Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (11): 42-48.DOI: 10.13304/j.nykjdb.2022.0594
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Qiujing CHEN1(), Zhaodi YANG1, Shiyu WANG2, Fenggen GUO1(
), Xiaoxue ZHAO1, Fan CHEN1, Yang FENG1
Received:
2022-07-15
Accepted:
2022-09-06
Online:
2023-11-15
Published:
2023-11-20
Contact:
Fenggen GUO
陈秋静1(), 杨招娣1, 王仕玉2, 郭凤根1(
), 赵小雪1, 陈凡1, 丰扬1
通讯作者:
郭凤根
作者简介:
陈秋静 E-mail:3152187537@qq.com;
基金资助:
CLC Number:
Qiujing CHEN, Zhaodi YANG, Shiyu WANG, Fenggen GUO, Xiaoxue ZHAO, Fan CHEN, Yang FENG. Effects of Plant Growth Retarders on Lodging Resistance and Yield of Quinoa[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 42-48.
陈秋静, 杨招娣, 王仕玉, 郭凤根, 赵小雪, 陈凡, 丰扬. 植物生长延缓剂对藜麦抗倒伏能力及产量的影响[J]. 中国农业科技导报, 2023, 25(11): 42-48.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0594
处理Treatment | 灌浆期Filling stage | 成熟期Maturation stage | ||||
---|---|---|---|---|---|---|
株高 Plant height/cm | 茎粗 Stem diameter/mm | 穗长 Ear length/cm | 穗粗 Ear diameter/cm | 重心高 Height of gravity center/cm | ||
CK | 100.13±11.20 a | 6.27±0.63 a | 27.07±3.93 a | 6.13±1.35 a | 67.44±5.76 a | |
P50 | 65.17±12.36 b | 5.25±0.34 ab | 16.13±3.26 b | 3.37±0.57 bc | 52.79±3.19 b | |
P100 | 58.77±5.09 bc | 4.79±0.78 abc | 13.97±2.25 b | 3.19±0.48 bc | 39.28±8.85 bc | |
P200 | 43.47±15.50 bc | 3.14±0.44 cd | 10.45±5.00 bc | 2.85±0.94 bc | 28.54±6.65 e | |
P350 | 20.08±3.00 d | 2.03±0.46 d | 5.00±0.75 c | 2.13±0.13 c | — | |
S50 | 57.27±8.84 bc | 4.93±0.74 abc | 16.73±3.23 b | 3.43±0.46 b | 42.11±1.34 cd | |
S100 | 54.80±5.77 bc | 4.42±0.76 bc | 12.30±3.34 b | 3.52±0.81 b | 36.28±4.18 cde | |
S200 | 52.10±12.52 bc | 4.38±0.39 bc | 12.00±3.02 b | 3.44±0.23 b | 34.39±1.87 cde | |
S350 | 42.80±13.59 c | 4.19±1.37 bc | 10.73±1.67 bc | 3.30±0.17 bc | 28.92±6.17 e | |
M50 | 60.59±9.47 bc | 4.77±1.38 abc | 16.10±3.25 b | 3.69±0.70 b | 44.56±3.86 bc | |
M100 | 57.10±8.55 bc | 4.59±0.69 abc | 15.90±4.92 b | 3.60±0.84 b | 37.11±7.23 cde | |
M200 | 55.77±19.38 bc | 4.51±2.08 abc | 14.80±5.07 b | 3.57±0.30 b | 35.17±4.17 cde | |
M350 | 52.90±10.02 bc | 3.76±0.10 bc | 14.47±2.29 b | 3.06±0.54 bc | 33.28±4.66 cde |
Table 1 Main morphological characteristics of quinoa plants under different treatments
处理Treatment | 灌浆期Filling stage | 成熟期Maturation stage | ||||
---|---|---|---|---|---|---|
株高 Plant height/cm | 茎粗 Stem diameter/mm | 穗长 Ear length/cm | 穗粗 Ear diameter/cm | 重心高 Height of gravity center/cm | ||
CK | 100.13±11.20 a | 6.27±0.63 a | 27.07±3.93 a | 6.13±1.35 a | 67.44±5.76 a | |
P50 | 65.17±12.36 b | 5.25±0.34 ab | 16.13±3.26 b | 3.37±0.57 bc | 52.79±3.19 b | |
P100 | 58.77±5.09 bc | 4.79±0.78 abc | 13.97±2.25 b | 3.19±0.48 bc | 39.28±8.85 bc | |
P200 | 43.47±15.50 bc | 3.14±0.44 cd | 10.45±5.00 bc | 2.85±0.94 bc | 28.54±6.65 e | |
P350 | 20.08±3.00 d | 2.03±0.46 d | 5.00±0.75 c | 2.13±0.13 c | — | |
