Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (5): 103-112.DOI: 10.13304/j.nykjdb.2023.0915
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Jialiang YUAN(), Runnan LIAN, Wuping ZHANG(
)
Received:
2023-12-12
Accepted:
2024-03-22
Online:
2025-05-15
Published:
2025-05-20
Contact:
Wuping ZHANG
通讯作者:
张吴平
作者简介:
袁嘉良E-mail:15605210287@163.com;
基金资助:
CLC Number:
Jialiang YUAN, Runnan LIAN, Wuping ZHANG. Accurate Identification and Grading Method for Daylily Flower Buds[J]. Journal of Agricultural Science and Technology, 2025, 27(5): 103-112.
袁嘉良, 连润楠, 张吴平. 黄花菜花蕾的精准识别与分级方法[J]. 中国农业科技导报, 2025, 27(5): 103-112.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2023.0915
模型 Model | P/% | R/% | mAP/% | 每秒传输帧数/(帧·s-1) Frames per second FPS/(frames·s-1) | 模型大小 Model size/Mb |
---|---|---|---|---|---|
YOLOv3 | 85.39 | 78.57 | 88.05 | 61.52 | 235 |
YOLOv4 | 87.67 | 79.20 | 88.00 | 63.40 | 244 |
YOLOv7 | 86.40 | 82.77 | 90.50 | 107.21 | 142 |
Faster-RCNN | 61.75 | 86.13 | 84.86 | 136.69 | 108 |
YOLOv5s | 84.63 | 81.54 | 89.00 | 118.49 | 13.7 |
YOLOv5m | 84.70 | 79.20 | 88.80 | 37.85 | 239 |
YOLOv5l | 85.40 | 85.30 | 91.90 | 26.89 | 88.5 |
YOLOv5x | 84.70 | 85.70 | 90.70 | 17.57 | 165 |
Table 1 Comparison of different networks model
模型 Model | P/% | R/% | mAP/% | 每秒传输帧数/(帧·s-1) Frames per second FPS/(frames·s-1) | 模型大小 Model size/Mb |
---|---|---|---|---|---|
YOLOv3 | 85.39 | 78.57 | 88.05 | 61.52 | 235 |
YOLOv4 | 87.67 | 79.20 | 88.00 | 63.40 | 244 |
YOLOv7 | 86.40 | 82.77 | 90.50 | 107.21 | 142 |
Faster-RCNN | 61.75 | 86.13 | 84.86 | 136.69 | 108 |
YOLOv5s | 84.63 | 81.54 | 89.00 | 118.49 | 13.7 |
YOLOv5m | 84.70 | 79.20 | 88.80 | 37.85 | 239 |
YOLOv5l | 85.40 | 85.30 | 91.90 | 26.89 | 88.5 |
YOLOv5x | 84.70 | 85.70 | 90.70 | 17.57 | 165 |
模型 Model | P/% | R/% | mAP/% | 检测速度/(帧·s-1) Detection speed/(frames·s-1) |
---|---|---|---|---|
YOLOv5s | 84.63 | 81.54 | 89.00 | 118.49 |
YOLOv5s_CA | 78.60 | 80.50 | 86.40 | 64.824 |
YOLOv5s_SA | 91.90 | 87.20 | 93.00 | 118.28 |
YOLOv5s_SimAM | 85.60 | 81.30 | 88.70 | 74.36 |
YOLOv5s_Biformer | 94.80 | 91.40 | 96.60 | 149.75 |
Table 2 Comparison of different networks model
模型 Model | P/% | R/% | mAP/% | 检测速度/(帧·s-1) Detection speed/(frames·s-1) |
---|---|---|---|---|
YOLOv5s | 84.63 | 81.54 | 89.00 | 118.49 |
YOLOv5s_CA | 78.60 | 80.50 | 86.40 | 64.824 |
YOLOv5s_SA | 91.90 | 87.20 | 93.00 | 118.28 |
YOLOv5s_SimAM | 85.60 | 81.30 | 88.70 | 74.36 |
YOLOv5s_Biformer | 94.80 | 91.40 | 96.60 | 149.75 |
模型 Model | 第2层 2nd layer | 第4层4th layer | 第6层 6th layer | P/% | R/% | mAP/% | 检测速度/ (帧·s-1)Detection speed/(Frames·s-1) | 模型大小 Model size/Mb |
---|---|---|---|---|---|---|---|---|
Yolov5s | × | × | × | 84.63 | 81.54 | 89.00 | 118.49 | 13.7 |
Yolov5s_Biformer_1 | × | × | √ | 81.90 | 84.60 | 89.90 | 177.89 | 13.6 |
Yolov5s_Biformer_2 | × | √ | √ | 86.80 | 81.60 | 88.70 | 151.47 | 14.1 |
Yolov5s_Biformer_3 | √ | √ | √ | 94.80 | 91.40 | 96.60 | 149.75 | 16.3 |
Table 3 Increasing the model contrast of the Biformer in the different layers
模型 Model | 第2层 2nd layer | 第4层4th layer | 第6层 6th layer | P/% | R/% | mAP/% | 检测速度/ (帧·s-1)Detection speed/(Frames·s-1) | 模型大小 Model size/Mb |
---|---|---|---|---|---|---|---|---|
