中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (4): 32-44.DOI: 10.13304/j.nykjdb.2023.0235
刘盼1(), 高珊1, 李浩宇2, 王翼2, 尹宝重2, 郭进考3, 甄文超1,4,5(
)
收稿日期:
2023-03-28
接受日期:
2023-04-12
出版日期:
2023-04-01
发布日期:
2023-06-26
通讯作者:
甄文超
作者简介:
刘盼 E-mail:liupan198612@163.com;
基金资助:
Pan LIU1(), Shan GAO1, Haoyu LI2, Yi WANG2, Baozhong YIN2, Jinkao GUO3, Wenchao ZHEN1,4,5(
)
Received:
2023-03-28
Accepted:
2023-04-12
Online:
2023-04-01
Published:
2023-06-26
Contact:
Wenchao ZHEN
摘要:
为明确缩行匀株(row space reduction and plant space expansion,RRPE)对冬小麦分蘖的影响及其生理机制,于2019-2021年小麦种植季,以‘马兰1号’为供试品种,设置2个行距和3个播期,研究RRPE处理对小麦冬前分蘖数和生物量的影响,及分蘖节内源激素和蔗糖对RRPE的响应特征。结果表明,RRPE处理能促进小麦冬前分蘖数(tillers number,TN)和生物量,平均增加14.5%和20.9%,并增加≥3叶的分蘖数;RRPE处理降低了3叶期至越冬期小麦分蘖节吲哚乙酸(indoleacetic acid,IAA)、独脚金内酯(strigolactones,SLs)、赤霉素(gibberellin,GA)和油菜素甾醇(brassinosterol,BR)含量,分别平均降低19.4%、17.5%、11.4%和13.6%;RRPE处理显著提高了玉米素核苷(zeatin nucleoside,ZR)、细胞分裂素(cytokinin,CTK)和蔗糖(saccharose,SA)含量,平均提高13.1%、54.4%和15.2%。RRPE处理还降低了IAA/ZR、BR/SL和BR/CTK,但提高了SLs/GA。相关分析表明,CTK、BR与冬前TN显著相关,相关系数平均为0.65。BR对TN的正向贡献最高;GA、BR/CTK对TN的负向贡献较高;IAA/ZR通过GA和IAA对TN的负向贡献较高。综上所述,RRPE处理可以促进小麦冬前分蘖、增加生物量,这与BR、GA含量,以及BR/CTK的直接作用、IAA/ZR通过GA和IAA的间接作用关系密切。
中图分类号:
刘盼, 高珊, 李浩宇, 王翼, 尹宝重, 郭进考, 甄文超. 缩行匀株对小麦分蘖的影响及其生理机制[J]. 中国农业科技导报, 2023, 25(4): 32-44.
Pan LIU, Shan GAO, Haoyu LI, Yi WANG, Baozhong YIN, Jinkao GUO, Wenchao ZHEN. Effects of Row Space Reduction and Plant Space Expansion on Tillers Number in Wheat and Its Physiological Mechanism[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 32-44.