S50 | 57.27±8.84 bc | 4.93±0.74 abc | 16.73±3.23 b | 3.43±0.46 b | 42.11±1.34 cd | |
S100 | 54.80±5.77 bc | 4.42±0.76 bc | 12.30±3.34 b | 3.52±0.81 b | 36.28±4.18 cde | |
S200 | 52.10±12.52 bc | 4.38±0.39 bc | 12.00±3.02 b | 3.44±0.23 b | 34.39±1.87 cde | |
S350 | 42.80±13.59 c | 4.19±1.37 bc | 10.73±1.67 bc | 3.30±0.17 bc | 28.92±6.17 e | |
M50 | 60.59±9.47 bc | 4.77±1.38 abc | 16.10±3.25 b | 3.69±0.70 b | 44.56±3.86 bc | |
M100 | 57.10±8.55 bc | 4.59±0.69 abc | 15.90±4.92 b | 3.60±0.84 b | 37.11±7.23 cde | |
M200 | 55.77±19.38 bc | 4.51±2.08 abc | 14.80±5.07 b | 3.57±0.30 b | 35.17±4.17 cde | |
M350 | 52.90±10.02 bc | 3.76±0.10 bc | 14.47±2.29 b | 3.06±0.54 bc | 33.28±4.66 cde |
处理Treatment | 根系活力Root activity/(ug·g-1·h-1) | 根长Root length/cm | 根冠比Root-shoot ratio/% |
---|---|---|---|
CK | 32.16±4.77 d | 12.08±1.09 c | 0.06±0.03 b |
P50 | 37.41±7.59 d | 12.06±1.45 c | 0.07±0.02 b |
P100 | 78.06±3.67 b | 13.74±1.80 c | 0.07±0.01 b |
P200 | 95.12±8.77 a | 17.11±1.25 a | 0.08±0.02 ab |
S50 | 33.30±1.56 d | 13.39±1.95 c | 0.07±0.01 b |
S100 | 59.17±7.03 c | 16.61±1.08 ab | 0.08±0.01 ab |
S200 | 71.57±4.66 b | 14.83±1.64 abc | 0.08±0.03 ab |
S350 | 102.16±2.52 a | 12.74±1.67 c | 0.09±0.03 ab |
M50 | 37.56±8.97 d | 12.22±1.50 c | 0.07±0.01 ab |
M100 | 34.51±6.89 d | 12.84±0.59 c | 0.08±0.02 ab |
M200 | 38.02±8.61 d | 14.33±2.02 bc | 0.12±0.02 ab |
M350 | 42.31±6.96 d | 13.83±0.87 c | 0.13±0.03 a |
Table 2 Root characteristics of quinoa under different treatments
处理Treatment | 根系活力Root activity/(ug·g-1·h-1) | 根长Root length/cm | 根冠比Root-shoot ratio/% |
---|---|---|---|
CK | 32.16±4.77 d | 12.08±1.09 c | 0.06±0.03 b |
P50 | 37.41±7.59 d | 12.06±1.45 c | 0.07±0.02 b |
P100 | 78.06±3.67 b | 13.74±1.80 c | 0.07±0.01 b |
P200 | 95.12±8.77 a | 17.11±1.25 a | 0.08±0.02 ab |
S50 | 33.30±1.56 d | 13.39±1.95 c | 0.07±0.01 b |
S100 | 59.17±7.03 c | 16.61±1.08 ab | 0.08±0.01 ab |
S200 | 71.57±4.66 b | 14.83±1.64 abc | 0.08±0.03 ab |
S350 | 102.16±2.52 a | 12.74±1.67 c | 0.09±0.03 ab |
M50 | 37.56±8.97 d | 12.22±1.50 c | 0.07±0.01 ab |
M100 | 34.51±6.89 d | 12.84±0.59 c | 0.08±0.02 ab |
M200 | 38.02±8.61 d | 14.33±2.02 bc | 0.12±0.02 ab |
M350 | 42.31±6.96 d | 13.83±0.87 c | 0.13±0.03 a |
处理Treatment | 千粒重1 000-grain weight/g | 单株产量Yield per plant/g | 产量Yield/(kg·hm-2) |
---|---|---|---|
CK | 2.66±0.12 a | 16.01±0.27 a | 1 723.47±28.93 a |
P50 | 2.57±0.29 ab | 6.74±0.94 b | 725.81±10.79 b |
P100 | 2.40±0.29 abc | 2.51±0.20 d | 269.96±21.03 d |
P200 | 2.34±0.01 abc | 1.34±0.11 e | 144.52±11.49 e |
S50 | 2.25±0.02 bcd | 3.46±0.26 c | 372.38±27.78 c |
S100 | 2.18±0.21 cd | 2.89±0.10 d | 310.26±11.24 d |
S200 | 2.09±0.23 cd | 2.42±0.21 d | 260.34±23.01 d |
S350 | 2.07±0.22 cd | 1.11±0.22 e | 119.25±23.27 e |
M50 | 2.36±0.03 abc | 3.97±0.25 c | 427.53±27.18 c |
