Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (8): 126-137.DOI: 10.13304/j.nykjdb.2022.0866
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Fengxia BIAN1(), Kaige LIU2, Xinmin RONG1(
)
Received:
2022-10-12
Accepted:
2022-12-29
Online:
2023-08-20
Published:
2023-09-07
Contact:
Xinmin RONG
通讯作者:
容新民
作者简介:
边凤霞 E-mail:bianfengxia123@163.com;
基金资助:
CLC Number:
Fengxia BIAN, Kaige LIU, Xinmin RONG. Development and Verification of Prediction Model for Grape Downy Mildew Based on Machine Learning[J]. Journal of Agricultural Science and Technology, 2023, 25(8): 126-137.
边凤霞, 刘凯歌, 容新民. 基于机器学习构建葡萄霜霉病预测模型及验证[J]. 中国农业科技导报, 2023, 25(8): 126-137.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0866
Fig. 2 Decision tree model principleNote: The schematic diagram only shows the decision-making process of the model when dealing with the problem, and does not mean that the decision result of a single feature is used as the prediction result.
指标 Index | 样本数Number of samples | |
---|---|---|
预测不发病 Prediction label: 0 | 预测发病Prediction label: 1 | |
实际不发病 True label: 0 | 真阴性 True negative: TN | 假阳性 False positive: FP |
实际发病 True label: 1 | 假阴性 False negative:FN | 真阳性 True positive:TP |
Table 1 Confusion matrix contingency table
指标 Index | 样本数Number of samples | |
---|---|---|
预测不发病 Prediction label: 0 | 预测发病Prediction label: 1 | |
实际不发病 True label: 0 | 真阴性 True negative: TN | 假阳性 False positive: FP |
实际发病 True label: 1 | 假阴性 False negative:FN | 真阳性 True positive:TP |
k值 k value | 一致性结果 Consistent result |
---|---|
0≤k<0.2 | 极低Slight |
0.2≤k<0.4 | 一般Fair |
0.4≤k<0.6 | 中等Moderate |
0.6≤k<0.8 | 高度Substantial |
0.8≤k<1.0 | 几乎完全Almost perfect |
Table 2 The k value consistency classification criteria
k值 k value | 一致性结果 Consistent result |
---|---|
0≤k<0.2 | 极低Slight |
0.2≤k<0.4 | 一般Fair |
0.4≤k<0.6 | 中等Moderate |
0.6≤k<0.8 | 高度Substantial |
0.8≤k<1.0 | 几乎完全Almost perfect |
模型 Model | 类别标签 Classe label | 分类结果 Classification result | |||
---|---|---|---|---|---|
准确率 Accuracy/% | 精准率 Precision/% | 召回率 Recall/% | F1分值 F1-score/% | ||
BLR | 0 | 86 | 87 | 93 | 90 |
1 | 83 | 70 | 76 | ||
SVM | 0 | 86 | 86 | 94 | 90 |
1 | 85 | 69 | 76 | ||
DT | 0 | 94 | 95 | 96 | 95 |
1 | 91 | 90 | 91 | ||
KNN | 0 | 93 | 96 | 94 | 95 |
1 | 88 | 91 | 89 |
Table 3 Classification results of different prediction models
模型 Model | 类别标签 Classe label | 分类结果 Classification result | |||
---|---|---|---|---|---|
准确率 Accuracy/% | 精准率 Precision/% | 召回率 Recall/% | F1分值 F1-score/% | ||
BLR | 0 | 86 | 87 | 93 | 90 |
1 | 83 | 70 | 76 | ||
SVM | 0 | 86 | 86 | 94 | 90 |
1 | 85 | 69 | 76 | ||
DT | 0 | 94 | 95 | 96 | 95 |
1 | 91 | 90 | 91 | ||
KNN | 0 | 93 | 96 | 94 | 95 |
1 | 88 | 91 | 89 |
模型 Model | 类别标签 Classe label | 分类结果 Classification result | |||
---|---|---|---|---|---|
准确率 Accuracy/% | 精准率 Precision/% | 召回率 Recall/% | F1分值 F1-score/% | ||
BLR | 0 | 73 | 73 | 87 | 80 |
1 | 74 | 53 | 62 | ||
SVM | 0 | 75 | 76 | 86 | 81 |
1 | 72 | 59 | 65 | ||
DT | 0 | 90 | 92 | 91 | 92 |
1 | 87 | 88 | 88 | ||
KNN | 0 | 84 | 86 | 87 | 86 |
1 | 80 | 79 | 80 |
Table 4 Classification validation results of different prediction models
模型 Model | 类别标签 Classe label | 分类结果 Classification result | |||
---|---|---|---|---|---|
准确率 Accuracy/% | 精准率 Precision/% | 召回率 Recall/% | F1分值 F1-score/% | ||
BLR | 0 | 73 | 73 | 87 | 80 |
1 | 74 | 53 | 62 | ||
SVM | 0 | 75 | 76 | 86 | 81 |
1 | 72 | 59 | 65 | ||
DT | 0 | 90 | 92 | 91 | 92 |
1 | 87 | 88 | 88 | ||
KNN | 0 | 84 | 86 | 87 | 86 |
1 | 80 | 79 | 80 |
1 | 芦屹,努尔孜亚·亚力麦麦提,付文君,等.新疆伊犁河谷地区葡萄霜霉病流行与气候条件的关系[J].新疆农业科学,2020,57(10):1855-1862. |
