Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (10): 35-44.DOI: 10.13304/j.nykjdb.2022.0280
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Man ZHANG(), Jin ZHANG, Xinyu ZHANG, Guoning WANG, Xingfen WANG, Yan ZHANG(
)
Received:
2022-04-09
Accepted:
2022-05-28
Online:
2023-10-15
Published:
2023-10-27
Contact:
Yan ZHANG
通讯作者:
张艳
作者简介:
张曼 E-mail:zhangman920601@163.com;
基金资助:
CLC Number:
Man ZHANG, Jin ZHANG, Xinyu ZHANG, Guoning WANG, Xingfen WANG, Yan ZHANG. Cloning and Functional Analysis of GhNAC1 in Upland Cotton Involved in Verticillium Wilt Resistance[J]. Journal of Agricultural Science and Technology, 2023, 25(10): 35-44.
张曼, 张进, 张新雨, 王国宁, 王省芬, 张艳. 陆地棉GhNAC1基因的克隆及抗黄萎病功能分析[J]. 中国农业科技导报, 2023, 25(10): 35-44.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0280
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 用途 Utilization |
---|---|---|
NAC1-F | ATGAGCTACCAATCAAACC | 基因克隆Gene cloning |
NAC1-R | TTAAAAGTTGAGGATATTAGC | 基因克隆Gene cloning |
NAC1-RT-F | GAACACATCTCTTCCTTCATCATCTT | 实时定量PCR Real-time PCR |
NAC1-RT-R | AGTTGTCCCATATTTTCATTGCCTA | 实时定量PCR Real-time PCR |
NAC1-V-F | GAATTCGGTTGAACTTCCTGGCTTTA | 载体构建Vector construction |
NAC1-V-R | GGTACCGCAAAGTAGCATCAGGGAG | 载体构建Vector construction |
NAC1-G-F | GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGA GCTACCAATCAAACC | 载体构建Vector construction |
NAC1-G-R | GGGGACCACTTTGTACAAGAAAGCTGGGTGAAAGTT GAGGATATTAGC | 载体构建Vector construction |
GhUBQ14-F | CAACGCTCCATCTTGTCCTT | 实时定量PCR Real-time PCR |
GhUBQ14-R | TAGTCGTCTTTCCCGTAAGC | 实时定量PCR Real-time PCR |
GhNDR1-F | CCCGTAACCAAGGAGGCTGT | 实时定量PCR Real-time PCR |
GhNDR1-R | CTGCTAAGGGAAGGCAAGGATAG | 实时定量PCR Real-time PCR |
GhNPR1-F | GTCTGGCTGATGTCAATCTGCG | 实时定量PCR Real-time PCR |
GhNPR1-R | TCCTTCCCTTGCTCTGTCTTGG | 实时定量PCR Real-time PCR |
GhPR1-F | GGCACAGAACTACGCTAATCAACG | 实时定量PCR Real-time PCR |
GhPR1-R | GCTTTACCCTCTCACTAACCCACAT | 实时定量PCR Real-time PCR |
GhPAD4-F | GGATGGAAGAATGGAAAGAAATGAA | 实时定量PCR Real-time PCR |
GhPAD4-R | GAACTAGGAAAGCAGACTAAGGAACCA | 实时定量PCR Real-time PCR |
Table 1 Primers used in this experiment
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) | 用途 Utilization |
---|---|---|
NAC1-F | ATGAGCTACCAATCAAACC | 基因克隆Gene cloning |
NAC1-R | TTAAAAGTTGAGGATATTAGC | 基因克隆Gene cloning |
NAC1-RT-F | GAACACATCTCTTCCTTCATCATCTT | 实时定量PCR Real-time PCR |
NAC1-RT-R | AGTTGTCCCATATTTTCATTGCCTA | 实时定量PCR Real-time PCR |
NAC1-V-F | GAATTCGGTTGAACTTCCTGGCTTTA | 载体构建Vector construction |
NAC1-V-R | GGTACCGCAAAGTAGCATCAGGGAG | 载体构建Vector construction |
NAC1-G-F | GGGGACAAGTTTGTACAAAAAAGCAGGCTTCATGA GCTACCAATCAAACC | 载体构建Vector construction |
NAC1-G-R | GGGGACCACTTTGTACAAGAAAGCTGGGTGAAAGTT GAGGATATTAGC | 载体构建Vector construction |
GhUBQ14-F | CAACGCTCCATCTTGTCCTT | 实时定量PCR Real-time PCR |
GhUBQ14-R | TAGTCGTCTTTCCCGTAAGC | 实时定量PCR Real-time PCR |
GhNDR1-F | CCCGTAACCAAGGAGGCTGT | 实时定量PCR Real-time PCR |
GhNDR1-R | CTGCTAAGGGAAGGCAAGGATAG | 实时定量PCR Real-time PCR |
GhNPR1-F | GTCTGGCTGATGTCAATCTGCG | 实时定量PCR Real-time PCR |
GhNPR1-R | TCCTTCCCTTGCTCTGTCTTGG | 实时定量PCR Real-time PCR |
GhPR1-F | GGCACAGAACTACGCTAATCAACG | 实时定量PCR Real-time PCR |
GhPR1-R | GCTTTACCCTCTCACTAACCCACAT | 实时定量PCR Real-time PCR |
GhPAD4-F | GGATGGAAGAATGGAAAGAAATGAA | 实时定量PCR Real-time PCR |
GhPAD4-R | GAACTAGGAAAGCAGACTAAGGAACCA | 实时定量PCR Real-time PCR |
