Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (5): 110-119.DOI: 10.13304/j.nykjdb.2022.0977
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Lifang SONG(), Guiping LIAO(
), Min CHEN, Yuyang HE-LUO
Received:
2022-11-11
Accepted:
2023-03-22
Online:
2024-05-15
Published:
2024-05-14
Contact:
Guiping LIAO
通讯作者:
廖桂平
作者简介:
宋丽芳E-mail:872574009@qq.com;
基金资助:
CLC Number:
Lifang SONG, Guiping LIAO, Min CHEN, Yuyang HE-LUO. Hyperspectral Estimation of Rape Leaf Water Content Based on Machine Learning[J]. Journal of Agricultural Science and Technology, 2024, 26(5): 110-119.
宋丽芳, 廖桂平, 陈敏, 何罗驭阳. 基于机器学习的油菜叶片水分含量高光谱估测[J]. 中国农业科技导报, 2024, 26(5): 110-119.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0977
Fig. 1 Pre-treated result of original spectralA:Original spectral; B: SG smoothing pretreated; C:1st-derivative pretreated; D: SNV pretreated; E: MSC pretreated; F: 2nd-derivative pretreated
生育时期 Growth stage | 方法 Method | 训练集 Training set | 测试集 Prediction set | ||
---|---|---|---|---|---|
相关系数r | 均方根误差RMSE | 相关系数r | 均方根误差RMSE | ||
蕾薹期 Budding stage | SG平滑 SG smoothing | 0.705 | 1.293 | 0.627 | 1.534 |
MSC | 0.764 | 1.172 | 0.735 | 1.421 | |
SNV | 0.612 | 1.266 | 0.536 | 1.714 | |
一阶求导 1st-derivative | 0.575 | 1.663 | 0.524 | 1.368 | |
二阶求导 2nd-derivative | 0.323 | 2.759 | 0.317 | 1.975 | |
初花期 Initialflowering stage | SG平滑 SG smoothing | 0.625 | 1.672 | 0.601 | 2.124 |
MSC | 0.721 | 1.514 | 0.711 | 1.421 | |
SNV | 0.597 | 1.463 | 0.547 | 1.842 | |
一阶求导 1st-derivative | 0.624 | 1.453 | 0.586 | 1.265 | |
二阶求导 2nd-derivative | 0.423 | 2.312 | 0.328 | 2.226 |
Table 1 Evaluation of PLS model of leaf water content with different pretreatment methods
生育时期 Growth stage | 方法 Method | 训练集 Training set | 测试集 Prediction set | ||
---|---|---|---|---|---|
相关系数r | 均方根误差RMSE | 相关系数r | 均方根误差RMSE | ||
蕾薹期 Budding stage | SG平滑 SG smoothing | 0.705 | 1.293 | 0.627 | 1.534 |
MSC | 0.764 | 1.172 | 0.735 | 1.421 | |
SNV | 0.612 | 1.266 | 0.536 | 1.714 | |
一阶求导 1st-derivative | 0.575 | 1.663 | 0.524 | 1.368 | |
二阶求导 2nd-derivative | 0.323 | 2.759 | 0.317 | 1.975 | |
初花期 Initialflowering stage | SG平滑 SG smoothing | 0.625 | 1.672 | 0.601 | 2.124 |
MSC | 0.721 | 1.514 | 0.711 | 1.421 | |
SNV | 0.597 | 1.463 | 0.547 | 1.842 | |
一阶求导 1st-derivative | 0.624 | 1.453 | 0.586 | 1.265 | |
二阶求导 2nd-derivative | 0.423 | 2.312 | 0.328 | 2.226 |
生育时期 Growth stage | 变量数量 Variable number | 输出波长 Output wavelength/nm |
---|---|---|
蕾薹期 Budding stage | 6 | 523,561,1 390,1 481,2 316,2 491 |
初花期 Initial flowering stage | 7 | 553,645,709,754,1 000,1 650,2 444 |
Table 2 SPA feature selection wavelength
生育时期 Growth stage | 变量数量 Variable number | 输出波长 Output wavelength/nm |
---|---|---|
蕾薹期 Budding stage | 6 | 523,561,1 390,1 481,2 316,2 491 |
初花期 Initial flowering stage | 7 | 553,645,709,754,1 000,1 650,2 444 |
生育时期Growth stage | 训练集 Training set (n=315) | 预测集Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.895 | 1.341 | 0.832 | 1.744 |
初花期 Initial flowering stage | 0.871 | 1.585 | 0.808 | 1.725 |
Table 3 BPNN modeling and prediction effect of rape leaf water content