LU Y, Yalimaimaiti Nuerziya, FU W J, et al.. Research the relationship between epidemic of grape downy mildew and climatic conditions in Ili Valley of Xinjiang [J]. Xinjiang Agric. Sci., 2020, 57(10): 1855-1862. | |
2 | 吉丽丽.石河子地区葡萄霜霉病菌孢子囊时空扩散动态及品种抗病性研究[D].石河子:石河子大学,2011. |
JI L L. The dynamics of sporangium of Plasmopara viticola and resistance of different grape varieties in Shihezi region [D]. Shihezi: Shihezi Univ., 2011. | |
3 | 张玮,燕继晔,刘梅,等.葡萄霜霉病流行与预测研究进展[J].中国果树,2020,44(3):11-15. |
ZHANG W, YAN J Y, LIU M, et al.. Research progress on prediction and epidemic of grapevine downy mildew [J]. China Fruits, 2020, 44(3):11-15. | |
4 | GILLES T. Forecasting Downy Mildew Diseases in:Advances in Downy Mildew Research—Volume Ⅱ [M]. Dordrecht: Springer, 2004:35-67. |
5 | ORLANDINI S, CAPPUGI A. Calibration of agrometeorological model for the simulation of grapevine downy mildew in several viticultural areas of Europe [C]// Proceedins of Fifth European Conference on Application of Meteorology. Budapest Hungary, 2001:1-7. |
6 | 张雪雪,王斌,田洋洋,等.作物病虫害预测机理与方法研究进展[J].中国农业科技导报,2019,21(5):110-120. |
ZHANG X X, WANG B, TIAN Y Y, et al.. Research progress on forecasting mechanism and methodology for crop disease and insect pest [J]. J. Agric. Sci. Technol., 2019, 21(5):110-120. | |
7 | GESSLER C, PERTOT I, PERAZZOLLI M. Plasmopara viticola:a review of knowledge on downy mildew of grapevine and effective disease management [J]. Phytopathol. Mediterr., 2011, 50(1):3-44. |
8 | THIND T S, ARORA J K, MOHAN C, et al.. Epidemiology of Powdery Mildew, Downy Mildew and Anthracnose Diseases of Grapevine [M]. Dordrecht: Kluwer Academic Publishers, 2004:621-638. |
9 | FRANCESCA S, SIMONA G, FRANCESCO NICOLA T, et al.. Downy mildew (Plasmopara viticola) epidemics on grapevine under climate change [J]. Global Change Biol., 2006, 12(7):1299-1307. |
10 | ROSSI V, CAFFI T, GIOSUE S, et al.. A mechanistic model simulating primary infections of downy mildew in grapevine [J]. Ecol. Modell., 2008, 212(3-4):480-491. |
11 | 白玉娇,马贵龙.葡萄霜霉病流行时间动态模型及防治指标[J].吉林农业大学学报,2020,42(3):286-292. |
BAI Y J, MA G L. Dynamic model of epidemic period and control index of grape downy mildew [J]. J. Jilin Agric. Univ., 2020, 42(3):286-292. | |
12 | 于舒怡,傅俊范,刘长远,等.沈阳地区葡萄霜霉病流行时间动态及其气象影响因子分析[J].植物病理学报,2016,46(4):529-535. |
YU S Y, FU J F, LIU C Y, et al.. Epidemic temporal dynamic of grape downy mildew and its meteorological influencing factors in Shenyang, Liaoning [J]. Acta Phytopathol. Sin., 2016, 46(4):529-535. | |
13 | BLAISE P, GESSLER C. Development of a forecast model of grape downy mildew on a microcomputer [C]// Proceedings of International Symposium on Computer Modelling in Fruit Research and Orchard Management 276, 1989:63-70. |
14 | WILKS D S, SHEN K W. Threshold relative humidity duration forecasts for plant disease prediction [J]. J. Appl. Meteorol. Climatol., 1991, 30(4):463-477. |
15 | 华来庆,熊林平,孟虹,等.AR-EGARCH模型在疾病指数时间序列建模中的应用研究[J].中国卫生统计,2006,23(6):482-485. |
HUA L Q, XIONG L P, MENG H, et al.. Application of AR-EGARCH model in establishing methods of disease index time series models [J]. Chin. J. Health Stat., 2006, 23(6):482-485. | |
16 | POUZESHIMIYAB B, FANI S R. Epidemiology and aerobiology of Pseudoperonospora cubensis in northwest Iran [J]. Ital. J. Agrometeorol., 2020, 13(2):109-116. |
17 | NEUFELD K N, KEINATH A P, OJIAMBO P S. Evaluation of a model for predicting the infection risk of squash and cantaloupe by Pseudoperonospora cubensis [J]. Plant Dis., 2018, 102(5):855-862. |
18 | LIU Y, LI D, WAN S, et al.. A long short-term memory-based model for greenhouse climate prediction [J]. Int. J. Intell. Syst., 2022, 37(1):135-151. |
