Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (5): 180-188.DOI: 10.13304/j.nykjdb.2021.0781
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Kuiyuan CHEN(), Hui LIU, Wei DING(
)
Received:
2021-09-06
Accepted:
2021-11-22
Online:
2022-05-15
Published:
2022-06-06
Contact:
Wei DING
通讯作者:
丁伟
作者简介:
陈奎元 E-mail: 479115079@qq.com;
基金资助:
CLC Number:
Kuiyuan CHEN, Hui LIU, Wei DING. Effect of Glyphosate on Soil Nutrient and the Functional Enzyme Activities in Soybean Fields[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 180-188.
陈奎元, 刘卉, 丁伟. 草甘膦对大豆田土壤养分及其功能酶活性的影响[J]. 中国农业科技导报, 2022, 24(5): 180-188.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0781
年份 Year | 处理 Treatment | 碱解氮含量 Alkaline soluble nitrogen content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 156.25±4.44 c | 159.20±2.53 b | 170.15±1.93 a | 152.04±3.86 c |
T1 | 172.68±1.93 a | 169.52±0.97 a | 160.04±1.93 b | 176.47±1.93 a | |
T2 | 167.20±1.93 ab | 145.72±3.18 c | 153.73±4.44 bc | 167.20±3.18 b | |
T3 | 162.57±2.63 b | 148.25±3.18 c | 150.36±5.51 c | 141.93±3.86 d | |
2020 | CK | 168.55±3.74 a | 157.31±7.20 a | 135.32±3.85 a | 129.26±10.32 a |
T1 | 150.61±6.78 b | 115.74±9.89 c | 120.79±0.22 b | 117.51±6.47 ab | |
T2 | 150.86±2.73 b | 137.34±9.99 b | 121.55±8.27 b | 111.57±3.06 b | |
T3 | 133.17±2.73 c | 140.50±1.95 b | 134.56±8.10 a | 119.02±10.09 ab |
Table 1 Soil alkaline soluble nitrogen content under different treatments
年份 Year | 处理 Treatment | 碱解氮含量 Alkaline soluble nitrogen content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 156.25±4.44 c | 159.20±2.53 b | 170.15±1.93 a | 152.04±3.86 c |
T1 | 172.68±1.93 a | 169.52±0.97 a | 160.04±1.93 b | 176.47±1.93 a | |
T2 | 167.20±1.93 ab | 145.72±3.18 c | 153.73±4.44 bc | 167.20±3.18 b | |
T3 | 162.57±2.63 b | 148.25±3.18 c | 150.36±5.51 c | 141.93±3.86 d | |
2020 | CK | 168.55±3.74 a | 157.31±7.20 a | 135.32±3.85 a | 129.26±10.32 a |
T1 | 150.61±6.78 b | 115.74±9.89 c | 120.79±0.22 b | 117.51±6.47 ab | |
T2 | 150.86±2.73 b | 137.34±9.99 b | 121.55±8.27 b | 111.57±3.06 b | |
T3 | 133.17±2.73 c | 140.50±1.95 b | 134.56±8.10 a | 119.02±10.09 ab |
年份 Years | 处理 Treatment | 速效磷含量Available phosphorus content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 28.02±0.81 c | 38.25±0.96 a | 36.37±0.22 b | 35.46±1.08 a |
T1 | 33.20±0.81 a | 35.08±1.59 b | 34.56±1.62 c | 33.07±0.49 b | |
T2 | 31.84±1.76 ab | 33.46±0.41 b | 37.86±0.81 b | 34.43±0.79 ab | |
T3 | 30.28±0.30 b | 34.75±0.68 b | 39.93±0.19 a | 33.65±0.74 b | |
2020 | CK | 29.25±1.66 b | 38.57±2.16 a | 33.85±1.51 a | 37.41±2.16 a |
T1 | 34.75±1.70 a | 35.08±0.27 b | 33.33±1.85 a | 32.61±1.00 b | |
T2 | 33.52±0.89 ab | 34.69±1.59 b | 34.56±1.29 a | 35.08±1.08 ab | |
T3 | 29.89±1.65 ab | 33.91±1.97 b | 35.46±1.75 a | 36.18±0.79 a |
Table 2 Soil available phosphorus content under different treatments
年份 Years | 处理 Treatment | 速效磷含量Available phosphorus content/(mg·kg-1) | |||
---|---|---|---|---|---|
7 d | 14 d | 21 d | 28 d | ||
2019 | CK | 28.02±0.81 c | 38.25±0.96 a | 36.37±0.22 b | 35.46±1.08 a |
T1 | 33.20±0.81 a | 35.08±1.59 b | 34.56±1.62 c | 33.07±0.49 b | |