M100 | 2.23±0.13 bcd | 3.82±0.22 c | 410.87±24.19 c |
M200 | 2.20±0.12 cd | 2.55±0.21 d | 273.96±22.48 d |
M350 | 1.94±0.09 d | 1.59±0.10 e | 171.49±10.48 e |
Table 3 Quinoa yield under different treatments
处理Treatment | 千粒重1 000-grain weight/g | 单株产量Yield per plant/g | 产量Yield/(kg·hm-2) |
---|---|---|---|
CK | 2.66±0.12 a | 16.01±0.27 a | 1 723.47±28.93 a |
P50 | 2.57±0.29 ab | 6.74±0.94 b | 725.81±10.79 b |
P100 | 2.40±0.29 abc | 2.51±0.20 d | 269.96±21.03 d |
P200 | 2.34±0.01 abc | 1.34±0.11 e | 144.52±11.49 e |
S50 | 2.25±0.02 bcd | 3.46±0.26 c | 372.38±27.78 c |
S100 | 2.18±0.21 cd | 2.89±0.10 d | 310.26±11.24 d |
S200 | 2.09±0.23 cd | 2.42±0.21 d | 260.34±23.01 d |
S350 | 2.07±0.22 cd | 1.11±0.22 e | 119.25±23.27 e |
M50 | 2.36±0.03 abc | 3.97±0.25 c | 427.53±27.18 c |
M100 | 2.23±0.13 bcd | 3.82±0.22 c | 410.87±24.19 c |
M200 | 2.20±0.12 cd | 2.55±0.21 d | 273.96±22.48 d |
M350 | 1.94±0.09 d | 1.59±0.10 e | 171.49±10.48 e |
处理 Treatment | 倒伏指数 Lodging index | 抗折力 Breaking resistance/g |
---|---|---|
CK | 344.48±18.80 a | 19.74±2.19 de |
P50 | 213.74±66.18 bc | 31.06±3.83 ab |
P100 | 109.29±11.42 de | 31.28±4.39 ab |
P200 | 79.99±4.74 e | 14.66±3.64 ef |
S50 | 251.58±23.83 b | 25.81±3.96 bcd |
S100 | 166.57±30.03 cd | 36.73±5.08 a |
S200 | 137.87±16.36 de | 14.82±3.29 ef |
S350 | 116.47±15.79 de | 9.61±2.86 f |
M50 | 208.08±83.87 bc | 32.08±4.20 ab |
M100 | 140.46±14.13 de | 29.33±2.73 bc |
M200 | 109.96±19.54 de | 24.24±4.42 cd |
M350 | 111.48±43.13 de | 11.56±2.96 f |
Table 4 Evaluation indexes of lodging resistance of quinoa under different treatments
处理 Treatment | 倒伏指数 Lodging index | 抗折力 Breaking resistance/g |
---|---|---|
CK | 344.48±18.80 a | 19.74±2.19 de |
P50 | 213.74±66.18 bc | 31.06±3.83 ab |
P100 | 109.29±11.42 de | 31.28±4.39 ab |
P200 | 79.99±4.74 e | 14.66±3.64 ef |
S50 | 251.58±23.83 b | 25.81±3.96 bcd |
S100 | 166.57±30.03 cd | 36.73±5.08 a |
S200 | 137.87±16.36 de | 14.82±3.29 ef |
S350 | 116.47±15.79 de | 9.61±2.86 f |
M50 | 208.08±83.87 bc | 32.08±4.20 ab |
M100 | 140.46±14.13 de | 29.33±2.73 bc |
M200 | 109.96±19.54 de | 24.24±4.42 cd |
M350 | 111.48±43.13 de | 11.56±2.96 f |
Fig. 1 Lodging rate of quinoa under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
1 | 刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响[J]. 西北植物学报, 2017, 37(9): 1797-1804. |
LIU W Y, YANG F R, HUANG J, et al.. Response of seedling growth and the activities of antioxidant enzymes of Chenopodium quinoa to salt stress [J]. Acta Bot. Bor-Occid. Sin., 2017, 37(9):1797-1804. | |
2 | 姚理武, 吴应齐, 叶增新, 等. 不同种植密度与配置方式对藜麦农艺性状和籽粒产量的影响[J]. 浙江林业科技, 2021, 41(5): 99-103. |
YAO L W, WU Y Q, YE Z X, et al.. Effect of different interplanting densities on agronomic traits and yield of Chenopodium quinoa [J]. J. Zhejiang Agric. Sci., 2017, 37(9):1797-1804. | |
