Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (9): 113-121.DOI: 10.13304/j.nykjdb.2022.0700
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Zheng QIAN1(), Sunzhe YANG2, Guoqing ZHANG3, Ziwei GUO4, Linpeng ZHANG1, Jiaxing WAN1, Hongyun YANG1(
)
Received:
2022-08-23
Accepted:
2022-12-29
Online:
2023-09-15
Published:
2023-09-28
Contact:
Hongyun YANG
钱政1(), 杨孙哲2, 张国卿3, 郭紫微4, 张林朋1, 万家兴1, 杨红云1(
)
通讯作者:
杨红云
作者简介:
钱政 E-mail:qz1058137670@outlook.com;
基金资助:
CLC Number:
Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121.
钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0700
施氮处理 Nitrogen application treatment | 原始图像数量 Number of original images | |
---|---|---|
幼穗分化期 Spikelet differentiation stage | 齐穗期 Full heading stage | |
N1 | 240 | 232 |
N2 | 225 | 233 |
N3 | 240 | 235 |
N4 | 216 | 225 |
Table 1 Original rice data number
施氮处理 Nitrogen application treatment | 原始图像数量 Number of original images | |
---|---|---|
幼穗分化期 Spikelet differentiation stage | 齐穗期 Full heading stage | |
N1 | 240 | 232 |
N2 | 225 | 233 |
N3 | 240 | 235 |
N4 | 216 | 225 |
时期 Stage | 方案 Plan | 训练时间 Train time/s | 参数量 Parameter | 准确率 Accuracy/% | 召回率 Recall/% |
---|---|---|---|---|---|
幼穗分化期 Spikelet differentiation stage | 1 | 6 438.434 | 21 808 964 | 91.68 | 91.74 |
2 | 6 926.372 | 21 447 920 | 93.55 | 94.09 | |
3 | 7 084.370 | 21 447 920 | 98.13 | 98.15 | |
齐穗期 Full heading stage | 1 | 6 519.452 | 21 808 964 | 92.02 | 92.09 |
2 | 7 020.321 | 21 447 920 | 94.15 | 94.16 | |
3 | 7 103.854 | 21 447 920 | 99.46 | 99.47 |
Table 2 Experimental data for different plans
时期 Stage | 方案 Plan | 训练时间 Train time/s | 参数量 Parameter | 准确率 Accuracy/% | 召回率 Recall/% |
---|---|---|---|---|---|
幼穗分化期 Spikelet differentiation stage | 1 | 6 438.434 | 21 808 964 | 91.68 | 91.74 |
2 | 6 926.372 | 21 447 920 | 93.55 | 94.09 | |
3 | 7 084.370 | 21 447 920 | 98.13 | 98.15 | |
齐穗期 Full heading stage | 1 | 6 519.452 | 21 808 964 | 92.02 | 92.09 |
2 | 7 020.321 | 21 447 920 | 94.15 | 94.16 | |
3 | 7 103.854 | 21 447 920 | 99.46 | 99.47 |
Fig. 2 Training curves and confusion matrices of three schemes during the spikelet differentiation stageA:Curve of train loss; B:Curve of test loss; C:Curve of test accuracy; D: ResNet34 confusion matrix of plan 1; E: ResNet34_SE confusion matrix of plan 2; F: ResNet34_SEt confusion matrix of plan 3
Fig. 3 Training curves and confusion matrices of three schemes during the full heading stageA:Curve of train loss; B:Curve of test loss; C:Curve of test accuracy; D: ResNet34 confusion matrix of plan 1; E: ResNet34_SE confusion matrix of plan 2; F: ResNet34_SEt confusion matrix of plan 3
模型 Model | 时期 Stage | 准确率 Accuracy/% | 训练时间 Train time/s | 参数量 Parameters number |
---|---|---|---|---|
AlexNet | 幼穗分化期 Spikelet differentiation stage | 66.67 | 7 255.538 | 255 201 092 |
齐穗期 Full heading stage | 92.15 | 7 514.199 | 255 201 092 | |
VGG11 | 幼穗分化期 Spikelet differentiation stage | 93.43 | 16 703.601 | 562 893 188 |
齐穗期 Full heading stage | 93.70 | 15 300.326 | 562 893 188 | |