处理Treatment | 2019—2020 | 2020—2021 | ||||
---|---|---|---|---|---|---|
播前 Before sowing | 拔节期 Jointing stage | 播前 Before sowing | 拔节期 Jointing stage | 开花期 Anthei stage | ||
15.0RS | SD1 | 538.5 | 873.0 | 384.0 | 631.5 | 826.5 |
SD2 | 552.0 | 852.0 | 412.5 | 606.0 | 831.0 | |
SD3 | 580.5 | 798.0 | 423.0 | 568.5 | 790.5 | |
7.5RS | SD1 | 568.5 | 822.0 | 336.0 | 591.0 | 756.0 |
SD2 | 594.0 | 766.5 | 388.5 | 564.0 | 733.5 | |
SD3 | 550.5 | 723.0 | 393.0 | 525.0 | 678.0 |
表1 不同处理下各生育期的灌水量 (m3·hm-2)
Table 1 Irrigation amount of wheat fields under different treatments in different periods
处理Treatment | 2019—2020 | 2020—2021 | ||||
---|---|---|---|---|---|---|
播前 Before sowing | 拔节期 Jointing stage | 播前 Before sowing | 拔节期 Jointing stage | 开花期 Anthei stage | ||
15.0RS | SD1 | 538.5 | 873.0 | 384.0 | 631.5 | 826.5 |
SD2 | 552.0 | 852.0 | 412.5 | 606.0 | 831.0 | |
SD3 | 580.5 | 798.0 | 423.0 | 568.5 | 790.5 | |
7.5RS | SD1 | 568.5 | 822.0 | 336.0 | 591.0 | 756.0 |
SD2 | 594.0 | 766.5 | 388.5 | 564.0 | 733.5 | |
SD3 | 550.5 | 723.0 | 393.0 | 525.0 | 678.0 |
年份 Year | 处理 Treatment | 苗数 Seedling number/(104·hm-2) | 分蘖数Tillers number | 生物量Biomass | |||||
---|---|---|---|---|---|---|---|---|---|
单株 Per plant | ≥3叶 ≥3 leaf | ≥3叶占比 ≥3 leaf ratio/% | 单株 Per plant/g | 分蘖 Tiller/g | 分蘖占比 Ratio of tiller/% | ||||
2019 | SD1 | 15.0RS | 342.0 | 2.7 b | 1.9 b | 70.6 a | 0.39 b | 0.19 b | 48.8 b |
7.5RS | 327.0 | 3.5 a | 2.4 a | 67.9 a | 0.48 a | 0.26 a | 53.9 a | ||
SD2 | 15.0RS | 370.5 | 2.1 b | 1.5 b | 71.9 b | 0.33 b | 0.14 b | 40.5 b | |
7.5RS | 361.5 | 2.8 a | 2.3 a | 81.9 a | 0.40 a | 0.19 a | 48.9 a | ||
SD3 | 15.0RS | 409.5 | 1.5 b | 0.9 b | 61.7 b | 0.22 b | 0.07 b | 31.6 b | |
7.5RS | 423.0 | 1.8 a | 1.4 a | 75.8 a | 0.26 a | 0.11 a | 42.6 a | ||
2020 | SD1 | 15.0RS | 328.5 | 2.9 b | 2.1 b | 71.3 a | 0.43 b | 0.21 b | 49.1 b |
7.5RS | 339.0 | 3.6 a | 2.6 a | 71.8 a | 0.49 a | 0.27 a | 55.9 a | ||
SD2 | 15.0RS | 369.0 | 2.3 b | 1.8 b | 78.2 b | 0.36 b | 0.16 b | 43.4 b | |
7.5RS | 366.0 | 2.9 a | 2.4 a | 84.0 a | 0.43 a | 0.22 a | 49.5 a | ||
SD3 | 15.0RS | 403.5 | 1.2 b | 0.8 b | 64.2 b | 0.23 b | 0.08 b | 33.5 b | |
7.5RS | 409.5 | 1.7 a | 1.3 a | 75.0 a | 0.28 a | 0.11 a | 39.5 a | ||
年份 Y | ns | ns | ns | ns | ** | ** | ns | ||
播期 SD | ** | ** | ** | ns | ** | ** | ** | ||
行距 RS | ns | ** | ** | ** | ** | ** | ** | ||
年份×播期Y×SD | ns | ** | ns | ns | ns | ns | ns | ||
年份×行距Y×RS | ns | ns | ns | ** | ns | ns | ns | ||
播期×行距SD×RS | ns | ns | ns | ns | ns | ns | ns | ||
年份×播期×行距Y×SD×RS | ns | ns | ns | ns | ns | ns | ns |
表2 不同处理下小麦的茎(蘖)数量及生物量
Table 2 Tillers number and biomass under different treatments
年份 Year | 处理 Treatment | 苗数 Seedling number/(104·hm-2) | 分蘖数Tillers number | 生物量Biomass | |||||
---|---|---|---|---|---|---|---|---|---|