T2 | 31.84±1.76 ab | 33.46±0.41 b | 37.86±0.81 b | 34.43±0.79 ab | |
T3 | 30.28±0.30 b | 34.75±0.68 b | 39.93±0.19 a | 33.65±0.74 b | |
2020 | CK | 29.25±1.66 b | 38.57±2.16 a | 33.85±1.51 a | 37.41±2.16 a |
T1 | 34.75±1.70 a | 35.08±0.27 b | 33.33±1.85 a | 32.61±1.00 b | |
T2 | 33.52±0.89 ab | 34.69±1.59 b | 34.56±1.29 a | 35.08±1.08 ab | |
T3 | 29.89±1.65 ab | 33.91±1.97 b | 35.46±1.75 a | 36.18±0.79 a |
相关系数 Correlation coefficient | 脲酶 Urease | 磷酸酶 Phosphatase | 过氧化 氢酶 Catalase | 纤维素酶 Cellulase | 根瘤固氮酶 Nodule nitrogenase | 碱解氮 Alkaline nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|---|
脲酶 Urease | 1. 00 | |||||||
磷酸酶 Phosphatase | 0.26 | 1. 00 | ||||||
过氧化氢酶 Catalase | 0.02 | 0.56** | 1. 00 | |||||
纤维素酶 Cellulase | 0.24 | 0.45** | 0.08 | 1. 00 | ||||
根瘤固氮酶 Nodule nitrogenase | 0.36* | 0.32 | 0.01 | 0.19 | 1. 00 | |||
碱解氮 Alkaline nitrogen | 0.22 | 0.12 | -0.01 | -0.17 | 0.34 | 1. 00 | ||
速效磷 Available phosphorus | -0.31 | -0.45** | -0.40* | -0.13 | -0.47** | -0.10 | 1. 00 | |
速效钾 Available potassium | 0.12 | 0.48** | 0.18 | 0.68** | 0.33 | -0.40* | -0.44** | 1. 00 |
Table 3 Correlation between soil enzyme activity and soil nutrients
相关系数 Correlation coefficient | 脲酶 Urease | 磷酸酶 Phosphatase | 过氧化 氢酶 Catalase | 纤维素酶 Cellulase | 根瘤固氮酶 Nodule nitrogenase | 碱解氮 Alkaline nitrogen | 速效磷 Available phosphorus | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|---|
脲酶 Urease | 1. 00 | |||||||
磷酸酶 Phosphatase | 0.26 | 1. 00 | ||||||
过氧化氢酶 Catalase | 0.02 | 0.56** | 1. 00 | |||||
纤维素酶 Cellulase | 0.24 | 0.45** | 0.08 | 1. 00 | ||||
根瘤固氮酶 Nodule nitrogenase | 0.36* | 0.32 | 0.01 | 0.19 | 1. 00 | |||
碱解氮 Alkaline nitrogen | 0.22 | 0.12 | -0.01 | -0.17 | 0.34 | 1. 00 | ||
速效磷 Available phosphorus | -0.31 | -0.45** | -0.40* | -0.13 | -0.47** | -0.10 | 1. 00 | |
速效钾 Available potassium | 0.12 | 0.48** | 0.18 | 0.68** | 0.33 | -0.40* | -0.44** | 1. 00 |
主成分 Principal components | 特征值 Eigenvalue | 方差贡献率 Variance contribution value/% | 累计贡献率 Cumulative contribution value/% |
---|---|---|---|
1 | 2.938 | 36.730 | 36.730 |
2 | 1.645 | 20.566 | 57.296 |
3 | 1.201 | 15.012 | 72.308 |
Table 4 Eigenvalue,variance contribution rate and cumulative variance contribution rate of principal components
主成分 Principal components | 特征值 Eigenvalue | 方差贡献率 Variance contribution value/% | 累计贡献率 Cumulative contribution value/% |
---|---|---|---|
1 | 2.938 | 36.730 | 36.730 |
2 | 1.645 | 20.566 | 57.296 |
3 | 1.201 | 15.012 | 72.308 |
处理名称 Treatments | F1 | 排名 Rank | F2 | 排名 Rank | F3 | 排名 Rank | S | 综合排名 Comprehensive rank |
---|---|---|---|---|---|---|---|---|
CK | 80.247 318 | 2 | 36.672 495 | 2 | 6.842 781 2 | 3 | 35.166 675 | 3 |
T1 | 79.883 578 | 4 | 37.453 245 | 1 | 6.355 119 2 | 4 | 34.729 540 | 4 |
T2 | 80.127 036 | 3 | 36.396 559 | 3 | 8.087 030 2 | 2 | 38.417 347 | 1 |
T3 | 80.298 817 | 1 | 34.518 943 | 4 | 9.287 650 8 | 1 | 36.006 689 | 2 |
Table 5 Soil nutrient principal components scores and rankings
处理名称 Treatments | F1 | 排名 Rank | F2 | 排名 Rank | F3 | 排名 Rank | S | 综合排名 Comprehensive rank |
---|---|---|---|---|---|---|---|---|