VGG16 | 幼穗分化期 Spikelet differentiation stage | 84.24 | 28 812.880 | 568 387 396 |
齐穗期 Full heading stage | 94.93 | 28 917.401 | 568 387 396 | |
ResNet34_SEt | 幼穗分化期 Spikelet differentiation stage | 98.13 | 7 084.370 | 21 808 964 |
齐穗期 Full heading stage | 99.46 | 7 103.854 | 21 808 964 |
Table 3 Performance comparison of different models
模型 Model | 时期 Stage | 准确率 Accuracy/% | 训练时间 Train time/s | 参数量 Parameters number |
---|---|---|---|---|
AlexNet | 幼穗分化期 Spikelet differentiation stage | 66.67 | 7 255.538 | 255 201 092 |
齐穗期 Full heading stage | 92.15 | 7 514.199 | 255 201 092 | |
VGG11 | 幼穗分化期 Spikelet differentiation stage | 93.43 | 16 703.601 | 562 893 188 |
齐穗期 Full heading stage | 93.70 | 15 300.326 | 562 893 188 | |
VGG16 | 幼穗分化期 Spikelet differentiation stage | 84.24 | 28 812.880 | 568 387 396 |
齐穗期 Full heading stage | 94.93 | 28 917.401 | 568 387 396 | |
ResNet34_SEt | 幼穗分化期 Spikelet differentiation stage | 98.13 | 7 084.370 | 21 808 964 |
齐穗期 Full heading stage | 99.46 | 7 103.854 | 21 808 964 |
1 | 朱永波,韩展誉,程方民. 氮肥对水稻营养品质、外观品质和加工品质的影响[J]. 基层农技推广, 2019,7(12):26-29. |
2 | YU X, LU H, LIU Q. Deep learning based regression model and hyperspectral imaging for rapid detection of nitrogen concentration in oilseed rape (Brassica napus L.) leaf [J]. Chemom. Intell. Lab. Syst., 2018,172:188-193. |
3 | CAMERON K C, DI H J, MOIR J L. Nitrogen losses from the soil/plant system: a review [J]. Ann. Appl. Biol., 2013,162(2):145-173. |
4 | 刘晓伟,王火焰,朱德进,等. 氮肥施用方式对水稻产量以及氮、磷、钾养分吸收利用的影响[J]. 南京农业大学学报, 2017,40(2):203-210. |
LIU X W, WANG H Y, ZHU D J, et al.. Effect of N fertilization method on rice yield and N, P and K uptake and use efficiency [J]. J. Nanjing Agric. Univ., 2017,40(2):203-210. | |
5 | 孙棋. 基于数字图像处理技术的水稻氮素营养诊断研究[D]. 杭州:浙江大学,2008. |
SUN Q. Rice nitrogen nutrition diagnosis based on digital image processing technique [D]. Hangzhou:Zhejiang University, 2008. | |
6 | 张国圣,许童羽,于丰华,等. 基于高光谱的水稻叶片氮素估测与反演模型[J]. 浙江农业学报, 2017,29(5):845-849. |
ZHANG G S, XU T Y, YU F H, et al.. Nitrogen content inversion of rice leaf based on the hyperspectral data [J]. Zhejiang Agric. J., 2017,29(5):845-849. | |
7 | HUANG S, MIAO Y, ZHAO G, et al.. Estimating rice nitrogen status with satellite remote sensing in Northeast China [C]//Proceedings of 2013 Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics). USA Virginia, IEEE, 2013:550-557. |
8 | 郭建华,王秀,孟志军,等. 主动遥感光谱仪Greenseeker与SPAD对玉米氮素营养诊断的研究[J]. 植物营养与肥料学报, 2008, 14(1):43-47. |
GUO J H, WANG X, MENG Z J, et al.. Study on diagnosing nitrogen nutrition status of corn using Greenseeker and SPAD meter [J]. J. Plant Nutr. Fert., 2008,14(1):43-47. | |
9 | 杨红云,罗建军,万颖,等. 计算机视觉技术在水稻氮素营养诊断中应用的研究进展[J]. 中国农学通报, 2020,36(16):149-155. |
YANG H Y, LUO J J, WAN Y, et al.. Application of computer vision technology in nitrogen nutrition diagnosis of rice: research progress [J]. Chin. Agric. Sci. Bull., 2020,36(16):149-155. | |
10 | 李岚涛,张萌,任涛,等. 应用数字图像技术进行水稻氮素营养诊断[J]. 植物营养与肥料学报, 2015,21(1):259-268. |
LI L T, ZHANG M, REN T, et al.. Diagnosis of N nutrition of rice using digital image processing technique [J]. J. Plant Nutr. Fert., 2015,21(1):259 -268. | |