单株 Per plant | ≥3叶 ≥3 leaf | ≥3叶占比 ≥3 leaf ratio/% | 单株 Per plant/g | 分蘖 Tiller/g | 分蘖占比 Ratio of tiller/% | ||||
2019 | SD1 | 15.0RS | 342.0 | 2.7 b | 1.9 b | 70.6 a | 0.39 b | 0.19 b | 48.8 b |
7.5RS | 327.0 | 3.5 a | 2.4 a | 67.9 a | 0.48 a | 0.26 a | 53.9 a | ||
SD2 | 15.0RS | 370.5 | 2.1 b | 1.5 b | 71.9 b | 0.33 b | 0.14 b | 40.5 b | |
7.5RS | 361.5 | 2.8 a | 2.3 a | 81.9 a | 0.40 a | 0.19 a | 48.9 a | ||
SD3 | 15.0RS | 409.5 | 1.5 b | 0.9 b | 61.7 b | 0.22 b | 0.07 b | 31.6 b | |
7.5RS | 423.0 | 1.8 a | 1.4 a | 75.8 a | 0.26 a | 0.11 a | 42.6 a | ||
2020 | SD1 | 15.0RS | 328.5 | 2.9 b | 2.1 b | 71.3 a | 0.43 b | 0.21 b | 49.1 b |
7.5RS | 339.0 | 3.6 a | 2.6 a | 71.8 a | 0.49 a | 0.27 a | 55.9 a | ||
SD2 | 15.0RS | 369.0 | 2.3 b | 1.8 b | 78.2 b | 0.36 b | 0.16 b | 43.4 b | |
7.5RS | 366.0 | 2.9 a | 2.4 a | 84.0 a | 0.43 a | 0.22 a | 49.5 a | ||
SD3 | 15.0RS | 403.5 | 1.2 b | 0.8 b | 64.2 b | 0.23 b | 0.08 b | 33.5 b | |
7.5RS | 409.5 | 1.7 a | 1.3 a | 75.0 a | 0.28 a | 0.11 a | 39.5 a | ||
年份 Y | ns | ns | ns | ns | ** | ** | ns | ||
播期 SD | ** | ** | ** | ns | ** | ** | ** | ||
行距 RS | ns | ** | ** | ** | ** | ** | ** | ||
年份×播期Y×SD | ns | ** | ns | ns | ns | ns | ns | ||
年份×行距Y×RS | ns | ns | ns | ** | ns | ns | ns | ||
播期×行距SD×RS | ns | ns | ns | ns | ns | ns | ns | ||
年份×播期×行距Y×SD×RS | ns | ns | ns | ns | ns | ns | ns |
图1 不同处理下冬小麦分蘖节的吲哚乙酸与玉米素核苷含量注:*和**分别表示7.5RS与15.0RS处理间在P<0.05和P<0.01水平差异显著;7.5RS-15.0RS表示7.5RS和15.0RS处理间的差值;图中不同颜色横线表示含量分布。
Fig. 1 Contents of IAA and ZR in wheat tiller nodes under different treatmentsNote:* and ** indicate significant differences between 7.5RS and 15.0RS treatments at P<0.05 and P<0.01 levels, respectively; 7.5RS-15.0RS represents difference value between 7.5RS and 15.0RS treatments; different color lines in the figure indicate the distribution of content.
图2 不同处理下冬小麦分蘖节的独角金内酯和赤霉素含量注:*和**分别表示7.5RS与15.0RS处理间在P<0.05 和P<0.01水平差异显著;7.5RS-15.0RS表示7.5RS和15.0RS处理间的差值;图中不同颜色横线表示含量分布。
Fig. 2 Contents of SLs and GA in wheat tillers node under different treatmentsNote:* and ** indicate significant differences between 7.5RS and 15.0RS treatments at P<0.05 and P<0.01 levels, respectively; 7.5RS-15.0RS represents difference value between 7.5RS and 15.0RS treatments; different color lines in the figure indicate the distribution of content.
图3 不同处理下冬小麦分蘖节的油菜素甾醇和细胞分裂素含量注:*和**分别表示7.5RS与15.0RS处理间在P<0.05和P<0.01水平差异显著;7.5RS-15.0RS表示7.5RS和15.0RS处理间的差值;图中不同颜色横线表示含量分布。
Fig. 3 Contents of BR and CTK in wheat tillers node under different treatmentsNote:* and ** indicate significant differences between 7.5RS and 15.0RS treatments at P<0.05 and P<0.01 levels, respectively; 7.5RS-15.0RS represents difference value between 7.5RS and 15.0RS treatments; different color lines in the figure indicate the distribution of content.