Fig. 2 Structure analysis of GhNAC1 proteinA: Prediction result of GhNAC1 signal peptide; B: Prediction result of GhNAC1 transmembrane domain; C: Prediction of secondary structure of GhNAC1 protein
Fig. 3 Expression pattern of GhNAC1A: Expression analysis of GhNAC1 in different tissues and organs of ND601; B: Expression analysis of GhNAC1 in ND601 roots under Verticillium wilt stress; C: Expression analysis of GhNAC1 in roots of 12 different resistant cultivars under Verticillium wilt stress; * and ** indicate significant differences compared with 0 h at P < 0.05 and P < 0.01 levels, respectively
Fig. 4 Silencing GhNAC1 reduced the resistance to V. dahliae in cottonA: CLA1 gene was used as a positive control with an albino phenotype on leave after VIGS in cotton; B: Relative expression levels of GhNAC1 in WT and GhNAC1-silenced plants 7 d after hand-infiltration; C: Disease manifestations of control plants and silent plants at 20 dpi; D: Disease index; E: Phenotype of stem infected by V. dahliae. CK stands for control group, VIGS stands for silent group; ** indicates significant difference compared with CK at P < 0.01 level
Fig. 5 Analysis of gene expression of salicylic acid pathway in GhNAC1 silenced cotton after inoculationNote:Different lowercase letters represent significant differences at P < 0.05 level.
1 | KLOSTERMAN S J, ATALLAH Z K, VALLAD G E, et al.. Diversity, pathogenicity and management of Verticillium species [J]. Annu. Rev. Phytopathol., 2009, 47(1): 39-62. |
2 | VALLAD G E, SU B B, ARAO K V. Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae [J/OL]. Phytopathology, 2008, 98(8): 871 [2022-03-19]. . |
3 | CHEN J Y, KLOSTERMAN S J, HU X P, et al.. Key insights and research prospects at the dawn of the population genomics era for Verticillium dahliae [J]. Annu. Rev. Phytopathol., 2021, 59(1): 31-51. |
4 | SONG R, LI Y S, XIE H Y, et al.. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae [J/OL]. Int. J. Mol. Sci., 2020, 21(3): 1120 [2022-03-21]. . |
5 | 朱荷琴,李志芳,冯自力,等.我国棉花黄萎病研究十年回顾及展望[J].棉花学报, 2017, 29(z1): 37-50. |
ZHU H Q, LI Z F, FENG Z L, et al.. Review and prospect of cotton Verticillium wilt research in ten years in China [J]. Cotton Sci., 2017, 029(z1): 37-50. | |
6 | GAO W, LONG L, ZHU L F, et al.. Proteomic and virus-induced gene silencing (VIGS) analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to Verticillium dahliae [J]. Mol. Cell Proteomics, 2013, 12(12): 3690-3703. |
7 | YANG J, MA Q, ZHANG Y, et al.. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt [J]. Gene, 2016, 575(2): 687-694. |
8 | ZHANG Y, WU L, WANG X, et al.. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants [J]. Mol. Plant Pathol., 2019, 20(3): 309-322. |
9 | CHEN B, ZHANG Y, YANG J, et al.. The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation [J]. Crop J., 2021, 9(4): 823-833. |
10 | CHEN B, ZHANG Y, SUN Z W, et al.. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease- and insect-resistance by regulating metabolic flux redirection in cotton [J]. Plant J., 2021, 107(3): 831-846. |
11 | 安汶铠,常丹,杨艺,等.利用VIGS技术沉默GhBES1基因对棉花幼苗生理指标的影响[J].分子植物育种, 2016, 14(9): 1055-1061. |
AN W K, CHANG D, YANG Y, et al.. Effects of GhBES1 gene silencing by VIGS technique on physiological indexes of cotton seedlings [J]. Mol. Plant Breeding, 2016, 14(9): 1055-1061. | |