11 | 周琼,杨红云,杨珺,等. 基于BP神经网络和概率神经网络的水稻图像氮素营养诊断[J]. 植物营养与肥料学报, 2019,25(1):134-141. |
ZHOU Q, YANG H Y, YANG J, et al.. Feasibility study of BP neural network and probabilistic neural network for nitrogen nutrition diagnosis of rice images [J]. J. Plant Nutr. Fert., 2019,25(1):134-141. | |
12 | XU Z, GUO X, ZHU A, et al.. Using deep convolutional neural networks for image-based diagnosis of nutrient deficiencies in rice [J/OL]. Comput. Intell. Neurosci., 2020,9:7307252 [2022-07-22].. |
13 | YUAN Y, CHEN L, LI M, et al.. Diagnosis of nitrogen nutrition of rice based on image processing of visible light [C]// Proceedings of 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA). China Qingdao, IEEE, 2016:228-232. |
14 | SATHYAVANI R, JAGANMOHAN K, KALAAVATHI B. Classification of nutrient deficiencies in rice crop using denseNet-BC [J]. Mater. Today: Proceed., 2022,56:1783-1789. |
15 | WANG C, YE Y, TIAN Y, et al.. Classification of nutrient deficiency in rice based on CNN model with reinforcement learning augmentation [C]// Proceedings of 2021 International Symposium on Artificial Intelligence and its Application on Media (ISAIAM). China Xi’an, IEEE, 2021:107-111. |
16 | HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]//Proceedings of the IEEE conference on computer vision and pattern recognition. USA Salt Lake City, IEEE, 2018:7132-7141. |
17 | 杨红云,肖小梅,黄琼,等. 基于卷积神经网络和迁移学习的水稻害虫识别[J]. 激光与光电子学进展,2022,59(16): 333-340. |
YANG H Y, XIAO X M, HUANG Q, et al.. Rice pest identification based on convolutional neural network and transfer learning [J]. Adv. Lasers Optoelectr., 2022,59(16): 333-340. | |
18 | 姚强,粟超,李波,等. 深度学习方法在水稻氮素营养诊断中的应用初探[J]. 南方农业,2021,15(31):125-129. |
19 | 程慧煌,商庆银,易振波,等. 不同产量水平超级杂交稻产量形成特征及其对施肥量的响应[J]. 中国稻米,2017,23(4):81-88. |
CHENG H H, SHANG Q Y, YI Z B, et al.. Feasibility study of BP neural network and probabilistic neural network for nitrogen nutrition diagnosis of rice images [J]. China Rice, 2017,23(4):81-88. | |
20 | 孙振宇,黄巍,于艳丽,等. 提高水稻区试质量的主要技术措施[J]. 吉林农业,2009(2):20. |
21 | 林洪鑫,潘晓华,石庆华,等. 栽插密度与施氮量对双季稻上部三叶叶长和叶角的影响[J]. 作物学报,2010,36(10):1743-1751. |
LIN H X, PAN X H, SHI Q H, et al.. Effects of nitrogen application amount and planting density on angle and length of top three leaves in double-cropping rice [J]. Acta Agron. Sin., 2010,36(10):1743-1751. | |
22 | RICE L, WONG E, KOLTER Z. Overfitting in adversarially robust deep learning [C]//International Conference on Machine Learning. Austria Vienna, PMLR, 2020:8093-8104. |
23 | SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning [J/OL]. J. Big Data, 2019,6(1):197[2022-07-22]. . |
24 | 张顺,龚怡宏,王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报,2019,42(3):453-482. |
ZHANG S, GONG Y H, WANG J J. The development of deep convolution neural network and its applications on computer vision [J]. Chin. J. Comput., 2019,42(3):453-482. | |
25 | HE K, ZHANG X, REN S, et al.. Deep residual learning for image recognition [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. USA Las Vegas, IEEE, 2016:770-778. |