3 | JACOBSEN S E. The worldwide potential for quinoa (Chenopodium quinoa Willd.) [J]. Food Rev. Int., 2003, 19(1-2): 167-177. |
4 | NAVRUZ-VARLI S, SANLIER N. Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.) [J]. J. Cereal Sci., 2016, 69(5): 371-376. |
5 | 贺笑, 庞春花, 张永清, 等. 多效唑和矮壮素浸种对藜麦幼苗生长的影响[J]. 河南农业科学, 2018, 47(1): 26-31. |
HE X, PANG C H, ZHANG Y Q, et al.. Effects of soaking seeds with paclobutrazol and chlorocholine chloride on the growth of quinoa seedlings [J]. J. Henan Agric. Sci., 2018, 47(1): 26-31. | |
6 | WANG N, WANG F X, SHOCK C C, et al.. Evaluating quinoa stem lodging susceptibility by a mathematical model and the finite element method under different agronomic practices [J/OL]. Field Crops Res., 2021, 271:108241 [2022-06-03]. . |
7 | 郭建芳, 武小平, 丁健. 静乐县藜麦抗倒伏试验[J]. 现代农业科技, 2019(15): 18-19. |
8 | GEREN H. Effects of different nitrogen levels on the grain yield and some yield components of quinoa (Chenopodium quinoa Willd.) under Mediterranean climatic conditions [J]. Turkish J. Field Crops, 2015, 20(1): 59-64. |
9 | DENG Y, WANG J L, ANWAR S, et al.. Phenology, lodgin and yield traits of Chenopodiutn quinoa under the effect of planting density and row spacings [J]. Fresenius Environ. Bull., 2021, 30(11): 11757-11767. |
10 | ALI S, CHATTHA M U, HASSAN M U, et al.. Growth, biomass production, and yield potential of quinoa (Chenopodium quinoa Willd.) as affected by planting techniques under irrigated conditions [J]. Int. J. Plant Prod., 2020, 14(3): 427-441. |
11 | 庞春花, 张媛, 李亚妮. 硝酸镧浸种对藜麦种子萌发及盐胁迫下幼苗生长的影响[J]. 中国农业科学, 2019, 52(24): 4484-4492. |
PANG C H, ZHANG Y, LI Y N. Effects of soaking seeds with lanthanum nitrate on seed germination and seedling growth of quinoa under salt stress [J]. Sci. Agric. Sin., 2019, 52(24): 4484-4492. | |
12 | 任永峰, 黄琴, 王志敏, 等. 不同化控剂对藜麦农艺性状及产量的影响[J]. 中国农业大学学报, 2018, 23(8): 8-16. |
REN Y F, HUANG Q, WANG Z M, et al.. Effects of chemical control on agronomic traits and yield of quinoa [J]. J. China Agric. Univ., 2018, 23(8): 8-16. | |
13 | 张天俊, 张永亮, 李威, 等. 植物生长延缓剂对羊草非结构性碳水化合物含量及产量的影响[J]. 草地学报, 2021, 29(2): 407-411. |
ZHANG T J, ZHANG Y L, LI W, et al.. Effect of growth retardants on content of non-structural carbohydrate and products of ley mus chinensis [J]. Acta Agrestia Sin., 2021, 29(2): 407-411. | |
14 | 马倩, 董连新, 张小燕, 等. 3种植物生长延缓剂对温室甜瓜生长发育的影响[J]. 中国瓜菜, 2020, 33(5): 39-44. |
MA Q, DONG L X, ZHANG X Y, et al.. Effects of three kind of plant growth retardants on growth and development of muskmelon in greenhouse [J]. China Cucurbits Veg., 2020, 33(5): 39-44. | |
15 | 郭建芳, 武小平, 丁健, 等. 矮壮素对藜麦抗倒伏的影响[J]. 山西农业科学, 2020, 48(7): 1019-1021, 1025. |
GUO J F, WU X P, DING J, et al.. Effect of chlormequat chloride on lodging resistance of quinoa [J]. J. Shanxi Agric. Sci., 2020, 48(7): 1019-1021, 1025. | |
16 | 刘瑞芳, 贠超, 申为民, 等. 不同浓度矮壮素对藜麦株高的影响[J]. 现代农业科技, 2015(23): 156, 160. |