生育时期Growth stage | 训练集 Training set (n=315) | 预测集Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.895 | 1.341 | 0.832 | 1.744 |
初花期 Initial flowering stage | 0.871 | 1.585 | 0.808 | 1.725 |
生育时期 Growth stage | 训练集 Training set (n=315) | 预测集 Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.905 | 1.113 | 0.857 | 1.791 |
初花期 Initial flowering stage | 0.888 | 1.433 | 0.827 | 1.521 |
Table 4 SVR modeling and prediction effect of rape leaf water content
生育时期 Growth stage | 训练集 Training set (n=315) | 预测集 Prediction set (n=105) | ||
---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |
蕾薹期 Budding stage | 0.905 | 1.113 | 0.857 | 1.791 |
初花期 Initial flowering stage | 0.888 | 1.433 | 0.827 | 1.521 |
1 | 白桂萍,谢雄泽,谢捷,等.中国油菜生产布局时空演变及影响因素浅析[J].中国油脂,2022,48(4):1-6. |
BAI G P, XIE X Z, XIE J, et al.. Analysis on the temporal and spatial evolution and influencing factors of | |
oilseed rape production layout in China [J]. China Oils Fats,2022,48(4):1-6. | |
2 | 黄杰.气候变化对中国油菜生产布局的影响研究[D].武汉:华中农业大学,2019. |
HUANG J. Study on the impact of climate change on the distribution of Chinese rape production [D]. Wuhan: Huazhong Agricultural University, 2019. | |
3 | 冷博峰,李先容,陈雪婷,等.2008-2019年中国油菜生产性状变化趋势[J].中国油料作物学报,2021, 43 (2):171-185. |
LENG B F, LI X R, CHEN X T, et al.. Variation trend of rapeseed production in china from 2008 to 2019 [J]. Chin. J. Oil Crop Sci., 2021,43(2):171-185. | |
4 | 张玮,王鑫梅,潘庆梅,等.干旱胁迫下雷竹叶片叶绿素的高光谱响应特征及含量估算[J].生态学报, 2018, 38 (18):6677-6684. |
ZHANG W, WANG X M, PAN Q M, et al.. Hyperspectral response characteristics and chlorophyll content estimation of Phyllostachys violascens leaves under drought stress [J]. Acta Ecol. Sin., 2018,38(18):6677-6684. | |
5 | 张海威,张飞,张贤龙,等.光谱指数的植被叶片含水量反演[J].光谱学与光谱分析,2018,38(5):1540-1546. |
ZHANG H W, ZHANG F, ZHANG X L, et al.. Inversion of vegetation leaf water content based on spectral index [J]. Spectrosc. Spect. Anal., 2018,38(5):1540-1546. | |
6 | 梁亮,张连蓬,林卉,等.基于导数光谱的小麦冠层叶片含水量反演[J].中国农业科学,2013,46(1):18-29. |
LIANG L, ZHANG L P, LIN H, et al.. Estimating canopy leaf water content in wheat based on derivative spectral [J]. Sci. Agric. Sin., 2013,46(1):18-29. | |
7 | ZHANG Q X, LI Q B, ZHANG G J. Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection [J]. J. Spectroscopy.,2012,27(2):93-105. |
8 | DINESH K M, NITIN B, et al.. Rethinking on the methodology for assessing global water and food challenges [J]. Inter. J. Water Resour. Dev., 2020,36(2-3):325-342. |
9 | 瞿益民,唐合年,葛妹兰,等.油菜需水量试验分析[J].江苏水利,2005,(10):20-21, 23. |
QU Y M, TANG H N, GE M L, et al.. Analysis of rape water requirement test [J]. Jiangsu Water Resour., 2005,(10):20-21, 23. | |
10 | 黄纯倩,朱晓义,张亮,等.干旱和高温对油菜叶片光合作用和叶绿素荧光特性的影响[J].中国油料作物学报,2017,39(3):342-350. |
HUANG C Q, ZHU X Y, ZHANG L, et al.. Effects of drought and high temperature on photosynthesis and chlorophyll fluorescence characteristics of rapeseed leaves [J]. Chin. J. Oil Crop Sci., 2017,39(3):342-350. | |
11 | MAMNABI S, NASROLLAHZADEH S, GHASSEMI-GOLEZANI K, et al.. Improving yield-related physiological characteristics of spring rapeseed by integrated fertilizer management under water deficit conditions [J]. J. Saudi Biol. Sci.,2020,27(3)797-804. |
