Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (7): 93-102.DOI: 10.13304/j.nykjdb.2023.0925
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Xiaofei XIONG1,2(), Wenqian WU2, Hongyan HUO2, Xin ZHANG3, Yan YU4, Dong AN5, Tong ZHANG6(
), Jianwei WU1,2(
)
Received:
2023-12-16
Accepted:
2024-01-19
Online:
2024-07-15
Published:
2024-07-12
Contact:
Tong ZHANG,Jianwei WU
熊晓菲1,2(), 吴文茜2, 霍洪彦2, 张馨3, 于艳4, 安冬5, 张同6(
), 吴建伟1,2(
)
通讯作者:
张同,吴建伟
作者简介:
熊晓菲 E-mail:xiongxf@pdwy.com.cn
基金资助:
CLC Number:
Xiaofei XIONG, Wenqian WU, Hongyan HUO, Xin ZHANG, Yan YU, Dong AN, Tong ZHANG, Jianwei WU. Research on Sensor-based Agricultural Greenhouse Data Direct Reporting System and Intelligent Control[J]. Journal of Agricultural Science and Technology, 2024, 26(7): 93-102.
熊晓菲, 吴文茜, 霍洪彦, 张馨, 于艳, 安冬, 张同, 吴建伟. 基于传感器的农业温室数据直报系统与智能调控研究[J]. 中国农业科技导报, 2024, 26(7): 93-102.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2023.0925
作物 Crop | 物候期 Phenological period | 空气温度 Air temperature/℃ | 空气湿度 Air humidity/% | 光照强度 Illumination/lx | 二氧化碳含量 Carbon dioxide content/(mg·m-3) | 土壤温度 Soil temperature/℃ | 土壤湿度 Soil moisture/% |
---|---|---|---|---|---|---|---|
茄子 Eggplant | 发芽期 Germination stage | 15~30 | 55~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~85 |
幼苗期 Seedling stage | 15~33 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
开花结果期 Flowering and fruiting stage | 12~34 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
黄瓜 Cucumber | 发芽期 Germination stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 70~90 |
幼苗期 Seedling stage | 10~33 | 65~90 | 8 000~20 000 | 898~3 592 | 20~25 | 70~80 | |
开花结果期 Flowering and fruiting stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 80~90 | |
豇豆 Cowpea | 发芽期 Germination stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 |
幼苗期 Seedling stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
开花结果期 Flowering and fruiting stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
菠菜 Spinach | 播种期 Seeding stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 |
营养生长期 Vegetative stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 | |
草莓 Strawberry | 萌芽期 Germination stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 |
现蕾期 Budding stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
开花期 Flowering stage | 7~28 | ≤60 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
果实膨大期 Fruit formation stage | 6~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 | |
收获期 Harvesting stage | 5~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 |
Table 1 Environmental information threshold for greenhouse horticulture
作物 Crop | 物候期 Phenological period | 空气温度 Air temperature/℃ | 空气湿度 Air humidity/% | 光照强度 Illumination/lx | 二氧化碳含量 Carbon dioxide content/(mg·m-3) | 土壤温度 Soil temperature/℃ | 土壤湿度 Soil moisture/% |
---|---|---|---|---|---|---|---|
茄子 Eggplant | 发芽期 Germination stage | 15~30 | 55~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~85 |
幼苗期 Seedling stage | 15~33 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
开花结果期 Flowering and fruiting stage | 12~34 | 60~80 | 8 000~30 000 | 898~3 592 | 15~20 | 60~80 | |
黄瓜 Cucumber | 发芽期 Germination stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 70~90 |