26 | 罗建军,杨红云,路艳,等. 基于遗传算法优化的BP神经网络进行水稻氮素营养诊断[J]. 中国农业科技导报,2020,22(8):83-92. |
LUO J J, YANG H Y, LU Y, et al.. Identification of nitrogen nutrition in rice based on BP neural network optimized by genetic algorithms [J]. J. Agric. Sci. Technol., 2020,22(8):83-92. | |
27 | 张林朋,杨红云,钱政,等. 基于改进的VGG16网络和迁移学习的水稻氮素营养诊断[J].中国农业大学学报,2023,28(6):219-229. |
ZHANG L P, YANG H Y, QIAN Z, et al.. Nitrogen nutrition diagnosis in rice based on improved VGG16 network and transfer learning [J]. J. Chin. Agric. Univ., 2023,28(6):219-229. | |
28 | CAP Q H, UGA H, KAGIWADA S, et al.. LeafGAN: an effective data augmentation method for practical plant disease diagnosis [J]. IEEE Trans. Autom. Sci. Eng., 2022,19(2):1258-1267. |
[1] | Zheng WU, Hongyun YANG, Aizhen SUN, Jie KONG, Shumei HUANG. Diagnosis of Potassium Nutrition in Rice Based on CA_MobileViT Model [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 80-88. |
[2] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[3] | Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130. |
[4] | Mingkang PENG, Yu CUI, Qiyuan XUE, Yunzhen YIN, Zhe YIN, Wuping ZHANG, Fuzhong LI. Weed Identification and Location for Crop at Seedling Stage Based on Enhancing and Fine-tuning Weather Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 125-134. |
[5] | Guo ZHENG, Yusong JIANG. Diagnosis of Crop Disease Based on Multi-task Learning [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 89-98. |
[6] | Kaiyan LIN, Fei MEI, Junhui WU, Wengang GUO, Jie CHEN, Huiping SI. Design and Research of Crop Disease Monitoring Service Platform Based on Computer Vision [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 89-96. |
[7] | Wei ZHAO, Rui MA, Jia WANG, Hongjie GUO, Jinpu XU. Classification and Identification of Corn Varieties Based on Ear Image [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 97-106. |
[8] | Yantong ZHANG, Qianmin SU. Image Recognition of Corn Disease Based on Transfer Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 119-125. |
[9] | Kui FANG, Cheng LI, Xiao HE, Yineng CHEN. Research on Multi-angle Identification of Grape Leaf Disease Based on 3D Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 86-96. |
[10] | Hao HUANG, Shengqiao XIE, Du CHEN, Heng WANG. Application and Research Advances on Deep Learning in Apple’s Industry Chain [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 79-89. |
[11] | ZHOU Huiru, WU Boming. Advances in Research on Deep Learning for Crop Disease Image Recognition [J]. Journal of Agricultural Science and Technology, 2021, 23(5): 61-68. |
[12] | DONG Wei1, QIAN Rong1, ZHANG Jie 2*, ZHANG Liping1, CHEN Hongbo2, ZHANG Meng1, ZHU Jingbo1, BU Yingqiao3. Vegetable Lepidopteran Pest Auto Recognition and Detection Counting Based on Deep Learning [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 76-84. |
[13] | LIU Jinrong, LIN Jianhui*, LI Tingting. Identification of Leaf Disease Grade Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 55-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||