17 | WAKJIRA T. A review on: response of crops to paclobutrazol application [J]. Nephron Clinical Practice, 2018, 4(1): 2-9. |
18 | 徐富贤, 蒋鹏, 周兴兵, 等. 多效唑对杂交中稻不同密肥群体产量和抗倒伏性的影响[J]. 核农学报, 2020, 34(5): 1088-1096. |
XU F X, JIANG P, ZHOU X B, et al.. Effects of paclobutrazol on yield and lodging resistance with different dense-fertilizer population in mid-season hybrid rice [J]. Acta Agric. Nucl. Sin., 2020, 34(5): 1088-1096. | |
19 | 张盼盼, 杨裕然, 薛佳欣, 等. 烯效唑对盐胁迫下糜子幼苗形态和生理特性的调控效应[J]. 草业学报, 2020, 29(10): 81-90. |
ZHANG P P, YANG Y R, XUE J X, et al.. Effects of uniconazole on morphology and physiological characteristics of proso millet seedlings under salt stress [J]. Acta Pratac. Sin., 2020, 29(10): 81-90. | |
20 | 徐一荻, 宋岩, 姜延付, 等. 缩节胺、多效唑对核桃枝叶生长及坚果品质的影响[J]. 河南农业科学, 2020, 49(10): 108-115. |
XU Y D, SONG Y, JIANG Y F, et al.. Effects of DPC and PP333 on walnut growth and quality of nuts [J]. J. Henan Agric. Sci., 2020, 49(10): 108-115. | |
21 | 张兴, 揭雨成, 邢虎成, 等. 洞庭湖区稻田冬播亚麻原茎与种子兼收抗倒伏高产栽培技术研究[J]. 中国农学通报, 2014, 30(15):92-97. |
ZHANG X, JIE Y C, XING H C, et al.. Cultivation techniques of lodging resistance and high yield of stem and seed of winter flax in paddyfield of Dongting lake [J]. Chin. Agric. Sci. Bull., 2014, 30(15): 92-97. | |
22 | PELLET D M, PAPERNIK L A, KOCHIAN L V. Multiplealuminum-resist-ance mechanisms in wheat-roles of root apical phosphate and malete exudation [J]. Plant Physiol., 1996, 112(2): 591-597. |
23 | 修妤, 梁晓艳, 石瑞常, 等. 混合盐碱胁迫对藜麦苗期植株及根系生长特征的影响[J]. 江苏农业科学, 2020, 48(4): 89-94. |
24 | 朱秀云, 梁梦, 马玉. 根系活力的测定(TTC法)实验综述报告[J]. 广东化工, 2020, 47(6): 211-212. |
ZHU X Y, LIANG M, MA Y. A review report on the experiments for the determination of root activity by TTC method [J]. Guangdong Chem. Ind., 2020, 47(6): 211-212. | |
25 | 肖应辉, 罗丽华, 闰晓燕, 等. 水稻品种倒伏指数QTL分析[J]. 作物学报, 2005, 31(3): 348-354. |
XIAO Y H, LUO L H, YAN X Y, et al.. Quantitative trait locus analysis of lodging index in rice (Oryza sativa L.) [J]. Acta Agron. Sin., 2005, 31(3): 348-354. | |
26 | 杨玉花, 雷阳, 白志元, 等. 开花前不同光周期对大豆主要农艺性状的影响[J]. 西南农业学报, 2021, 34(2): 250-257. |
YANG Y H, LEI Y, BAI Z Y, et al.. Effect of different pre-flowering photoperiod on main agronomic traits of soybean [J]. Southwest China J. Agric. Sci., 2021, 34(2): 250-257. | |
27 | 田保明, 杨光圣, 曹刚强, 等. 农作物倒伏及其影响因素分析[J]. 中国农学通报, 2006, 22(4): 163-167. |
TIAN B M, YANG G S, CAO G Q, et al.. The performent of lodging and root cause snalysis for lodgingresistance in crops [J]. Chin. Agric. Sci. Bull., 2006, 22(4): 163-167. | |
28 | 陈晓光, 王振林, 彭佃亮, 等. 种植密度与喷施多效唑对冬小麦抗倒伏能力和产量的影响[J]. 应用生态学报, 2011, 22(6): 1465-1470. |
CHEN X G, WANG Z L, PENG D L, et al.. Effects of planting density and spraying PP333 on winter wheat lodging-resistance and grain [J]. Chin. J. Appl. Ecol., 2011, 22(6): 1465-1470. | |