幼苗期 Seedling stage | 10~33 | 65~90 | 8 000~20 000 | 898~3 592 | 20~25 | 70~80 | |
开花结果期 Flowering and fruiting stage | 10~33 | 65~85 | 8 000~20 000 | 898~3 592 | 20~25 | 80~90 | |
豇豆 Cowpea | 发芽期 Germination stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 |
幼苗期 Seedling stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
开花结果期 Flowering and fruiting stage | 15~34 | 65~80 | 8 000~20 000 | 898~3 592 | 25~30 | 60~70 | |
菠菜 Spinach | 播种期 Seeding stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 |
营养生长期 Vegetative stage | 7~26 | 80~90 | 8 000~20 000 | 898~3 592 | 8~20 | 70~80 | |
草莓 Strawberry | 萌芽期 Germination stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 |
现蕾期 Budding stage | 7~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
开花期 Flowering stage | 7~28 | ≤60 | 25 000~60 000 | 539~3 592 | 15~20 | 70~80 | |
果实膨大期 Fruit formation stage | 6~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 | |
收获期 Harvesting stage | 5~28 | 70~80 | 25 000~60 000 | 539~3 592 | 15~20 | 60~80 |
1 | 陆利明,陈建,陈燕,等.关于浦东新区农业生产信息直报系统的应用与分析[J].上海农业科技,2023,(1):39-42. |
2 | 束仁冬,孟令启,李进,等.基于模糊解耦控制的玻璃温室大棚的环境监控[J].江汉大学学报(自然科学版), 2021, 49 (6): 87-96. |
SHU R D, MENG L Q, LI J, et al.. Environment monitoring of glass greenhouse based on fuzzy decoupling control [J]. J. Jianghan Univ. (Nat. Sci.), 2021, 49 (6): 87-96. | |
3 | 宋坤,李雨婷,张钰颖,等.基于改进多传感器数据融合算法的温室环境检测研究[J].现代电子技术,2023,46(20):178-182. |
SONG K, LI Y T, ZHANG Y Y, et al.. Research on greenhouse environment detection based on improved multi-sensor data fusion algorithm [J]. Mod. Electron. Tech., 2023,46(20):178-182. | |
4 | 许德立,皇甫森森,李澍源.基于多数据融合+BP神经网络的农业温室大棚环境监控系统的研究[J].湖北农业科学,2023,62(1):167-171, 176. |
XU D L, HUANGFU S S, LI S Y. Research on environment monitoring system of agricultural greenhouse based on Multi-data fusion+BP neural network [J]. Hubei Agric. Sci., 2023,62(1):167-171, 176. | |
5 | HODGKINSON J, SAFFELL J, LUFF J, et al.. Gas sensors Ⅰ. the basic technologies and applications [J].Nanotechnol. Perceptions, 2009, 5(1): 71-82. |
6 | MITSULOV N, TSONEY T. Multichannel measuring system for profile monitoring of CO2 concentration in cultivation equipment [J]. Int. Agrophys., 2002, 16(3): 203-208. |
7 | VASILEIOS T, DIONYSIOS B, KYRIAKOS-NIKOS P, et al.. Development of an integrated IoT-based greenhouse control three-device robotic system [J]. Agronomy, 2021, 11(2): 405-405. 10.3390/agronomy11020405 . |
8 | ABHISHEK K, VIKRANT S, SAURABH K, et al.. IoT enabled system to monitor and control greenhouse [J]. Mater. Today Proc., 2022, 49(8): 3137-3141. |
9 | 高翔,刘鹏,卢潭城,等.一种土壤湿度测定方法在Zig Bee无线传感器网络中的应用[J].传感器与微系统,2015,34(1):151-153. |
GAO X, LIU P, LU T C, et al.. Application of a method of soil moisture measurement in Zig Bee WSNs [J]. Transducer Microsyst. Technol., 2015,34(1):151-153. | |
10 | 钟亚飞.基于单片机的温室二氧化碳测控系统的设计[D].青岛:山东科技大学, 2011. |
ZHONG Y F. Design of carbon dioxide measurement and control system based on the SCM in the greenhouse [D]. Qingdao: Shandong University of Science and Technology, 2011. | |
11 | 叶一舟.高性能硅基MEMS热式风速传感器的研究[D].南京:东南大学,2019. |
YE Y Z. Investigation on the high-performance silicon-based mems thermal wind sensors [D]. Nanjing: Southeast University, 2019. | |