CK | 80.247 318 | 2 | 36.672 495 | 2 | 6.842 781 2 | 3 | 35.166 675 | 3 |
T1 | 79.883 578 | 4 | 37.453 245 | 1 | 6.355 119 2 | 4 | 34.729 540 | 4 |
T2 | 80.127 036 | 3 | 36.396 559 | 3 | 8.087 030 2 | 2 | 38.417 347 | 1 |
T3 | 80.298 817 | 1 | 34.518 943 | 4 | 9.287 650 8 | 1 | 36.006 689 | 2 |
1 | PRIMOST J E, MARINO D J G, APARICIO V C, et al.. Glyphosate and AMPA, “pseudo-persistent” pollutants under real-world agricultural management practices in the Mesopotamic Pampas agroecosystem, Argentina [J]. Environ. Pollut., 2017, 229:771-779. |
2 | JEYASEKHAR M P. A study to investigate the organic carbon status of glyphosate soils [J]. Int. J. Environ. Res., 2021, 3(1):23-27. |
3 | LANE M, LORENZ N, SAXENA J, et al.. Microbial activity, community structure and potassium dynamics in rhizosphere soil of soybean plants treated with glyphosate [J]. Pedobiologia, 2012, 55(3):153-159. |
4 | 姚玉波.大豆根瘤固氮特性与影响因素的研究[D]. 哈尔滨:东北农业大学, 2012. |
YAO Y B. Study on characteristics of nodule nitrogen fixation and influencing factors of soybean [D]. Harbin: Northeast Agricultural University, 2012. | |
5 | 周垂帆,林静雯,李莹,等.草甘膦对土壤磷形态及有效性的影响[J].西北林学院学报, 2016, 31(6): 71-77. |
ZHOU C F, LIN J W, LI Y, et al.. Effects of glyphosate on inorganic phosphorus transformation in soil [J]. J. Northwest Forest.Univ., 2016,31(6):71-77. | |
6 | 呼蕾,和文祥,王旭东,等.草甘膦的土壤酶效应研究[J].农业环境科学学报, 2009, 28(4): 680-685. |
HU L, HE W X, WANG X D, et al.. Effect of glyphosate on soil enzyme [J]. J. Agro-Environ. Sci., 2009, 28(4): 680-685. | |
7 | YU Y, ZHANG H, ZHOU Q. Using soil available P and activities of soil dehydrogenase and phosphatase as indicators for biodegradation of organophosphorus pesticide methamidophos and glyphosate [J]. Soil Sediment Contam., 2011, 20(6):688-701. |
8 | LANE M, LORENZ N, SAXENA J, et al.. The effect of glyphosate on soil microbial activity, microbial community structure, and soil potassium [J]. Pedobiologia, 2012, 55(6):688-701. |
9 | FAN L, FENG Y, WEAVER D B, et al.. Glyphosate effects on symbiotic nitrogen fixation in glyphosate-resistant soybean [J]. Appl. Soil Ecol., 2017, 121:11-19. |
10 | 严君,韩晓增.盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响[J].中国农业科学, 2014, 47(10): 1929-1938. |
YAN J, HAN X Z. Effect of soil inorganic N concentrations on the nodulation, N2 fixation and yield in soybean in a pot experiment [J]. Sci. Agric. Sin., 2014, 47(10): 1929-1938. | |
11 | 姜伟丽,马小艳,彭军,等.除草剂草甘膦对棉田土壤酶活性的影响[J].棉花学报, 2014, 26(5): 431-437. |
JIANG W L, MA X Y, PENG J, et al.. Effects of glyphosate on soil enzyme activities in cotton fields [J]. Cotton. Sci., 2014, 26(5): 431-437. | |
12 | 侯文军,邹明,李宝福,等.草甘膦对桉树人工林土壤酶活性的影响[J].东北林业大学学报, 2020, 48(11): 76-79. |
HOU W J, ZOU M, LI B F, et al.. Effect of glyphosate on soil enzyme activities in eucalyptus plantations [J]. J. Northeast Forest.Univ., 2020, 48(11): 76-79. | |
13 | 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社,2000: 22-23. |
14 | 丁伟, 杨隆华, 程茁,等.氟磺胺草醚对大豆根瘤固氮酶活性及光合速率的影响 [J].作物杂志, 2010(4): 81-84. |
DING W, YANG L H, CHENG Z, et al.. Effect of fomesafen on nitrogenase activity and net photosynthesis rate in soybean [J]. Crops, 2010(4): 81-84. | |
