | 下游引物 Reverse primer (5’-3’) |
---|---|---|
A | TGTCTAGACTCGAGGGATCCATGGTGCAGTGCCTG-GAC | GGCCGCTGTACACATGGATCCGTTGTCATCAACTTGAGAAT-GAAAG |
B | GACGCACAATCCCACTATCC | GGGTGAGCTTGCCGTAGGTG |
SiCBL3 | AGCCTCCCAGATTTGAGACAG | AAGCATTCATCACTGACGGC |
β-actin | CAGTGGACGCACAACAGGTAT | AGCAAGGTCAAGACGGAGAAT |
Table 1 Primers used in this study
引物 Primer | 上游引物 Forward primer (5’-3’) | 下游引物 Reverse primer (5’-3’) |
---|---|---|
A | TGTCTAGACTCGAGGGATCCATGGTGCAGTGCCTG-GAC | GGCCGCTGTACACATGGATCCGTTGTCATCAACTTGAGAAT-GAAAG |
B | GACGCACAATCCCACTATCC | GGGTGAGCTTGCCGTAGGTG |
SiCBL3 | AGCCTCCCAGATTTGAGACAG | AAGCATTCATCACTGACGGC |
β-actin | CAGTGGACGCACAACAGGTAT | AGCAAGGTCAAGACGGAGAAT |
顺式元件Cis-element | 预测元件Predicted cis-element | |
---|---|---|
植物激素应答 Auxin-responsive | 脱落酸(ABRE)、茉莉酮酸甲酯 (CGTCA-motif、TGACG-motif)、 赤霉素 (GARE-motif)、 水杨酸 (TCA-element) Abscisic acid (ABRE),methyl jasmonate (CGTCA- motif, TGACG-motif),gibberellin ( GARE-motif), salicylic acid (TCA-element) | |
逆境应答 Stress-responsive | 干旱诱导MBS结合位点、低温响应 (LTR) MBS binding sites induced by drought, response to low temperature (LTR) | |
光应答 Light-responsive | G-box, Box 4, GT1-motif, TCCC-motif | |
其他应答 Others responsive | 昼夜节律 、玉米蛋白代谢调控 (O2-site)、厌氧诱导 ( ARE) Circadian, metabolic regulationof corn protein (O2-site), anaerobic induction (ARE) |
Table 2 Putative cis-elements in the promoter of SiCBL3
顺式元件Cis-element | 预测元件Predicted cis-element | |
---|---|---|
植物激素应答 Auxin-responsive | 脱落酸(ABRE)、茉莉酮酸甲酯 (CGTCA-motif、TGACG-motif)、 赤霉素 (GARE-motif)、 水杨酸 (TCA-element) Abscisic acid (ABRE),methyl jasmonate (CGTCA- motif, TGACG-motif),gibberellin ( GARE-motif), salicylic acid (TCA-element) | |
逆境应答 Stress-responsive | 干旱诱导MBS结合位点、低温响应 (LTR) MBS binding sites induced by drought, response to low temperature (LTR) | |
光应答 Light-responsive | G-box, Box 4, GT1-motif, TCCC-motif | |
其他应答 Others responsive | 昼夜节律 、玉米蛋白代谢调控 (O2-site)、厌氧诱导 ( ARE) Circadian, metabolic regulationof corn protein (O2-site), anaerobic induction (ARE) |
Fig. 2 Expression analysis of SiCBL3 under different stresses in seedlingNote:* and ** indicate significant difference compared with 0 h treatment at P<0.05 and P<0.01 levels, respectively.
Fig. 3 Expression analysis of SiCBL3 in different tissuesNoe: * and ** indicate significant difference compared with flag leaf at P<0.05 and P<0.01 levels, respectively.
Fig. 4 Expression analysis of SiCBL3 under drought stress at key growth stagesNote: * and ** indicate significant difference compared with stem-leaf at P<0.05 and P<0.01 levels, respectively.