19 | 张善文,王振,王祖良.结合知识图谱与双向长短时记忆网络的小麦条锈病预测[J].农业工程学报,2020,36(12):172-178. |
ZHANG S W, WANG Z, WANG Z L. Prediction of wheat stripe rust disease by combining knowledge graph and bidirectional long short term memory network [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(12):172-178. | |
20 | LIAKOS K G, BUSATO P, MOSHOU D, et al.. Machine learning in agriculture: a review [J]. Int. J. Sci. Technol. Res., 2018, 18(8):2674. |
21 | MEZEI I, LUKIC M, BERBAKOV L, et al.. Grapevine downy mildew warning system based on NB-IoT and energy harvesting technology [J]. Electronics, 2022, 11(3):356. |
22 | VOLPI I, GUIDOTTI D, MAMMINI M, et al.. Predicting symptoms of downy mildew, powdery mildew, and gray mold diseases of grapevine through machine learning [J]. Ital. J. Agrometeorol., 2021, 14(2):57-69. |
23 | CHEN M, BRUN F, RAYNAL M, et al.. Forecasting severe grape downy mildew attacks using machine learning [J/OL]. PLoS One, 2020, 15(3):e0230254 [2022-09-10]. . |
24 | 吴宁.基于灰色关联分析和优化SVM的葡萄霜霉病短期预测[D].上海:上海海洋大学,2020. |
WU N. Short-term prediction of grape downy mildew based on grey correlation analysis and optimized SVM [J]. Shanghai: Shanghai Ocean University, 2020. | |
25 | MENESATTI P, ANTONUCCI F, COSTA C, et al.. Multivariate forecasting model to optimize management of grape downy mildew control [J]. Vitis, 2013, 52(3):141-148. |
26 | FIRANJ SREMAC A, LALIC B, MARCIC M, et al.. Toward a weather-based forecasting system for fire blight and downy mildew [J/OL]. Atmosphere, 2018, 9(12):484 [2022-09-10]. . |
27 | 边凤霞,王富霞,刘静,等.北疆葡萄设施延晚栽培病虫害防治技术[J].农业科技通讯,2019,49(9):344-345, 354. |
28 | 王济川,郭志刚. Logistic回归模型——方法与应用[M].北京:高等教育出版社,2001:10-17. |
29 | JOSE C, GOYAL P, AGGRWAL P, et al.. Local deep kernel learning for efficient non-linear svm prediction [C]// Proceedings of International Conference on Machine Learning. PMLR, 2013:486-494. |
30 | SONG Y Y, YING L U. Decision tree methods:applications for classification and prediction [J]. Shanghai Arch. Psychiatry, 2015, 27(2):130. |
31 | GUO G, WANG H, BELL D, et al.. KNN model-based approach in classification [C]// Proceedings of OTM Confederated International Conferences on the move to Meaningful Internet Systems. Berlin, Heidelberg, Springer, 2003:986-996. |
32 | LIU K, ZHANG C, YANG X, et al.. Development of an occurrence prediction model for cucumber downy mildew in solar greenhouses based on Long Short-Term Memory neural network [J/OL]. Agronomy, 2022, 12(2):442 [2022-09-10]. . |
33 | 宋旺.基于SVM的葡萄霜霉病病害发生预测研究[J].中小企业管理与科技,2018,11(5):104-105. |
34 | 秦华.基于自适应神经网络的葡萄病害发生预测研究[D].保定:河北农业大学,2009. |
QIN H. Research on the prediction of grape disease based on adaptive neural networks [J]. Baoding: Hebei Agricultural University, 2009. | |
35 | 于舒怡,李柏宏,王辉,等.基于田间空气中病菌孢子囊浓度的葡萄霜霉病病情估计模型研究[J].果树学报,2021,38(10):1767-1777. |
YU S Y, LI B H, WANG H, et al.. Study on estimation model for grape downy mildew prediction based on airborne sporangium concentration of Plasmopara viticola in field [J]. J. Fruit Sci., 2021, 38(10):1767-1777. | |
36 | RODRIGUEZ-RAJO F J, JATO V, FERNANDEZ-GONZALEZ M, et al.. The use of aerobiological methods for forecasting Botrytis spore concentrations in a vineyard [J]. Grana, 2010, 49(01):56-65. |
37 | CAFFI T, ROSSI V, LEGLER S E, et al.. A mechanistic model simulating ascosporic infections by Erysiphe necator, the powdery mildew fungus of grapevine [J]. Plant Pathol., 2011, 60(3):522-531. |
38 | GONZALEZ-DOMINGUEZ E, CAFFI T, CILIBERTI N, et al.. A mechanistic model of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways [J/OL]. PloS ONE, 2015, 10(10):e0140444 [2022-09-10]. . |