12 | 张馨,郭瑞,李文龙,等.可装配式土壤温度传感器设计与试验[J].农业工程学报,2015,31(S1):205-211. |
ZHANG X, GUO R, LI W L, et al.. Design and experiment of assembled soil temperature sensor [J]. Trans. Chin. Soc. Agric. Eng., 2015,31(S1):205-211. | |
13 | 周艳青,薛河儒,姜新华,等.基于改进的卡尔曼滤波算法的气象数据融合[J].计算机系统应用,2018,27(4):184-189. |
ZHOU Y Q, XUE H R, JIANG X H, et al.. Meteorological data fusion based on proposed kalman filter method [J]. Comput. Syst. Appl., 2018,27(4):184-189. | |
14 | 杨帆,孟翔飞,孙建红.数据融合技术在温室环境监控系统中的应用[J].农机化研究,2012,34(4):177-180. |
YANG F, MENG X F, SUN J H. Applying of data fusion technology in greenhouse environment monitoring and control system [J]. J. Agric. Mech. Res., 2012,34(4):177-180. | |
15 | 郝子源,杨玮,李浩,等.基于多源信息和深度学习的多作物叶面积指数预测模型研究[J].光谱学与光谱分析,2023,43(12):3862-3870. |
HAO Z Y, YANG W, LI H, et al.. Study on prediction models for leaf area index of multiple crops based on multi-source information and deep learning [J]. Spectrosc. Spect. Anal., 2023,43(12):3862-3870. | |
16 | 李其操,董自健.基于GA-BP神经网络的温室温度预测研究[J].智能计算机与应用, 2023,13(9):168-171. |
LI Q C, DONG Z J. Greenhouse temperature prediction based on GA-BP neural network [J]. Intell. Comput. Appl., 2023,13(9):168-171. | |
17 | 张云鹤,林森,沈剑波,等.基于LSTM的连栋温室能耗预测模型[J].天津农业科学,2023,29(6):74-79. |
ZHANG Y H, LIN S, SHEN J B, et al.. Prediction model of energy consumption of multi-span greenhouse based on LSTM neural network [J]. Tianjin Agric. Sci., 2023,29(6):74-79. | |
18 | 石征锦,王博伦,谢峰,等.一种面向无线传感器网络的多数据融合模型设计[J].沈阳理工大学学报,2021,40(3):35-40. |
SHI Z J, WANG B L, XIE F, et al.. Design of A multi-data fusion model for wireless sensor network [J]. J. Shenyang Ligong Univ., 2021,40(3):35-40. | |
19 | 李双斌,王平,吕志华,等.基于Jetson Nano深度学习的新型农业系统[J].南方农机,2022,53(20):13-15. |
LI S B, WANG P, LYU Z H, et al.. A new agricultural system based on Jetson Nano deep learning [J] China South Agric. Mach., 2022,53(20):13-15. | |
20 | 黄天艺,吴华瑞,朱华吉.基于多模态数据驱动的黄瓜温室湿度预测方法[J].电子测量技术,2023,46(16):97-104. |
HUANG T Y, WU H R, ZHU H J. Research on humidity prediction method of cucumber greenhouse based on multimode data driving [J]. Electron. Meas. Technol., 2023,46(16):97-104. | |
21 | 杨承磊,兰玉彬,王庆雨,等.神经网络在温室小气候预测中的应用[J].中国农机化学报,2023,44(5):89-99. |
YANG C L, LAN Y B, WANG Q Y, et al.. Application of neural network in greenhouse microclimate prediction [J]. J. Chin. Agric. Mech., 2023, 44(5): 89-99. | |
22 | 丁力行,邓玉艳.设施农业人工环境[M].北京:中国建筑工业出版社,2017:20-56. |
23 | 李天来.设施蔬菜栽培学[M].北京:中国农业出版社,2011: 44. |
24 | 史少寒,周晓彦,李大鹏.基于ARIMA算法特征补齐的语音情感识别[J].电子器件, 2023, 46(5): 1333-1338. |
SHI S H, ZHOU X Y, LI D P. Speech emotion recognition based on feature complement by ARIMA [J].Chin. J. Electron. Devices, 2023, 46(5): 1333-1338. | |
25 | 张涛,张健,祁欣月,等.交通缺失数据插补方法研究综述[J].现代交通与冶金材料,2023,3(4):69-81. |
ZHANF T, ZHANG J, QI X Y, et al.. A review of interpolation methods for missing traffic data [J]. Mod. Trans. Metall. Mater., 2023,3(4):69-81. | |
26 | 赵春江.农业知识智能服务技术综述[J].智慧农业,2023,5(2):126-148. |
ZHAO C J. Agricultural knowledge intelligent service technology: a review [J]. Smart Agric., 2023,5(2):126-148. |
[1] | Yanfang WANG, Ruixue ZHAO. Bidirectional Empowerment Mechanism of “Data+AI” and Practical Path in Agriculture [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 11-20. |