Fig. 5 Expression analysis of SiCBL3 in different tissues under drought stress at filling stageNote: * and ** indicate significant difference compared with CK at P<0.05 and P<0.01 levels, respectively.
1 | LUAN S, KUDLA J, RODRIGUEZ-CONCEPCION M, et al.. Calmodulins and calcineurin B-like proteins: calcium sensors for specific signal response coupling in plants [J]. Plant Cell, 2002, 14 (Sl): S389-S400. |
2 | KUDLA J, BATISTIC O. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network [J]. Planta, 2004, 219: 915-924. |
3 | KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al.. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiol., 2004, 134 (1): 43-58. |
4 | DU W, LIN H, CHEN S, et al.. Phosphorylation of SOS3-like calcium-binding proteins by their interacting SOS2-like protein kinases is a common regulatory mechanism in Arabidopsis [J]. Plant Physiol., 2011, 156 (4): 2235-2243. |
5 | LIN H X, YANG Y Q, QUAN R D, et al.. Phosphorylation of SOS3-like calcium binding protein 8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis [J]. Plant Cell, 2009, 21 (5): 1607-1619. |
6 | LIN H, DU W M, YANG Y Q, et al.. A calcium-independent activation of the Arabidopsis SOS2-like protein kinase 24 by its interacting SOS3-like calcium binding protein1 [J]. Plant Physiol., 2014, 164 (4): 2197-2206. |
7 | MAHAJAN S, TUTEJA N. Cold salinity and drought stresses: an overview [J]. Arch Biochem. Biophy., 2005, 444: 139-158. |
8 | KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al.. Calcium sensors and their interacting protein kinases: genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiol., 2004, 134 (1): 43-58. |
9 | 赵晋锋,余爱丽,王高鸿,等.植物CBL/CIPK网络系统逆境应答研究进展[J].中国农业科技导报, 2011, 13(4): 32-38. |
ZHAO J F, YU A L, WANG G H, et al.. Progress of CBL/CIPK signal system in response to stresses in plant [J]. J. Agric. Sci. Technol., 2011, 13(4): 32-38. | |
10 | 杨秀,邓艳凤,肖水平,等.亚洲棉CBL基因家族鉴定及生物信息学分析[J].棉花科学, 2021, 43(2): 14-21. |
YANG X, DENG Y F, XIAO S P, et al.. Identification and bioinformatics analysis of GACBL family gene in Gossypium arboretum [J]. Cotton Sci., 2021, 43(2) : 14-21. | |
11 | 张兴政,黄浩捷,孙一闻,等.蒺藜苜蓿CBL基因家族全基因组鉴定及表达分析[J].中国草地学报, 2021, 43(7): 1-11. |
ZHANG X Z, HUANG H J, SUN Y W, et al.. Genome-wide identification and expression analysis od CBL gene family in Medicago truncatula [J]. Chin. J. Grassland, 2021, 43(7):1-11. | |
12 | 高玲,王斐,谢双全,等.乌拉尔甘草CBL基因家族的鉴定与表达分析[J].生物技术通报, 2021, 37(4): 18-27. |
GAO L, WANG F, XIE S Q, et al.. Genome-wide identification and expression analysis of CBL gene family in Glycyrrhiza uralensis [J]. Biotechnol. Bull., 2021, 37(4):18-27. | |
13 | 曹齐卫,刘明毓,陈伟,等. 黄瓜CBL基因的鉴定和特征分析[J].核农学报, 2016, 30(11): 2127-2132. |
CAO Q W, LIU M Y, CHEN W, et al.. Identification and vharacterization of cucumber CBL genes [J]. J. Nucl. Agric. Sci., 2016, 30(11): 2127-2132. | |
14 | 许园园,蔺经,李晓刚,等.梨CBL基因家族全基因组序列的鉴定及非生物胁迫下的表达分析[J].中国农业科学, 2015, 48(4):735-747. |
XU Y Y, LIN J, LI X G, et al.. Identification and expression analysis under abiotic stresses of the CBL gene family in pear [J]. Sci. Agric. Sin., 2015, 48(4): 735-747. | |
15 | HALFTER U, ISHITANI M, ZHU J K. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3 [J]. Proc. Natl. Acad. Sci. USA, 2000, 97( 7): 3735-3740. |
16 | MARTINEZ A J, JIANG X, GARCIADEBLAS B, et al.. Conservation of the salt overly sensitive pathway in rice [J]. Plant Physiol., 2007, 143: 1001-1012. |