12 | AIDA M, ISHIDA T, FUKAKI H, et al.. Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant [J]. Plant Cell, 1997, 9(6): 841-857. |
13 | 孙利军,李大勇,张慧娟,等.NAC转录因子在植物抗病和抗非生物胁迫反应中的作用[J].遗传, 2012, 34(8): 993-1002. |
SUN L J, LI D Y, ZHANG H J, et al.. Functions of NAC transcription factors in biotic and abiotic stress responses in plants [J]. Hereditas, 2012, 34(8): 993-1002. | |
14 | ZHONG R, LEE C, HAGHIGHAT M, et al.. Xylem vessel-specific SND5 and its homologs regulate secondary wall biosynthesis through activating secondary wall NAC binding elements [J]. New Phytol., 2021, 231(4): 1496-1509. |
15 | FU B L, WANG W Q, LIU X F, et al.. An ethylene-hypersensitive methionine sulfoxide reductase regulated by NAC transcription factors increases methionine pool size and ethylene production during kiwifruit ripening [J]. New Phytol., 2021,231(1): 237-251. |
16 | 曲潇玲,焦裕冰,罗健达,等.本氏烟NbNAC062的克隆及对马铃薯Y病毒侵染的抑制作用[J].中国农业科学, 2021, 54(19):84-94. |
QU X L, JIAO Y B, LUO J D, et al.. Cloning of tobacco NbNAC062 and its inhibition on potato virus Y infection [J]. Sci. Agric. Sin., 2021, 54(19): 84-94. | |
17 | 叶鸿鹰,梅双双,戎伟. ATAF2正调控拟南芥对橡胶树白粉菌的抗病性[J].热带生物学报, 2020, 11(1): 61-65. |
YE H Y, MEI S S, RONG W. ATAF2 positively contributes to the disease resistance against Oidium heveae in Arabidopsis [J]. J. Trop. Biol., 2020, 11(1): 61-65. | |
18 | CAI W, YANG S, WU R, et al.. Pepper NAC-type transcription factor NAC2c balances the trade-off between growth and defense responses [J]. Plant Physiol., 2021, 186(4): 4. |
19 | 王国宁,赵贵元,岳晓伟,等.河北省棉花黄萎病菌致病性与ISSR遗传分化[J].棉花学报, 2012, 24(4): 348-357. |
WANG G N, ZHAO G Y, YUE X W, et al.. Pathogenicity and ISSR genetic differentiation of Verticillium dahliae isolates from cotton growing areas of Hebei province [J]. Cotton Sci., 2012, 24(4): 348-357. | |
20 | SPARKES I A, RUNIONS J, KEARNS A, et al.. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants [J]. Nature Protoc., 2006, 1(4):2019-2025. |
21 | ZHANG M, WANG X F, YANG J, et al.. GhENODL6 isoforms from the phytocyanin gene family regulate Verticillium wilt resistance in cotton [J]. Int. J. Mol. Sci., 2022, 23(6):2913-2921. |
22 | ZHANG Y, WANG X F, DING Z G, et al.. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement [J/OL]. BMC Genomics, 2013, 14(1): 637 [2022-03-21]. . |
23 | YANG J, MA Q, ZHANG Y, et al.. Molecular cloning and functional analysis of GbRvd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt [J]. Gene, 2016, 575(2016): 687-694. |
24 | 李宝笃,沈崇尧. Hoaglands营养液栽苗法快速鉴定甜椒疫霉病菌致病性及对杀菌剂敏性研究初报[J].植物病理学报, 1993, 23(3): 243-244. |
LI B D, SHEN C Y. Preliminary report on the rapid identification of pathogenicity and fungicide sensitivity of phytophthora capsicum by Hoaglands nutrient solution seedling method [J]. Acta Phytopathol. Sin., 1993, 23(3): 243-244. | |
25 | 唐永凯, 贾永义.荧光定量PCR数据处理方法的探讨[J].生物技术, 2008, 18(3): 91-93. |
TANG Y K, JIA Y Y. Discussion on data processing method of fluorescence quantitative PCR [J]. Biotechnology, 2008, 18(3):91-93. | |
26 | ZHANG B, YANG Y, CHEN T, et al.. Island cotton Gbve1 gene encoding a receptor-like protein confers resistance to both defoliating and non-defoliating isolates of Verticillium dahliae [J/OL]. PLoS One, 2012, 7(12): e51091 [2022-03-21]. . |