15 | 张立峰, 丁伟. 复合微生物菌肥对水稻苗床土壤养分及pH值的影响[J].江苏农业科学, 2017, 45(11): 67-69. |
16 | JENKINS M E, KRAUSZ R F, MATTHEWS J L, et al.. Control of volunteer horseradish and Palmer Amaranth (Amaranthus palmeri) with dicamba and glyphosate [J]. Weed Technol., 2017, 31(6): 852-862. |
17 | 陶波,蒋凌雪,沈晓峰,等.草甘膦对土壤微生物的影响[J].中国油料作物学报, 2011, 33(2): 162-168, 179. |
TAO B, JIANG L X, SHEN X F, et al.. Effects of glyphosate on soil microorganisms [J]. Chin. J. Oil Crop Sci., 2011, 33(2): 162-168, 179. | |
18 | 冷建田.草甘膦除草剂对高寒地区转基因大豆田间杂草群落的影响[D].北京:中国农业科学院, 2012. |
LENG J T. Effect of glyphosate on weed communities of transgenic soybean field in the high latitude and cold region [D]. Beijing: Chinese Academy of Agricultural Sciences, 2012. | |
19 | OBOUR A K, STAHLMAN P W, HOLMAN J D. Soil chemical properties as influenced by long-term glyphosate-resistant corn and soybean production in the central Great Plains, USA [J]. Geoderma, 2016, 277: 1-9. |
20 | VEREECKEN H. Mobility and leaching of glyphosate: a review [J]. Pest Manag. Sci., 2005, 61(12): 1139-1151. |
21 | 章秋艳,李刚,杨志国,等.转基因大豆种植对根际土壤酶活性和养分的影响[J].中国油料作物学报, 2014, 36(3): 409-413. |
ZHANG Q Y, LI G, YANG Z G, et al.. Effects of transgenic soybean on enzyme activities and nutrients in rhizosphere soil [J]. Chin. J. Oil Crop Sci., 2014, 36(3): 409-413. | |
22 | ZHENG L, LI Y, SHANG W, et al.. The inhibitory effect of cadmium and/or mercury on soil enzyme activity, basal respiration, and microbial community structure in coal mine-affected agricultural soil [J]. Ann. Microbiol., 2019, 69(8): 849-859. |
23 | SPRANKLE P, MEGGITT W F, Adsorption PENNER D., mobility, and microbial degradation of glyphosate in the soil [J]. Weed Sci., 1975, 23(3): 229-234. |
24 | KULIKOVA N A, ZHELEZOVA A D, VOROPANOV M G, et al.. Monoammonium phosphate effects on glyphosate in soils: mobilization, phytotoxicity, and alteration of the microbial community [J]. Eurasian Soil Sci., 2020, 53(6): 787-797. |
25 | 刘攀.草甘膦对土壤微生态的影响及其抗性和降解真菌的研究[D].长春:吉林大学, 2009. |
LIU P. Effects of glyphosate on the soil microecosystem and research of glyphosate-degradation and glyphosate-resistance fungi [D]. Changchun: Jilin University, 2009. | |
26 | JORGE B, MELLADO R P. Relative effect of glyphosate on glyphosate-tolerant maize rhizobacterial communities is not altered by soil properties [J]. J. Microbiol. Biotechnol., 2012, 22(2): 159-165. |
27 | 吴玉红,田霄鸿,同延安,等.基于主成分分析的土壤肥力综合指数评价 [J].生态学杂志, 2010, 29(1): 173-180. |
WU Y H, TIAN X H, TONG Y A, et al.. Assessment of integrated soil fertility index based on principal components analysis [J]. Chin. J. Ecol., 2010, 29(1): 173-180. |
[1] | Xiyu ZHANG, Xing SHEN, Wei LI, Wenge XIE, Jie LI, Changhao YANG, Zhongping CHAI. Influence of Reduced Nitrogen Fertilizer Combined with Organic Fertilizer on Soil Bacterial Community Structure in Korla Pear Orchards [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 217-228. |
[2] | Chenyang ZHANG, Minggang XU, Fei WANG, Ran LI, Nan SUN. Effects of Manure Application on Soybean Yield and Soil Nutrients in China [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 148-156. |