Yolov5s | × | × | × | 84.63 | 81.54 | 89.00 | 118.49 | 13.7 |
Yolov5s_Biformer_1 | × | × | √ | 81.90 | 84.60 | 89.90 | 177.89 | 13.6 |
Yolov5s_Biformer_2 | × | √ | √ | 86.80 | 81.60 | 88.70 | 151.47 | 14.1 |
Yolov5s_Biformer_3 | √ | √ | √ | 94.80 | 91.40 | 96.60 | 149.75 | 16.3 |
样本编号 Sample No. | 长度Length/cm | 直径Diameter/cm | ||||
---|---|---|---|---|---|---|
人工Manual | 算法Algorithm | 误差Error | 人工Manual | 算法Algorithm | 误差Error | |
1 | 9.21 | 9.00 | 0.21 | 0.85 | 0.83 | 0.02 |
2 | 9.47 | 9.31 | 0.16 | 0.86 | 0.86 | 0.00 |
3 | 9.32 | 9.14 | 0.18 | 0.82 | 0.81 | 0.01 |
4 | 10.92 | 10.67 | 0.25 | 0.85 | 0.87 | -0.02 |
5 | 12.20 | 11.97 | 0.23 | 0.89 | 0.90 | -0.01 |
6 | 11.65 | 11.47 | 0.18 | 0.93 | 0.94 | -0.01 |
7 | 10.28 | 10.22 | 0.06 | 0.86 | 0.88 | -0.02 |
8 | 11.23 | 11.00 | 0.23 | 0.92 | 0.93 | -0.01 |
9 | 9.42 | 9.21 | 0.21 | 0.83 | 0.83 | 0.00 |
10 | 11.15 | 10.76 | 0.39 | 0.86 | 0.84 | 0.02 |
Tab. 4 Comparison of manual and algorithm measurements
样本编号 Sample No. | 长度Length/cm | 直径Diameter/cm | ||||
---|---|---|---|---|---|---|
人工Manual | 算法Algorithm | 误差Error | 人工Manual | 算法Algorithm | 误差Error | |
1 | 9.21 | 9.00 | 0.21 | 0.85 | 0.83 | 0.02 |
2 | 9.47 | 9.31 | 0.16 | 0.86 | 0.86 | 0.00 |
3 | 9.32 | 9.14 | 0.18 | 0.82 | 0.81 | 0.01 |
4 | 10.92 | 10.67 | 0.25 | 0.85 | 0.87 | -0.02 |
5 | 12.20 | 11.97 | 0.23 | 0.89 | 0.90 | -0.01 |
6 | 11.65 | 11.47 | 0.18 | 0.93 | 0.94 | -0.01 |
7 | 10.28 | 10.22 | 0.06 | 0.86 | 0.88 | -0.02 |
8 | 11.23 | 11.00 | 0.23 | 0.92 | 0.93 | -0.01 |
9 | 9.42 | 9.21 | 0.21 | 0.83 | 0.83 | 0.00 |
10 | 11.15 | 10.76 | 0.39 | 0.86 | 0.84 | 0.02 |
1 | 刘佩冶,李可昕,张超凡,等.黄花菜生物活性成分及功能研究进展[J].食品与发酵工业,2022,48(12):330-336. |
LIU P Y, LI K X, ZHANG C F, et al.. Research progress on bioactive components and functions of daylily [J]. Food Ferment. Industries, 2022,48(12): 330-336. | |
2 | 武珍珍,洪沙沙,吕虹瑞,等.黄花菜保鲜贮藏及后处理加工技术研究进展[J].食品与发酵工业, 2023,49(22):334-340. |
WU Z Z, HONG S S, LYU H R, et al.. Research progress in fresh-keeping,storage and post-processing technology of daylily [J]. Food and Ferment. Industries, 2023,49(22):334-340. | |
3 | FU M, HE Z, ZHAO Y, et al.. Antioxidant properties and involved compounds of daylily flowers in relation to maturity [J]. Food Chem., 2009,114(4):1192-1197. |
4 | 王卓,王健,王枭雄,等.基于改进YOLO v4的自然环境苹果轻量级检测方法[J].农业机械学报,2022,53(8):294-302. |
WANG Z, WANG J, WANG X X, et al.. Lightweight real-time apple detection method based on improved YOLO v4 [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(8): 294-302. | |
5 | 卢伟,邹明萱,施浩楠,等.基于YOLO v5-TL的褐菇采摘视觉识别-测量-定位技术[J].农业机械学报,2022,53(11):341-348. |
LU W, ZOU M X, SHI H N, et al.. Technology of visual identification-measuring-location for brown mushroom picking based on YOLO v5-TL [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(11): 341-348. | |
6 | 靳红杰,马顾彧,唐梦圆,等.复杂环境下黄花菜识别的YOLOv7-MOCA模型[J].农业工程学报,2023,39(15):181-188. |
JIN H J, MA G Y, TANG M Y, et al.. Identifying daylily in complex environment using YOLOv7-MOCA model [J]. Trans. Chin. Soc. Agric. Eng., 2023,39(15): 181-188. | |
7 | 张立杰,周舒骅,李娜,等.基于改进SSD卷积神经网络的苹果定位与分级方法[J].农业机械学报,2023,54(6):223-232. |
ZHANG L J, ZHOU S H, LI N, et al.. Apple location and classification based on improved SSD convolutional neural network [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(6): 223-232. | |