[2] | Zhenfei ZHANG, An YAN, Jing GUO, Yuhang ZHAO, Yilin YUAN, Peng LIU, Zuohao QU, Chuan YUAN. Research on Apple Yield Estimation Model Based on Unmanned Aerial Vehicle Remote Sensing [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 110-119. |
[3] | Zheng WU, Hongyun YANG, Aizhen SUN, Jie KONG, Shumei HUANG. Diagnosis of Potassium Nutrition in Rice Based on CA_MobileViT Model [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 80-88. |
[4] | Yaxin WANG, Yangcheng LYU, Wenqi WANG, Qi LIU, Jie YANG, Guihong REN, Wuping ZHANG, Fuzhong LI. Nondestructive Segmentation and Extraction of Stem and Leaf Phenotypes During Tomato Plant Growth [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 90-100. |
[5] | Minrui TANG, Liang HE, Shenghao GU, Wanxia YANG, Ruijun YUE, Yi TAN, Lei WANG, Tengfei FENG. A Review of Application of Federated Learning in Smart Agriculture Systems [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 1-15. |
[6] | Jialiang YUAN, Runnan LIAN, Wuping ZHANG. Accurate Identification and Grading Method for Daylily Flower Buds [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 103-112. |
[7] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[8] | Lintao CHEN, Zhaoxiang LIU, Ying LAN, Xiangwei MOU, Xu MA, Rijun WANG. Research on Rice Variety Identification Based on Hyperspectral Technology and Principal Component Analysis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 104-111. |
[9] | Jianwei WU, Lin ZHANG, Wengang ZHENG, Xiangyang QIN, Zhonggao WU, Xihong FANG, Yongquan WANG, Tiangang LU, Jian WANG, Xiangshu PIAO, Fang WANG, Qiaoyun YUE, Haihe ZHANG, Jing JI, Xiaoman CONG, Qifeng LI. Research Progress on Key Application Scenario of Intelligent Orchard [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 12-23. |
[10] | Shuyuan ZHENG, Jian DAO, Xuelin ZHANG, Shanshan LIU, Jianxiong WANG. Research on Green Vegetation Extraction Method Based on Visible Light Band [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 107-117. |
[11] | Xiangzhou TIAN, Fuqiang HE, Fajiang CHEN, Luxin ZHAN. Calibration of Discrete Elemental Parameters of Wood Powder with Different Moisture Content Based on Angle of Repose [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 118-128. |
[12] | Yan ZHANG, Laigang WANG, Jia HE, Yan GUO, Xiuzhong YANG, Hongli ZHANG, Ting LIU. Study on the Spatio-Temporal Changes of Tea Planting Area Based on Multi-Source Remote Sensing [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 107-114. |
[13] | Shirui HUANG, Tianyi WANG, Tao WEN, Jianglong ZHOU. Crop Insect Identification Based on Improved YOLOv7 [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 107-116. |
[14] | Tianjun TANG, Yang CHEN, Jun HU, Haotian JIANG. Research on Tobacco Precise Recognition Method Based on UAV Image Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 145-157. |
[15] | Mingkang PENG, Yu CUI, Qiyuan XUE, Yunzhen YIN, Zhe YIN, Wuping ZHANG, Fuzhong LI. Weed Identification and Location for Crop at Seedling Stage Based on Enhancing and Fine-tuning Weather Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 125-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||