29 | 鱼冰星, 王宏富, 王振华, 等. 多效唑对谷子茎秆特征及抗倒性的影响[J]. 中国农业科技导报, 2021, 23(8): 37-44. |
YU B X, WANG H F, WANG Z H, et al.. Effects of paclobutrazol on stalk characteristics and lodging resistance of foxtail millet [J]. J. Agric. Sci. Technol., 2021, 23(8): 37-44. | |
30 | WHITE E M. Stem characteristics related to lodging in winter barley [J]. European J. Agron., 1995, 4(3): 327-334. |
31 | 娄世杰, 孙鑫博, 梁中银, 等. 多效唑对狼尾草生长及抗倒伏的影响[J]. 河北农业大学学报, 2016, 39(4): 78-82. |
LOU S J, SUN X B, LIANG Z Y, et al.. A study on the effect of paclobutrazol on growth and lodging resistance of Pennisetum alopecuroides [J]. J. Agric. Univ. Hebei, 2016, 39(4): 78-82. | |
32 | 朱凤荣, 邱宗波. 种植密度和植物生长调节剂对小麦衰老和产量构成的影响[J]. 河南农业科学, 2004(8): 18-21. |
ZHU F R, QIU Z B. Effects of plant density and growth regulator on senescence and yield constitutions of wheat [J]. J. Henan Agric. Sci., 2004(8): 18-21. | |
33 | 李勇, 吕文河, 吕典秋, 等. 氮、磷、钾施用水平对马铃薯脱毒苗植株性状、产量性状、干物质含量和经济系数的影响[J]. 东北农业大学学报, 2014(4): 30-35, 50. |
LI Y, LYU W H, LYU D Q, et al.. Effect of NPK fertilizer application rate on plant trait, minituber yield, tuber dry matter content and economic coefficient of potato plantlets in vitro transplanted in greenhouse [J]. J. Northeast Agric.Univ., 2014(4): 30-35, 50. | |
34 | 胡振阳, 程宏, 卢臣, 等. 施氮量和植物生长调节剂对优质稻抗倒能力及产量的调控效应[J]. 江苏农业科学, 2021, 49(6): 52-60. |
35 | 张伟强, 赵犇, 秦安振, 等. 植物生长调节剂对黄淮井灌区夏玉米水分利用效率的调控[J]. 干旱地区农业研究, 2019, 37(6): 43-48, 56. |
ZHANG W Q, ZHAO B, QIN A Z, et al.. Regulation of water use efficiency of summer maize by plant growth regulator in well-irrigation area of Huang-Huai-Hai River [J]. Agric. Res. Arid Areas, 2019, 37(6): 43-48, 56. | |
36 | 刘文涛, 岳秀峰, 王家民, 等. 多效唑和烯效唑在烟苗和育苗基质中的残留降解动态分析[J]. 现代农业科技, 2016(22): 15, 120. |
[1] | Zhenfei ZHANG, An YAN, Jing GUO, Yuhang ZHAO, Yilin YUAN, Peng LIU, Zuohao QU, Chuan YUAN. Research on Apple Yield Estimation Model Based on Unmanned Aerial Vehicle Remote Sensing [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 110-119. |
[2] | Jianfeng ZHANG, Wenfeng HOU, Yongqing WU, Kaixu LI, Xiaokun LI. Effects of Nitrogen Fertilizer and Density Interactions on Occurrence of Diseases and Insect Pests and Grain Yield of Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 145-154. |
[3] | Caixia LYU, Yongfu LI, Huinan XIN, Na LI, Ning LAI, Qinglong GENG, Shuhuang CHEN. Effects of Slow Release Nitrogen Fertilizer on Yield of Winter Wheat and Soil Nitrate/Ammonium Nitrogen Under Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 179-186. |
[4] | Xueqing LIU, Jing WANG, Yi YANG, Huiqin WU, Yanhong WANG, Luyao WANG, Jiawei LU, Kaixuan ZHANG, Yuan ZHAI, Yan CHENG. Effect of Exogenous Ethephon on Defoliation and Yield of Pigmented Pepper [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 36-46. |