图4 不同处理下冬小麦分蘖节的IAA/ZR和SLs/GA注:*和**分别表示7.5RS与15.0RS处理间在P<0.05和P<0.01水平差异显著;7.5RS-15.0RS表示7.5RS和15.0RS处理间的差值;图中不同颜色横线表示比值分布。
Fig. 4 IAA/ZR and SLs/GA of wheat tillers node different treatmentsNote:* and ** indicate significant differences between 7.5RS and 15.0RS treatments at P<0.05 and P<0.01 levels, respectively; 7.5RS-15.0RS represents difference value between 7.5RS and 15.0RS treatments; different color lines in the figure indicate the distribution of ratio.
图5 不同处理下冬小麦分蘖节的BR/SLs和BR/CTK注:*和**分别表示7.5RS与15.0RS处理间在P<0.05和P<0.01水平差异显著;7.5RS-15.0RS表示7.5RS和15.0RS处理间的差值;图中不同颜色横线表示比值分布。
Fig. 5 BR/SLs and BR/CTK of wheat tillers node under different treatmentsNote:* and ** indicate significant differences between 7.5RS and 15.0RS treatments at P<0.05 and P<0.01 levels, respectively; 7.5RS-15.0RS represents difference value between 7.5RS and 15.0RS treatments; different color lines in the figure indicate the distribution of ratio.
图6 不同处理下冬小麦分蘖节的蔗糖含量注:*和**分别表示7.5RS与15.0RS处理间在P<0.05和P<0.01水平差异显著;7.5RS-15.0RS表示7.5RS和15.0RS处理间的差值;图中不同颜色横线表示含量分布。
Fig. 6 Content of SA in wheat tillers node under different treatmentsNote:* and ** indicate significant differences between 7.5RS and 15.0RS treatments at P<0.05 and P<0.01 levels, respectively; 7.5RS-15.0RS represents difference value between 7.5RS and 15.0RS treatments; different color lines in the figure indicate the distribution of content.
图7 缩行匀株条件下小麦分蘖数与分蘖节激素、蔗糖含量的相关性注:*表示在P<0.05水平显著相关。
Fig. 7 Correlation between tillers number and phytohormone, SA content of wheat tillers node under RRPE treatmentNote:* indicates significant correlation at P<0.05 level.
1 | ASSUERO S, LORENZO M, PÉREZ RAMÍREZ N, et al.. Tillering promotion by paclobutrazol in wheat and its relationship with plant carbohydrate status [J]. New Zealand J. Agric. Res., 2012, 55(4):347-358. |
2 | ZHUANG L L, GE Y, WANG J, et al.. Gibberellic acid inhibition of tillering in tall fescue involving crosstalks with cytokinins and transcriptional regulation of genes controlling axillary bud outgrowth [J/OL]. Plant. Sci., 2019, 287:110168 [2023-02-20]. . |
3 | BARBIER F F, DUN E A, KERR S C, et al.. An update on the signals controlling shoot branching [J]. Trends Plant. Sci., 2019, 24(3):220-236. |
4 | WANG Y, MIAO F, YAN L L. Branching shoots and spikes from lateral meristems in bread wheat [J/OL]. PLoS ONE, 2016, 11(3):e0151656 [2023-02-20]. . |
5 | WANG G, RÖMHELD V, LI C, et al.. Involvement of auxin and CKs in boron deficiency induced changes in apical dominance of pea plants (Pisum sativum L.) [J]. J. Plant Physiol., 2006, 163(6):591-600. |
6 | SHIMIZU-SATO S, TANAKA M, MORI H. Auxin-cytokinin interactions in the control of shoot branching [J]. Plant Mol. Biol., 2008, 69(4):429-435. |