39 | HILL G N, BERESFORD R M, EVANS K J. Automated analysis of aggregated datasets to identify climatic predictors of Botrytis bunch rot in wine grapes [J]. Phytopathology, 2019, 109(1):84-95. |
[1] | Zhenfei ZHANG, An YAN, Jing GUO, Yuhang ZHAO, Yilin YUAN, Peng LIU, Zuohao QU, Chuan YUAN. Research on Apple Yield Estimation Model Based on Unmanned Aerial Vehicle Remote Sensing [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 110-119. |
[2] | Guangyong SONG, Yawen GUO, Jing XUE, Keqing YANG, Xuede SU, Long ZHOU. Effects of Different Fertilizer and Water Treatments on Fruit Quality of 7 Table Grapes in Greenhouses [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 229-240. |
[3] | Shijian BAI, Jinge HU. Effects of Gibberellic Acid on Berry and Raisin of Perlette Grape [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 158-169. |
[4] | Xiaoyu QI, Yanjie GUO, Lu LIU, Zitao ZHANG, Lijuan ZHANG, Yanzhi JI. Effects of Planting Years on Soil Salinization and Microbial Community in Facility Vineyards [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 218-228. |
[5] | Huilai WANG, Shuai LI, Yin WANG, Dongtao WU, Jiawei MA, Zhengqian YE, Yongqing CHI, Mei WANG. Effect of Long-term Fertilization on Diversity of Bacterial Community and Distribution of ARGs in Grape Soil [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 229-239. |
[6] | Guangyao LI, Shenglong YANG, Tianfei CHENG, Xuesen CUI, Weifeng ZHOU, Shengmao ZHANG. Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 203-221. |
[7] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[8] | Jiping WANG, Tiedong LU, Zhiheng LIANG, Ye ZHANG, Tianming SU, Tieguang HE. Effects of Microorganisms from Different Sources on the Composting Process of Grape Branches and Pig Manure [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 224-233. |
[9] | Shijian BAI, Jinge HU, Chao LI, Junshe CAI. Effects of 3 Trellis Systems on Cultivation Characters and Berry Quality of ‘Xinyu’ Grape [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 63-73. |
[10] | Lifang SONG, Guiping LIAO, Min CHEN, Yuyang HE-LUO. Hyperspectral Estimation of Rape Leaf Water Content Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 110-119. |
[11] | Haijun ZHANG, Juan ZHANG, Yinan JIA, Jianglong WANG, Li FENG. Effect of Different Frame Type on Aroma Components and Berry Quality of ‘Nantaihutezao’ [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 201-213. |
[12] | Shijian BAI, Jinge HU, Jiuyun WU, Wen ZHANG, Hui XIE, Ronghua ZHAO, Guang CHEN, Junshe CAI. Effects of Rootstocks on the Growth Characteristics and Fruit Quality of ‘Crimson Seedless’ Grapes in Turpan Region [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 76-87. |
[13] | Qianqian LU, Abuduwaili Abulimiti, Yixing HOU, Zhihui LI, Shuang WANG, Long ZHOU. Research of the Photosynthetic Characteristics of 7 Table Grape Varieties Under Compound Salt-alkali Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 63-76. |
[14] | Shuang WANG, Yixing HOU, Linjiao FENG, Qianqian LU, Long ZHOU. Effect of Drought Stress on Anatomical Structure of Leaves in Table Grape Varieties [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 40-49. |
[15] | Yinan JIA, Guangdi ZHANG, Haoyu ZHANG, Chang XU, Kunming ZHANG, Jianglong WANG, Xiaojian HOU. Study on Fruit Quality of ‘Muscat Hamburg’ Grape Applied by Silicon Fertilizer in Root Zone [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 215-223. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||