27 | JYOTHISHWARAN G, KOTRESHA D, SELVARAJ T, et al.. A modified freeze-thaw method for efficient transformation of Agrobacterium tumefaciens [J]. Curr. Sci., 2007, 93(6): 770-772. |
28 | GAO X, BRITT R C, SHAN L, et al.. Agrobacterium-mediated virus-induced gene silencing assay in cotton [J/OL]. J. Vis. Exp., 2011, 54(54): e2938 [2022-03-21]. . |
29 | LOAKE G, GRANT M. Salicylic acid in plant defence-the players and protagonists [J]. Curr. Opin. Plant Biol., 2007, 10(5): 466-472. |
30 | MARQUES D N, REIS S D, SOUZA C D. Plant NAC transcription factors responsive to abiotic stresses [J]. Plant Gene, 2017, 11: 170-179. |
31 | PURANIK S, SAHU P P, SRIVASTAVA P S, et al.. NAC proteins: regulation and role in stress tolerance [J/OL]. Trends Plant Sci., 2012, 17(6): 369-381 [2022-03-21]. . |
32 | SHEN H, YIN Y, CHEN F, et al.. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production [J/OL]. Bioenergy Res., 2009, 2(4): 217 [2022-03-21]. |
33 | WANG X, BASNAYAKE B, ZHANG H, et al.. The Arabidopsis ATAF1, a NAC transcription factor, is a negative regulator of defense responses against necrotrophic fungal and bacterial pathogens [J]. Mol. Plant Microbe., 2009, 22(10): 1227-1238. |
34 | NAKASHIMA K, TRAN L S P, NGUYEN D V, et al.. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice [J]. Plant J., 2010, 51(4): 617-630. |
35 | SANG R P, KIM H S, LEE K S, et al.. Overexpression of rice NAC transcription factor OsNAC58 on increased resistance to bacterial leaf blight [J]. J. Plant Biochem. Biot., 2017, 44(2): 149-155. |
36 | ZHANG X M, ZHANG Q, PEI C L, et al.. TaNAC2 is a negative regulator in the wheat-stripe rust fungus interaction at the early stage [J]. Physiol. Mol. Plant Pathol., 2018, 102: 144-153. |
37 | LIU B, OUYANG Z, ZHANG Y, et al.. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response [J]. PloS One, 2014, 9(7): e102067 [2022-03-21]. . |
38 | CHANG Y, YU R, FENG J, et al.. NAC transcription factor involves in regulating bacterial wilt resistance in potato [J]. Funct. Plant Biol., 2020, 47: 925-936. |
39 | SHIRASU K, NAKAJIMA H, LAMB D C, et al.. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms [J]. Plant Cell, 1997, 9: 261-270. |
40 | LONG L, XU F C, ZHAO J R, et al.. GbMPK3 overexpression increases cotton sensitivity to Verticillium dahliae by regulating salicylic acid signaling [J/OL]. Plant Sci., 2020, 292: 110374 [2022-03-21]. . |
41 | MÉTRAUX J. Recent breakthroughs in the study of salicylic acid biosynthesis [J]. Trends Plant Sci., 2002, 7(8): 332-334. |
42 | CHEN Z, ZHENG Z, HUANG J, et al.. Biosynthesis of salicylic acid in plants [J]. Plant Signal. Behav., 2009, 4(6): 493-496. |
43 | ZHENG X Y, SPIVEY N, ZENG W, et al.. Coronatine promotes Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid accumulation [J]. Cell Host Microbe, 2012, 11(6): 587-596. |
[1] | Hao JIA, Hongzhe WANG, Zhengwen SUN, Qishen GU, Dongmei ZHANG, Xingyi WANG, Yan ZHANG, Huaiyu LU, Zhiying MA, Xingfen WANG. Genome-wide Identification of VOZ Genes Family in Cotton and Study on Salt Tolerance Function of GhVOZ1 [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 58-68. |
[2] | Yanqin MA, Yujie ZHOU, Haicheng LONG, Ju LI, Haie WANG, Wei CHANG, Zhi LI, Jian ZHONG, Mingjun MIAO, Liang YANG. Construction of TRV-mediated VIGS System in Brassica rapa subsp. chinensis and Brassica juncea [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 239-249. |