8 | BHARGAVA A, BANSAL A. Classification and grading of multiple varieties of apple fruit [J]. Food Anal. Meth., 2021, 14(7): 1359-1368. |
9 | 杨其晟,李文宽,杨晓峰,等.改进YOLOv5的苹果花生长状态检测方法[J].计算机工程与应用, 2022,58(4):237-246. |
YANG Q S, LI W K, YANG X F, et al.. Improved YOLOv5 method for detecting growth status of apple flowers [J]. Comput. Eng. Appl., 2022,58(4):237-246. | |
10 | REDMON J, DIVVALA S, GIRSHIVK R, et al.. You only look once: unified, real-time object detection [EB/OL]. (2016-05-09) [2024-09-23]. . |
11 | FARHADI A, REDMON J.YOLOv3:Anincremental improvement [EB/OL]. (2018-04-08) [2024-09-23].. |
12 | ALBAHLI S, NIDA N, IRTAZA A, et al.. Melanoma lesion detection and segmentation using YOLOv4-DarkNet and active contour [J]. IEEE access, 2020,8:198403-198414. |
13 | YAN B, FAN P, LEI X, et al.. A real-time apple targets detection method for picking robot based on improved YOLOv5 [J/OL].Remote Sensing, 2021,13(9):1619 [2024-09-23]. . |
14 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors [EB/OL].(2022-07-06) [2024-09-23]. . |
15 | REN S, HE K, GIRSHICK R, et al.. Faster R-CNN: towards real-time object detection with region proposal networks [J]. IEEE Trans. Pattern Anal. Mach. Intell., 2017, 39(6): 1137-1149. |
16 | ZHANG Q L, YANG Y B. Sa-net:shuffle attention for deep convolutional neural networks [C]//Proceedings of ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021:2235-2239. |
17 | HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design [C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2021:13708-13717. |
18 | YANG L X, ZHANG R Y, LI L D, et al.. Simam: A simple, parameter-free attention module for convolutional neural networks [C]//Proceedings of International conference on machine learning. PMLR, 2021, 139:11863-11874. |
19 | VASWANI A, SHAZEER N, PARMAR N, et al.. Attention is all you need [EB/OL].(2017-06-19) [2024-09-23]. . |
20 | ZHU L, WANG X J, KE Z H, et al.. BiFormer: vision transformer with Bi-Level routing attention [EB/OL]. (2023-03-15) [2024-09-23].. |
21 | LAY Y M, STEAD A D, REID M S. Flower senescence in daylily (Hemerocallis) [J]. Physiol. Plant., 1992,86(2):308-314. |
22 | 中国团体标准,大同黄花干制品质量分级标准:T/DTHH 001—2021 [S].大同:大同市云州区黄花菜合作协会,2021. |
23 | JOCHER G, STOKEN A, CHAURASIA A, et al.. ultralytics/yolov5: v6. 0-YOLOv5n'Nano'models, Roboflow integration, TensorFlow export, OpenCV DNN support [J/OL]. Zenodo, 2021: 5563715[2024-09-23]. . |
24 | 王小荣,许燕,周建平,等.基于改进YOLOv7的复杂环境下红花采摘识别[J].农业工程学报,2023,39(6):169-176. |
WANG X R, XU Y, ZHOU J P, et al.. Safflower picking recognition in complex environments based on an improved YOLOv7 [J]. Trans. Chin. Soc. Agric. Eng., 2023, 39(6): 169-176. | |
25 | 龚惟新,杨珍,李凯,等.基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法[J].农业工程学报,2023,39(6):177-185. |
GONG W X, YANG Z, LI K, et al.. Detecting kiwi flowers in natural environments using an improved YOLOv5s [J]. Trans. Chin. Soc. Agric. Eng., 2023, 39(6): 177-185. |
[1] | Yanfang WANG, Ruixue ZHAO. Bidirectional Empowerment Mechanism of “Data+AI” and Practical Path in Agriculture [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 11-20. |