12 | 刘晓静,陈国庆,王良,等.不同生育时期冬小麦叶片相对含水量高光谱监测[J].麦类作物学报, 2018, 38(7):854-862. |
LIU X J, CHEN G Q, WANG L, et al.. Monitoring leaf relative water content of winter wheat based on hyperspectral index at different growth stages [J]. J. Triticeae Crops, 2018,38(7):854-862. | |
13 | 徐庆,马驿,蒋琦,等.水稻叶片含水量的高光谱遥感估算[J].遥感信息,2018,33(5):1-8. |
XU Q, MA Y, JIANG Q, et al.. Estimation of rice leaf water content based on hyperspectral remote sensing [J]. Remote Sens. Inform., 2018,33(5):1-8. | |
14 | 马岩川.基于高光谱遥感的棉花冠层水氮参数估算[D].北京:中国农业科学院,2020. |
MA Y C. Estimation of water and nitrogen parameters of cotton at canopy scale based on hyperspectral remote sensing [D].Beijing: Chinese Academy of Agricultural Sciences,2020. | |
15 | 王浩云,李晓凡,李亦白,等.基于高光谱图像和3D-CNN的苹果多品质参数无损检测[J].南京农业大学学报,2020,43(1):178-185. |
WANG H Y, LI X F, LI Y B, et al.. Non-destructive detection of apple multi-quality parameters based on hyperspectral imaging technology and 3D-CNN [J]. J. Nanjing Agric. Univ., 2020,43(1):178-185. | |
16 | 代秋芳,廖臣龙,李震,等.基于CARS-CNN的高光谱柑橘叶片含水率可视化研究[J].光谱学与光谱分析, 2022,42(9):2848-2854. |
DAI Q F, LIAO Q L, LI Z, et al.. Hyperspectral visualization of citrus leaf moisture content based on CARS-CNN [J]. Spectrosc. Spect. Anal., 2022,42(9):2848-2854. | |
17 | 潘庆梅,张劲松,张俊佩,等.不同品种核桃叶片含水量与高光谱反射率的相关性差异分析[J].林业科学研究, 2019,32(6):1-6. |
PAN Q M, ZHANG J S, ZHANG J P, et al.. Analysis of correlation and differences between leaf moisture and hyperspectral reflectance among different walnut varieties [J]. Forest Res.,2019,32(6):1-6. | |
18 | 张晓东,毛罕平,左志宇,等.干旱胁迫下油菜含水率的高光谱遥感估算研究[J].安徽农业科学, 2011, 39(30):18451-18452, 18487. |
ZHANG X D, MAO H P, ZUO Z Y, et al.. Study on estimation model for rape moisture content under water stress based on hyperspectral remote sensing [J]. J. Anhui Agric. Sci.,2011,39(30):18451-18452, 18487. | |
19 | 张晓东,李立,毛罕平,等.基于PCA-BP多特征融合的油菜水分胁迫无损检测[J].江苏大学学报(自然科学版),2016,37(2):174-182. |
ZHANG X D, LIP, MAO H P, et al.. Nondestructive testing method for rape water stress with multiple feature information fusion based on PCA-BP method [J]. J. Jiangsu Univ. (Nat. Sci.), 2016,37(2):174-182. | |
20 | 仝春艳,马驿,杨振忠,等.基于角度指数的油菜叶片等效水厚度估算研究[J].核农学报,2019,33(1):187-198. |
TONG C Y, MA Y, YANG Z Z, et al.. Estimation of equivalent water thickness of rapeseed leaves based on angle index [J]. J. Nucle. Agric. Sci., 2019,33(1):187-198. | |
21 | 张君,蔡振江,张东方,等.基于机器学习与光谱技术的油菜叶片含水率估测研究[J].河北农业大学学报, 2021,44(6):122-127. |
ZHANG J, CAI Z J, ZHANG D F, et al.. Estimation of water content in rape leaves by spectral reflectance combined with machine learning [J]. J. Hebei Agric. Univ., 2021,44(6):122-127. | |
22 | 潘月,曹宏鑫,齐家国,等.基于高光谱和数据挖掘的油菜植株含水率定量监测模型[J].江苏农业学报, 2022,38(6):1550-1558. |
PAN Y, CAO H X, QI J G, et al.. Quantitative monitoring models of plant water content in rapeseed based on hyperspectrum and related data mining [J]. J. Jiangsu Agric. Sci., 2022,38(6):1550-1558. | |
23 | 杨冬风,李爱传,刘金明,等.耦合平均影响值-连续投影算法优化种子活力近红外检测模型[J].光谱学与光谱分析,2022,42(10):3135-3142. |