7 | CAI T, MENG X P, LIU X L, et al.. Exogenous hormonal application regulates the occurrence of wheat tillers by changing endogenous hormones [J]. Front. Plant Sci., 2018, 9(12):1-17. |
8 | LIU Y, DING Y F, WANG Q S, et al.. Effect of plant growth regulators on growth of rice tiller bud and changes of endogenous hormones [J]. Acta Agron. Sin., 2011, 37(4):670-676. |
9 | LIU R F, HOU J, LI H F, et al.. Association of Ta D14-4D, a gene involved in strigolactone signaling, with yield contributing traits in wheat [J/OL]. Int. J. Mech. Sci., 2021, 22(7):3748 [2023-02-20]. . |
10 | KENROM T H, BRUTNELL T P, FINLASON S A. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways [J]. Plant Cell Environ., 2010, 33(1): 48-58. |
11 | SHANG Q S, WANG Y P, TANG H, et al.. Genetic, hormonal, and environmental control of tillering in wheat [J]. Crop. J., 2021, 9(5):986-991. |
12 | YU H, YANG J, CUI H, et al.. Effects of plant density on tillering in the weed grass Aegilops tauschii Coss. and its phytohormonal regulation [J]. Plant Physiol. Biochem., 2020, 157(1):70-78. |
13 | BASTOS L M, CARCIOCHI W, LOLLATO R P, et al.. Winter wheat yield response to plant density as a function of yield environment and tillering potential: a review and field studies [J]. Front. Plant Sci., 2020, 11(3):1-17. |
14 | ALI M, SHABBIR A, MAHMOOD Z, et al.. Case study: the effect of wheat density and cultivar on growth and reproduction of burr medic (Medicago polymorpha L.), wheat growth, and yield [J]. Weed Biol. Manag., 2021,22(1):3-12. |
15 | WALEY J M, SPARKES D L, FOULKES M J, et al.. The physiological response of winter wheat to reductions in plant density [J]. Ann. Appl. Biol., 2000, 137(2):165-177. |
16 | LIU X J, YIN B Z, HU Z H, et al.. Physiological response of flag leaf and yield formation of winter wheat under different spring restrictive irrigation regimes in the Haihe Plain, China [J]. J. Integr. Agric., 2021, 20(9):2343-2359. |
17 | YIN B Z, LIU P, HU Z H, et al.. Soil physical properties, nutrients, and crop yield with two-year tillage rotations under a winter wheat-summer maize double cropping system [J]. Int. J. Agric. Biol. Eng., 2022, 15(1):172-181. |
18 | LIU G B, ZHAO J Z, LIAO T, et al.. Histological dissection of cutting-inducible adventitious rooting in Platycladus orientalis reveals developmental endogenous hormonal homeostasis [J/OL]. Ind. Crop. Prod., 2021, 170:113817 [2023-02-20]. . |
19 | MAO Y X, CHAI X R, ZHONG M, et al.. Effects of nitrogen and magnesium nutrient on the plant growth, quality, photosynthetic characteristics, antioxidant metabolism, and endogenous hormone of Chinese kale (Brassica albograbra Bailey) [J/OL]. Sci. Hortic., 2022, 303:111243 [2023-02-20]. . |
20 | WANG W Q, HAO Q Q, TIAN F X, et al.. Cytokinin-regulated sucrose metabolism in stay-green wheat phenotype [J/OL]. PLoS ONE, 2016, 11(8):e0161351[2023-02-20]. . |