[5] | Qi ZHOU, Qiang LIU, Jing ZHANG, Chaochao DENG, Zhenlong WANG, Yang LIU, Fang WU, Hao CHANG, Yanfang ZHOU, Cuicui SU, Zhiguo SHI, Zhengrui GAO, Fengjie MA. Effects of Organic Fertilizer Replacing Chemical Fertilizer on Yield and Soil Biological Characteristics of Pumpkin [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 190-203. |
[6] | Shichao CHEN, Ju WANG, Fuqiang GUO, Rui HAO, Jianping SHI. Effects of Different Water and Nitrogen Coupling on Physiological Indexes and Yield of Protein Mulberry [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 240-249. |
[7] | Lijun DUAN, Xianhua DING, Weiqin LI, Shuangdui YAN. Investigation of Co-pyrolysis Behavior and Pyrolysis Product Analysis of Oak Bark and Corn Stalks [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 164-172. |
[8] | Guiqian ZHANG, Li ZHANG, Qian WANG, Caiyun LIU. Effect of Astragalus Polysaccharides on Colony Development and Honey Production in Honeybees [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 72-80. |
[9] | Yan WU, Leping ZOU, Huijie SONG, Dandan HU, Kailou LIU, Wanli LIANG. Effect of Controlled-release Nitrogen Fertilizer Combined Urea on Ammonium Nitrogen of Surface Water and Early Rice Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 192-200. |
[10] | Darong LI, Xiaoling LI, Wuxian ZHOU, Meide ZHANG, Xiaogang JIANG, Jinwen YOU, Hua WANG. Effects of Partial Substitution of Chemical Fertilizer with Organic Fertilizer on Growth and Soil Properties of Fritillaria hupehensis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 216-226. |
[11] | Junya DUAN, Yuanyuan ZHAO, Tingting WANG, Jianyu WEI, Zheng WANG, Dexun WANG, Juan LI, Hongzhi SHI. Effects of Nitrogen Reduction Combined with Polyaspartic Acid on Nitrogen Utilization, Yield and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 227-238. |
[12] | Qiang WU, Conglian WU, Xiaoyun WU, Jian WU, Xuanmei XU, Junsheng LAI, Weiyun HU, Bangchu GONG, Xibing JIANG. Effect of Different Fertilization Treatments on Yield and Fruit Quality of Castanea henryi [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 228-237. |
[13] | Tingting LIU, Xiyu HAO, Hui WANG, Jingwen LENG, Shihang GONG, Wei LIU. Correlation Analysis Between Yield and Agronomical Traits of Different Foxtail Millet Varieties in Semi-arid Area of Western Jilin Province [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 50-60. |
[14] | Wenxuan SHI, Jinfang TAN, Qian ZHANG, Lantao LI, Yilun WANG. Effect of One-off Fertilization on Yield and Nitrogen Fertilizer Efficiency of Summer Maize in Different Ecological Regions [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 193-202. |
[15] | Mei WU, Jinzhu ZHANG, Zhenhua WANG, Jian LIU, Yue WEN, Xuanzhi LI. Effects of Water and Air Interaction on Physiological Growth and Yield of Maize Under Mulched Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 189-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||