17 | ZHANG Y M, LINGHU J J, WANG D, et al.. Foxtail millet CBL4 (SiCBL4) interacts with SiCIPK24, modulates plant salt stress tolerance [J]. Plant Mol. Biol. Rep., 2017, 35(6): 634-646. |
18 | WANG M Y, GU D, LIU T S, et al.. Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance [J]. Plant Mol. Biol., 2007, 65: 733-746. |
19 | GAO P, ZHAO P M, WANG J, et al.. Co-expression and preferential interaction between two calcineurin B-like proteins and a CBL-interacting protein kinase from cotton [J]. Plant Physiol. Biochem., 2008, 46: 925-940. |
20 | XU J, LI H D, CHEN L Q, et al.. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis [J]. Cell, 2006, 125: 1347-1360. |
21 | TANG R J, LIU H, YANG Y, et al.. Tonoplast calcium sensors CBL2 and CBL3 control plant growth and ion homeostasis through regulating V-ATPase activity in Arabidopsis [J]. Cell Res., 2012, 22(12):1650-1665. |
22 | ECKERT C, OFFENBORN J N, HEINZ T, et al.. The vacuolar calcium sensors CBL2 and CBL3 affect seed size and embryonic development in Arabidopsis thaliana [J]. Plant J., 2014, 78(1):146-156. |
23 | HWANG Y H, BETHKE P C, CHEONG Y H, et al.. A gibberellin-regulated calcineurin B in rice localizes to thetonoplast and is implicated in vacuole function [J]. Plant Physiol., 2005,138: 1347-1358. |
24 | D'NGELO C, WEINL S, BATISTIC O, et al.. Alternative complex formation of the Ca2 + -regulated protein kinase CIPK1 controls abscisic acid-dependent and independent stress responses in Arabidopsis [J]. Plant J., 2006, 48(6): 857-872. |
25 | HO C H, LIN S H, HU H C, et al.. CHL1 functions as a nitrate sensor in plants [J]. Cell, 2009, 138(6):1184-1194. |
26 | DRERUP M M, SCHLUCKING K, HASHIMOTO K, et al... The calcineurin B-like calciumsensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF [J]. Mol. Plant, 2013, 6(2):559-569. |
27 | NOZAWA A, KOIZUMI N, SANO H. An Arabidopsis SNF1-related protein kinase, AtSR1, interacts with a calcium-binding protein, AtCBL2, of which transcripts respond to light [J]. Plant Cell Physiol., 2001, 42(9):976-981. |
28 | 赵晋锋,杜艳伟,王高鸿,等.谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J].作物学报, 2020, 46(5): 700-711. |
ZHAO J F, DU Y WEI, WANG G H, et al.. Identification of PEPC genes from foxtail millet and its response to abiotic stress [J]. Acta Agron. Sin., 2020, 46(5): 700-711. | |
29 | ZHANG Y, SU J, DUAN S, et al.. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes [J/OL]. Plant Methods, 2011, 7(1):30 [2022-08-31]. . |
30 | GU L, ZHANG Y, ZHANG M, et al.. ZmGOLS2, a target of transcription factor ZmDREB2A, offers similar protection against abiotic stress as ZmDREB2A [J]. Plant Mol. Biol., 2016, 90(1-2):157-170. |
31 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ CT method [J]. Methods, 2001, 25: 402-408. |
[1] | Xinwei XUE, Dan LIU, Shi ZHANG, Wenyu HAN, Ankang MU, Zhikun YU, Fan YANG, Yahui WEN, Jialin ZHANG, Yongping ZHANG, Xianrui WANG. Comprehensive Evaluation and Screening of Drought Resistance of 86 Millet Germplasm Resources During Germination Period [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 39-51. |
[2] | ling QIN, Yanke WANG, Erying CHEN, Yanbing YANG, Feifei LI, Mengyuan ZHANG, Yanan GUAN. Analysis of Physiological Characteristics About ABA Alleviating Foxtail Millet Seedling Stage Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 36-44. |