21 | MUSTROPH A, BOAMFA E I, LAARHOVEN L J J, et al.. Organ-specific analysis of the anaerobic primary metabolism in rice and wheat seedlings. I: dark ethanol production is dominated by the shoots [J]. Planta, 2006, 225(1):103-114. |
22 | HUSSAIN M Z, MEHMOOD M B, KHANN S F, et al.. Narrow row spacing ensures higher productivity of low tillering wheat cultivars [J]. Int. J. Agric. Biol., 2012, 14(3):413-418. |
23 | TILLEY M S, HEINIGER R W, CROZIER C R. Tiller initiation and its effects on yield and yield components in winter wheat [J]. Agron. J., 2019, 111(3):1323-1332. |
24 | FISCHER R A, MORENO RAMOS O H, ORYIZ MONASTERIO I, et al.. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: an update [J]. Field Crops. Res., 2019, 232:95-105. |
25 | ABICHOU M, DE SOLAN B, ANDRIEU B. Architectural response of wheat cultivars to row spacing reveals altered perception of plant density [J]. Front. Plant Sci., 2019, 10(8):1-14. |
26 | DE VITA P, COLECCHIA S A, PECORELLA I, et al.. Reduced inter-row distance improves yield and competition against weeds in a semi-dwarf durum wheat variety [J]. Eur. J. Agron., 2017, 85:69-77. |
27 | HILTBRUNNER J, LIEDGENS M, STAMP P, et al.. Effects of row spacing and liquid manure on directly drilled winter wheat in organic farming [J]. Eur. J. Agron., 2005, 22(4):441-447. |
28 | DWYER L M, STEWART D W, TOLLENAAR M. Changes in plant density dependence of leaf photosynthesis of maize (Zea mays L.) hybrids, 1959 to 1988 [J]. Can. J. Plant Sci., 1991, 71(1):1-11. |
29 | 董立强,王术,高光杰,等.直播条件下行距对不同穗型粳稻产量及倒伏性状的影响[J].华北农学报,2017,32(4):169-175. |
DONG L Q, WANG S, GAO G J, et al.. Effect of row distances on yields and lodging resistance of japonica rice cultivars with different panicle types under drill seeding [J]. Acta Agric. Boreali-Sin., 2017,32(4):169-175. | |
30 | BALLARÉ C L. Keeping up with the neighbours: phytochrome sensing and other signalling mechanisms [J].Trends Plant Sci., 1999, 4(5):97-102. |
31 | MCSTEEN P. Hormonal regulation of branching in grasses [J]. Plant Physiol., 2009, 149(1):46-55. |
32 | SAXENA P, HUANG B, BONOS S A, et al.. Photoperiod and temperature effects on rhizome production and tillering rate in tall fescue [Lolium arundinaceum (Schreb.) Darby.] [J]. Crop Sci., 2014, 54(3):1205-1210. |
33 | ALAM M M, HAMMER G L, VAN OOSTEROM E J, et al.. A physiological framework to explain genetic and environmental regulation of tillering in sorghum [J]. New Phytol., 2014, 203(1):155-167. |
34 | RAMEAU C, BERTHELOOT J, LEDUC N, et al.. Multiple pathways regulate shoot branching [J]. Front. Plant Sci., 2015, 5(1):1-15. |
35 | YIN Y H, WANG Z Y, MORA-GARCIA S, et al.. BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation [J]. Cell, 2002, 109(2):181-191. |