[2] | Zhenfei ZHANG, An YAN, Jing GUO, Yuhang ZHAO, Yilin YUAN, Peng LIU, Zuohao QU, Chuan YUAN. Research on Apple Yield Estimation Model Based on Unmanned Aerial Vehicle Remote Sensing [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 110-119. |
[3] | Zheng WU, Hongyun YANG, Aizhen SUN, Jie KONG, Shumei HUANG. Diagnosis of Potassium Nutrition in Rice Based on CA_MobileViT Model [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 80-88. |
[4] | Yaxin WANG, Yangcheng LYU, Wenqi WANG, Qi LIU, Jie YANG, Guihong REN, Wuping ZHANG, Fuzhong LI. Nondestructive Segmentation and Extraction of Stem and Leaf Phenotypes During Tomato Plant Growth [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 90-100. |
[5] | Minrui TANG, Liang HE, Shenghao GU, Wanxia YANG, Ruijun YUE, Yi TAN, Lei WANG, Tengfei FENG. A Review of Application of Federated Learning in Smart Agriculture Systems [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 1-15. |
[6] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[7] | Lintao CHEN, Zhaoxiang LIU, Ying LAN, Xiangwei MOU, Xu MA, Rijun WANG. Research on Rice Variety Identification Based on Hyperspectral Technology and Principal Component Analysis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 104-111. |
[8] | Jianwei WU, Lin ZHANG, Wengang ZHENG, Xiangyang QIN, Zhonggao WU, Xihong FANG, Yongquan WANG, Tiangang LU, Jian WANG, Xiangshu PIAO, Fang WANG, Qiaoyun YUE, Haihe ZHANG, Jing JI, Xiaoman CONG, Qifeng LI. Research Progress on Key Application Scenario of Intelligent Orchard [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 12-23. |
[9] | Shuyuan ZHENG, Jian DAO, Xuelin ZHANG, Shanshan LIU, Jianxiong WANG. Research on Green Vegetation Extraction Method Based on Visible Light Band [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 107-117. |
[10] | Xiangzhou TIAN, Fuqiang HE, Fajiang CHEN, Luxin ZHAN. Calibration of Discrete Elemental Parameters of Wood Powder with Different Moisture Content Based on Angle of Repose [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 118-128. |
[11] | Yan ZHANG, Laigang WANG, Jia HE, Yan GUO, Xiuzhong YANG, Hongli ZHANG, Ting LIU. Study on the Spatio-Temporal Changes of Tea Planting Area Based on Multi-Source Remote Sensing [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 107-114. |
[12] | Shirui HUANG, Tianyi WANG, Tao WEN, Jianglong ZHOU. Crop Insect Identification Based on Improved YOLOv7 [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 107-116. |
[13] | Tianjun TANG, Yang CHEN, Jun HU, Haotian JIANG. Research on Tobacco Precise Recognition Method Based on UAV Image Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 145-157. |
[14] | Mingkang PENG, Yu CUI, Qiyuan XUE, Yunzhen YIN, Zhe YIN, Wuping ZHANG, Fuzhong LI. Weed Identification and Location for Crop at Seedling Stage Based on Enhancing and Fine-tuning Weather Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 125-134. |
[15] | Zhiyuan ZHU, Haifeng WANG, Bin LI, Wenwen ZHAO, Jun ZHU, Nan JIA, Yuliang ZHAO. Research Progress of Deep Learning in Typical Behavior Recognition of Livestock and Poultry [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 110-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||