[3] | Yixin CHEN, Xiubo YANG, Shijun TIAN, Cong WANG, Zhiying BAI, Cundong LI, Ke ZHANG. Response of GhCOMT28 to Drought Stress in Gossypium hirsutum [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 45-56. |
[4] | Jinxian LIU, Lijuan WANG, Jie LIU, Xianyu FU, Guangheng WU. Identification and Expression Analysis of Calmodulin-binding Transcription Activator (CAMTA) Family Genes in Tea Plants [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 71-82. |
[5] | Tingting LIU, Xiyu HAO, Hui WANG, Jingwen LENG, Shihang GONG, Wei LIU. Correlation Analysis Between Yield and Agronomical Traits of Different Foxtail Millet Varieties in Semi-arid Area of Western Jilin Province [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 50-60. |
[6] | Xianguo LI, Qi DAI, Zepeng WANG, Zhaolong CHEN, Huizhuan YAN, Ning LI. Identification and Phylogenetic Analysis of Tomato CCCH-like Zinc Finger Protein Family [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 80-95. |
[7] | Fulin ZHANG, Rui XI, Yuxiang LIU, Zhaolong CHEN, Qinghui YU, Ning LI. Genome-wide Identification and Expression Analysis of Tomato BURP Structural Domain Gene Family [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 51-62. |
[8] | Xinyue BAO, Hongmin CHEN, Weiwei WANG, Yimiao TANG, Zhaofeng FANG, Jinxiu MA, Dezhou WANG, Jinghong ZUO, Zhanjun YAO. Cloning and Expression Analysis of Wheat TaCOBL-5 Genes [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 11-21. |
[9] | Zhenwei ZHANG, Xiangshu DONG, Jing YANG, Xuejun LI, Meijun QI, Kuaile JIANG, Yonglin YANG, Butian WANG, Xuedong SHI, Junchao QIU, Zhihua CHEN, Yu GE. Genome-wide Identification and Expression Analysis of Key Chlorophyll Synthesis Related Gene CaPOR in Coffea arabica [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 83-97. |
[10] | Yurong DENG, Lian HAN, Jinlong WANG, Xinghan WEI, Xudong WANG, Ying ZHAO, Xiaohong WEI, Chaozhou LI. Identification of SOD Family Genes in Chenopodium quinoa and Their Response to Mixed Saline-alkali Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 28-39. |
[11] | Ting LIANG, Jinghong ZUO, Qing LU, Dong YANG, Yimiao TANG, Chunman GUO, Dezhou WANG, Weiwei WANG. Identification and Expression Analysis Under Abiotic Stress of IQM Gene Family in Wheat (Triticum aestivum L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 27-37. |
[12] | Hui ZHANG, Yueyue WANG, Bo ZHAO, Liling ZHANG, Qianru QIE, Yuanhuai HAN, Xukai LI. Identification of Co-expression Genes Related to Cold Stress in Foxtail Millet by WGCNA [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 22-34. |
[13] | Xiongfei JIAO, Jin YU, Leyong FENG, Yaodong GUO, Lisheng FAN. Effect of Different Sowing Dates on the Expression of Grain DUS Testing Characteristics [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 55-64. |
[14] | Meili LI, Junji SU, Yonglin YANG, Jianghong QIN, Xianxian LI, Delong YANG, Qi MA, Caixiang WANG. Identification of COI Family Genes and Their Expression in Gossypium hirsutum L. Under Drought and Salt Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 63-74. |
[15] | Yu MENG, Gang TAO, Deqi HUANG, Xiajun YAO. Diversity of Phosphate⁃solubilizing Fungi and Their Applications in Agriculture and Ecology [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 208-217. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||