36 | BREWER P B, DUN E A, FERGUSON B J, et al.. Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and arabidopsis [J]. Plant Physiol., 2009, 150(1):482-493. |
37 | LO S F, YANG S Y, CHEN K T, et al.. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice [J]. Plant Cell, 2008, 20(10):2603-2618. |
38 | DUGGAN B L, RICHARDS R A, TSUYUZAKI H. Environmental effects on stunting and the expression of a tiller inhibition (tin) gene in wheat [J]. Func. Plant Biol., 2002, 29(1):45-53. |
39 | ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and sinaling in plants: conserved and novel mechanisms [J]. Annu. Rev. Plant Biol., 2006, 57(1):675-709. |
40 | RABOT A, HENRY C, BAAZIZ K BEN, et al.. Insight into the role of sugars in bud burst under light in the rose [J]. Plant Cell. Physiol., 2012, 53(6):1068-1082. |
41 | LIU J, CHENG X L, LIU P, et al.. miR156-targeted SBP-Box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat [J]. Plant Physiol., 2017, 174(3):1931-1948. |
42 | FANG Z M, JI Y Y, HU J, et al.. Strigolactones and brassinosteroids antagonistically regulate the stability of the D53-OsBZR1 complex to determine FC1 expression in rice tillering [J]. Mol. Plant, 2020, 13(4):586-597. |
[1] | 刘一凡, 刘少帅, 臧瑞, 李洋, 刘薇, 李婷婷, 刘旦梅, 刘登才, 李爱丽, 毛龙, 王翔, 耿帅锋. 168份小麦种质资源品质性状分析[J]. 中国农业科技导报, 2025, 27(9): 44-57. |
[2] | 吕彩霞, 李永福, 信会男, 李娜, 赖宁, 耿庆龙, 陈署晃. 缓释氮肥对滴灌冬小麦产量及土壤硝/铵态氮的影响[J]. 中国农业科技导报, 2025, 27(8): 179-186. |
[3] | 朱强, 车宗贤, 崔恒, 张久东, 包兴国. 绿肥替代氮肥对麦田温室气体的影响[J]. 中国农业科技导报, 2025, 27(7): 182-189. |
[4] | 胡懿, 公杰, 赵玮, 程蓉, 柳忠玉, 高世庆, 杨亚珍. 小麦PHY基因家族鉴定及热胁迫下表达分析[J]. 中国农业科技导报, 2025, 27(7): 30-43. |
[5] | 呼斯乐, 包玉龙, 图布新巴雅尔null, 陶际峰, 郭恩亮. 基于无人机高光谱和集成学习的春小麦叶绿素含量反演[J]. 中国农业科技导报, 2025, 27(6): 93-103. |
[6] | 史硕, 冯宇, 李亮, 孟瑞, 章延泽, 杨秀荣. 印度梨形孢介导小麦抗纹枯病的转录组分析及关键基因筛选[J]. 中国农业科技导报, 2025, 27(5): 133-145. |
[7] | 马蓓, 公杰, 杜银柯, 甘雨薇, 程蓉, 朱波, 易丽霞, 马锦绣, 高世庆. 小麦花粉孔发育相关TaINP1基因鉴定及表达分析[J]. 中国农业科技导报, 2025, 27(4): 22-35. |
[8] | 薛振宇, 张康康, 张元元, 闫强强, 姚立蓉, 张宏, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 汪军成. 优质抗旱小麦种质的筛选及功能基因检测[J]. 中国农业科技导报, 2025, 27(1): 35-49. |
[9] | 孙宪印, 牟秋焕, 米勇, 吕广德, 亓晓蕾, 孙盈盈, 尹逊栋, 王瑞霞, 吴科, 钱兆国, 赵岩, 高明刚. 基于GT双标图对小麦新品系的分类评价[J]. 中国农业科技导报, 2024, 26(7): 14-24. |
[10] | 鲍新跃, 陈红敏, 王伟伟, 唐益苗, 房兆峰, 马锦绣, 汪德州, 左静红, 姚占军. 小麦TaCOBL-5基因克隆及表达分析[J]. 中国农业科技导报, 2024, 26(6): 11-21. |
[11] | 阿什日轨, 张荣萍, 周宁宁, 冯婷煜, 周林, 马鹏, 阿尔力色, 廖雪环, 张坷塬. 硅钙钾镁肥和密度对水稻产量形成的影响[J]. 中国农业科技导报, 2024, 26(3): 155-163. |
[12] | 赵刚, 王淑英, 李尚中, 张建军, 党翼, 王磊, 李兴茂, 程万莉, 周刚, 倪胜利, 樊廷录. 黄土旱塬区近40年降水对冬小麦耗水和产量的影响[J]. 中国农业科技导报, 2024, 26(3): 164-173. |
[13] | 张宏, 李卫国, 张晓东, 卢必慧, 张琤琤, 李伟, 马廷淮. 基于HJ-1星和GF-1号影像融合特征提取冬小麦种植面积[J]. 中国农业科技导报, 2024, 26(2): 109-119. |
[14] | 张景云, 关峰, 石博, 万新建. 小麦根系分泌物对苦瓜幼苗生长及土壤生物学环境的影响[J]. 中国农业科技导报, 2024, 26(2): 181-190. |
[15] | 李双, 王爱英, 焦浈, 池青, 孙昊, 焦涛. 盐胁迫下不同抗性小麦幼苗生理生化特性及转录组分析[J]. 中国农业科技导报, 2024, 26(2): 20-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||