YANG D F, LI A C, LIU J M, et al.. Optimization of seed vigor near-infrared detection by coupling mean impact value with successive projection algorithm [J]. Spectrosc. Spect. Anal., 2022,42(10):3135-3142. | |
24 | 张楠楠,张晓,王城坤,等.基于高光谱和连续投影算法的棉花叶面积指数估测[J].农业机械学报, 2022, 53(S1):257-262. |
ZHANG N N, ZHANG X, WANG C Q, et al.. Cotton LAI estimation based on hyperspectral and successive projection algorithm [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(S1):257-262. | |
25 | 赵静远,熊智新,宁井铭,等.小波变换结合连续投影算法优化茶叶中咖啡碱的近红外分析模型[J].分 析科学学报,2021,37(5):611-617. |
ZHAO J Y, XIONG Z X, NING J M, et al.. Wavelet tranform combined with SPA to optimize the near-infrared analysis model of caffeine in tea [J]. J. Anal. Sci., 2021,37(5):611-617. | |
26 | 郭阳,史勇,郭俊先,等.近红外光谱技术结合反向区间偏最小二乘算法-连续投影算法预测哈密瓜可溶性固形物含量[J].食品与发酵工业,2022,48(2):248-253. |
GUO Y, SHI Y, GUO J X, et al.. Prediction of soluble solids content in hami melon by combining near-infrared spectroscopy and BiPLS-SPA technology [J]. Food Ferment. Indust.,2022,48(2):248-253. | |
27 | 李锦卫.基于计算机视觉的水稻、油菜叶色—氮营养诊断机理与建模[D].长沙:湖南农业大学,2010. |
LI J W. Studies on the diagnosis mechanism and modeling of leaf color-nitrogen nutrition in rice and rapeseed plant by computer vision [D]. Changsha: Hunan Agricultural University,2010. | |
28 | 谢素华,杨明高.人民渠平原灌区油菜需水量及需水规律研究[J].四川水利,2001,(1):33-35. |
29 | 冯鹏.油菜高产灌溉技术[J].农业开发与装备,2011, 6:39. |
30 | 谢素华,杨明高,张清.油菜需水量及需水规律的研究[J].四川水利,1996,2:24-25. |
31 | 王巧娟. 关中地区夏大豆—冬油菜的水分产量效应及灌溉制度模型模拟研究[D].杨凌:西北农林科技大学,2022. |
WANG Q J. Study on water yield effect of summer soybean winter rape and Simulation of irrigation schedule model in Guanzhong Area [D].Yangling: Northwest Agriculture Forestry University, 2022. | |
32 | 李岚涛.冬油菜氮素营养高光谱特异性及定量诊断模型构建与推荐追肥研究[D].武汉:华中农业大学,2018. |
LI L T. Research on hyperspectral characteristics, quantitative diagnostic models, and topdressing for winter oilseed rape nitrogen status [D]. Wuhan: Huazhong Agricultural University, 2018. | |
33 | THOMAS J R, NAMKEN L N, OERTHER G F, et al.. Estimating leaf water content by reflectance measurements [J]. J. Agron.,1971,63(6):845-847. |
34 | SHIBAYAMA M, AKIYAMA T. Seasonal visible, near-infrared and mid-infrared spectra of rice canopiesin relation to LAI and above-ground dryphytomass [J]. Remote Sens. Env.,1989,27(2):119-127. |
35 | SHIBAYAMA M, TAKAHASHI W, MORINAGA S, et al.. Canopy water deficit detection in paddy rice using a high resolution field spectroradiometer [J].Remote Sens. Env.,1993,45(2):117-126. |
36 | 黄敬峰,王福民,王秀珍.水稻高光谱遥感实验研究[M].杭州:浙江大学出版社,2010:1-315. |
[1] | Zhenfei ZHANG, An YAN, Jing GUO, Yuhang ZHAO, Yilin YUAN, Peng LIU, Zuohao QU, Chuan YUAN. Research on Apple Yield Estimation Model Based on Unmanned Aerial Vehicle Remote Sensing [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 110-119. |
[2] | Guotao YANG, Shijie ZHANG, Chao CHEN, Yun LIU, Chen HE, Yinghao NING, Qing ZHANG. Identification of 5 Common Pesticides Used in Flue-tobacco Field Production Based on Hyperspectral Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 122-132. |