[3] | Caiyan DU, Haiyan LU, Yanzhu XIONG, Xi SUN, Xiumei SUN, Jixiong PU, Naiming ZHANG. Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Peach Growth and Soil Physical and Chemical Properties for Two Consecutive Years [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 165-175. |
[4] | Rui XIAO, Lu TAN, Liang WU, Hao ZHANG, Jiayuan GUO, Haijun YANG. Microbial Community Structure and Diversity in Rhizosphere and Non-rhizosphere Soil of Kochia scoparia Under Cd Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 203-215. |
[5] | Jia YAO, Jiaxin LIU, Yan SU, Xiaojuan SU. Effects of Combined Application of Tobacco Stem Biochar and Nitrogen Fertilizers on Corn Growth and Soil Properties in Seeding Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 140-151. |
[6] | Tingting NIE, Yiqiang DONG, Helong YANG, Asitaiken Julihaiti, Shijie ZHOU, Shazhou AN. Effects of Enclosure on Plant and Soil Stoichiometric Characteristics in an Artemisia Desert [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 178-187. |
[7] | Yunzhu ZHENG, Shuchen SUN. Effects of Straw Biochar and Straw on Soil Nutrients and Crop Yield in Wheat-Maize Rotation System [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 152-162. |
[8] | Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115. |
[9] | Zhenjia HE, Wangtao FAN, Yichun DU, Qilong WANG. Effects of Water and Fertilizer Coupling on the Physical and Chemical Properties of Rice Soil and Yield Based on Soil Organic Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 176-185. |
[10] | Lijuan HE, Zhongju MENG, Xiaohong DANG, Tao LYU. Effects of Planting Glycyrrhizauralensis on Mechanical Composition and Nutrients of Aeolian Sandy Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 169-176. |
[11] | Zhuwen LIU, Longfei YANG, Maolin LIU, Guotao JIA, Qian YAO, Yiqiong MA, Ting CUI, Xinling YANG, Yang CHEN, Liangkun CHENG. Effects of Different Soil Amendments on Soil Nutrients and Inherent Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 190-198. |
[12] | Ruifeng GUO, Yuemei REN, Zhong YANG, Guishan LIU, Guangbing REN, Shou ZHANG, Wenjuan ZHU. Transcriptomic Analysis of Mechanism of Foxtail Millet Male Infertility Induced by Glyphosate Ammonium Salt [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 35-43. |
[13] | PU Quanming1, YANG Peng1*, DENG Yuchuan2, XIANG Chengyong1, LIN Bangmin1, LIU Lisha1, SHI Songmei3, HE Zemin1, YONG Lei1. Effects of Different Fertilization Methods on Soil Enzyme Activity, Soil Nutrients and Quality of Spring Cabbage [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 130-139. |
[14] | YANG Xiaoyan1, LIU Yajuan2, WU Hong1, WANG Zhongwei1, LEI Kairong1, XIE Shuzhang1*. Isolation, Identification and Its Resistant Gene Cloning of a New Glyphosate-resistant Strain [J]. Journal of Agricultural Science and Technology, 2018, 20(6): 47-54. |
[15] | XIE Shu-zhang1, YANG Xiao-yan1, LIN Qing1, WENG Jian-feng2, JIANG Xiao-ying1, LI. Process on Glyphosate-resistant Transgenic Maize [J]. , 2013, 15(3): 36-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||