[3] | Guiyuan ZHAO, Yongqiang WANG, Jianguang LIU, Zhao GENG, Hanshuang ZHANG, Liqiang WU, Xingfen WANG, Guiyin ZHANG. Effect of Exogenous Gene Insertion Site on Bt Protein Content in Insect-resistant Cotton [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 44-53. |
[4] | Yixin CHEN, Xiubo YANG, Shijun TIAN, Cong WANG, Zhiying BAI, Cundong LI, Ke ZHANG. Response of GhCOMT28 to Drought Stress in Gossypium hirsutum [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 45-56. |
[5] | Zhiduo DONG, Qiuping FU, Jian HUANG, Tong QI, Yanbo FU, Kuerban Kaisaier. Analysis of Salt Tolerance Capacity of Xinjiang Cotton Guring Germination [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 57-67. |
[6] | Zicheng PENG, Hongli DU, Ming WANG, Fenghua ZHANG, Haichang YANG. Research on AMF Regulation of Cotton Growth and Ion Balance Under Salt Alkali Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 33-41. |
[7] | Songjiang DUAN, Haoran HU, Chengjie ZHANG, Wei SUN, Yifan WU, Rensong GUO, Jusong ZHANG. Differences in Nitrogen Efficiency of Different Genotypes of Island Cotton and Their Effects on Photosynthetic Characteristics and Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 61-71. |
[8] | Huiting WENG, Haiyang LIU, Huiming GUO, Hongmei CHENG, Jun LI, Chao ZHANG, Xiaofeng SU. Preliminary Function Analysis of GhERF020 Gene in Response to Verticillium Wilt in Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 112-121. |
[9] | Ziqin LI, Jiaqiang WANG, Zhen LI, Deqiu ZOU, Xiaogong ZHANG, Xiaoyu LUO, Weiyang LIU. Estimation of Chlorophyll Density of Cotton Leaves Based on Spectral Index [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 103-111. |
[10] | Yukun QIN, Junying CHEN, Lijuan ZHANG. Response of Dry Matter Accumulation Characteristics and Yield of Cotton in North Jiangxi Cotton Region to Nitrogen Reduction Measures [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 191-199. |
[11] | Ling LIN, Yujie ZHU, Lei FENG, Guangmu TANG, Yunshu ZHANG, Wanli XU. Effects of Aged Cotton Straw Biochars on Soil Properties and Nitrogen Utilization of Wheat [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 184-191. |
[12] | Jiangbo LI, Wenju GAO, Xiaodong YUN, Jieyin ZHAO, Shiwei GENG, Chunbin HAN, Quanjia CHEN, Qin CHEN. Effects of Different Water Stress Treatments on Core Germplasm Resources of Upland Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 26-39. |
[13] | Lihua LI, Zhengwen SUN, Huifeng KE, Qishen GU, Liqiang WU, Yan ZHANG, Guiyin ZHANG, Xingfen WANG. Development and Effect Evaluation of KASP Markers for Fiber Strength in Gossypium hirsutum L. [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 46-55. |
[14] | Menghua ZHAI, Minghui SUN, Xuerui LI, Xinlong XU, Haizhou GAO, Jusong ZHANG. Effects of DPC on Plant Type Shaping of Cotton Under Different Plant Spacing Configurations [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 145-156. |
[15] | Zhen CHENG, Jianlong NIU, Yuting MA, weiyang LIU, Xuewei JIANG, Xueqi LIANG, Hongqiang DONG. Dynamic Changes of Cotton Phenological Stages in Alar Reclamation Area of Southern Xinjiang from 1990 to 2020 [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 206-214. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||