[3] | Guangyong SONG, Yawen GUO, Jing XUE, Keqing YANG, Xuede SU, Long ZHOU. Effects of Different Fertilizer and Water Treatments on Fruit Quality of 7 Table Grapes in Greenhouses [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 229-240. |
[4] | Shijian BAI, Jinge HU. Effects of Gibberellic Acid on Berry and Raisin of Perlette Grape [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 158-169. |
[5] | Xiaoyu QI, Yanjie GUO, Lu LIU, Zitao ZHANG, Lijuan ZHANG, Yanzhi JI. Effects of Planting Years on Soil Salinization and Microbial Community in Facility Vineyards [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 218-228. |
[6] | Huilai WANG, Shuai LI, Yin WANG, Dongtao WU, Jiawei MA, Zhengqian YE, Yongqing CHI, Mei WANG. Effect of Long-term Fertilization on Diversity of Bacterial Community and Distribution of ARGs in Grape Soil [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 229-239. |
[7] | Sile HU, Yulong BAO, Tubuxinbayaer, Jifeng TAO, Enliang GUO. Chlorophyll Content Inversion of Spring Wheat Based on Unmanned Aerial Vehicle Hyperspectral and Integrated Learning [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 93-103. |
[8] | Guangyao LI, Shenglong YANG, Tianfei CHENG, Xuesen CUI, Weifeng ZHOU, Shengmao ZHANG. Analysis of Environmental Characteristics and Forecast Status of Tuna Fisheries in Central and Western Pacific [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 203-221. |
[9] | Lintao CHEN, Zhaoxiang LIU, Ying LAN, Xiangwei MOU, Xu MA, Rijun WANG. Research on Rice Variety Identification Based on Hyperspectral Technology and Principal Component Analysis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 104-111. |
[10] | Guoyu HU, Yalan DONG, Gulbahar Tohti, Guang LIU, Jianping ZHOU. Research on Grapevine Structure Segmentation Method Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 105-111. |
[11] | Jiping WANG, Tiedong LU, Zhiheng LIANG, Ye ZHANG, Tianming SU, Tieguang HE. Effects of Microorganisms from Different Sources on the Composting Process of Grape Branches and Pig Manure [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 224-233. |
[12] | Ziqin LI, Jiaqiang WANG, Zhen LI, Deqiu ZOU, Xiaogong ZHANG, Xiaoyu LUO, Weiyang LIU. Estimation of Chlorophyll Density of Cotton Leaves Based on Spectral Index [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 103-111. |
[13] | Shijian BAI, Jinge HU, Chao LI, Junshe CAI. Effects of 3 Trellis Systems on Cultivation Characters and Berry Quality of ‘Xinyu’ Grape [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 63-73. |
[14] | Yanbo FU, Bingbing LENG, Qingyong BIAN, Zhiduo DONG, Guohong LIU, Haifeng LI, Yunmeng WEN, Wenbo GUO, Wanxu ZHANG. Passivation Effect of Biochar on Soil Cadmium Pollution and Rape Growth [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 183-190. |
[15] | Peihan JIANG, Xiaonan YANG, Chenxu YANG, Aijun ZHANG. Estimation of Nitrogen Content in Millet Canopy Based on Multi Parameter Partial Least Squares Model [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 91-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||