








中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (1): 16-25.DOI: 10.13304/j.nykjdb.2021.0896
吴长征1(
), 蒲文宣2, 盛崧1, 向禹澄1, 杨伟芹1, 李文瑞1, 黄平俊2(
), 刘来华1(
)
收稿日期:2021-10-20
接受日期:2022-04-12
出版日期:2023-01-15
发布日期:2023-04-17
通讯作者:
黄平俊,刘来华
作者简介:吴长征E-mail: wuchangzheng@cau.edu.cn
基金资助:
Changzheng WU1(
), Wenxuan PU2, Song SHENG1, Yucheng XIANG1, Weiqin YANG1, Wenrui LI1, Pingjun HUANG2(
), Laihua LIU1(
)
Received:2021-10-20
Accepted:2022-04-12
Online:2023-01-15
Published:2023-04-17
Contact:
Pingjun HUANG,Laihua LIU
摘要:
早春低温是限制植物生长的环境因子之一,低温胁迫将导致作物严重减产、品质下降、养分利用效率降低。目前,相关研究多关注于温度在15 ℃以下的植物生理及分子调控过程网络。增施氮肥或激素等能提高植物耐寒能力,总结了亚适低温对植物的生长表型、代谢生理以及氮利用的影响,讨论了植物响应亚适低温并调控氮吸收利用的生物学机制,以期为深入解析植物在亚适低温下的氮高效利用及其分子生理机制提供参考。
中图分类号:
吴长征, 蒲文宣, 盛崧, 向禹澄, 杨伟芹, 李文瑞, 黄平俊, 刘来华. 亚适低温影响植物生长及氮营养的分子生理机制研究进展[J]. 中国农业科技导报, 2023, 25(1): 16-25.
Changzheng WU, Wenxuan PU, Song SHENG, Yucheng XIANG, Weiqin YANG, Wenrui LI, Pingjun HUANG, Laihua LIU. Research Advance on Molecular Physiological Mechanisms of the Effect of Suboptimal Low Temperatures on Plant Growth and Nitrogen Nutrition[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 16-25.
| 物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法 Method | 通路 Pathway | 参考文献 Reference |
|---|---|---|---|---|---|
水稻 Rice (Oryza sativa L.) | 地上部 Shoot | 21/13 ℃(日/夜 day/night),24 h | 转录组学 Transcriptomics | 碳水化合物代谢、转运、次生代谢 Carbohydrate metabolism, transport, and secondary metabolism | [ |
幼苗 Seedling | 13 ℃, 7 d | 转录组学 Transcriptomics | 细胞分裂和扩张、细胞壁的完整性和延展性、膜转运能力 Cell division and expansion, cell wall integrity and extensibility, and membrane transport capacity | [ | |
地上部 Shoot | 17 ℃,15 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 促分裂活化蛋白激酶(MAPK)信号、玉米素合成、植物激素信号传导 Mitogen-activated protein kinase(MAPK) signaling, zeatin biosynthesis, and plant hormone signal transduction pathways | [ | |
叶片 Leaf | 12~14 ℃,48、72、96 h | 蛋白组学 Proteomics | 转运、光合作用、组蛋白和维生素B生物合成蛋白 Transport, photosynthesis, generation of precursor metabolites and energy, histones and vitamin B biosynthetic proteins | [ | |
叶片 Leaf | 15 ℃,24 h | 蛋白组学 Proteomics | 硫胺生物合成的酶、磷酸核酮糖激酶前体 Thiamine biosynthetic enzyme, phosphoribulokinase precursor | [ | |
细胞 Cell | 12℃,3 d | 蛋白组学 Proteomics | 蛋白代谢过程、转运 Protein metabolic process, transport | [ | |
幼苗 Seedling | 8 ℃,3 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 光敏色素、脱植基叶绿素加氧酶活性、葡聚糖分支酶活性、次生代谢 Phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme, biosynthesis of secondary metabolites | [ |
表1 不同温度处理下烟草及水稻组学研究
Table 1 Omics research of tobacco and rice at different temperature
| 物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法 Method | 通路 Pathway | 参考文献 Reference |
|---|---|---|---|---|---|
水稻 Rice (Oryza sativa L.) | 地上部 Shoot | 21/13 ℃(日/夜 day/night),24 h | 转录组学 Transcriptomics | 碳水化合物代谢、转运、次生代谢 Carbohydrate metabolism, transport, and secondary metabolism | [ |
幼苗 Seedling | 13 ℃, 7 d | 转录组学 Transcriptomics | 细胞分裂和扩张、细胞壁的完整性和延展性、膜转运能力 Cell division and expansion, cell wall integrity and extensibility, and membrane transport capacity | [ | |
地上部 Shoot | 17 ℃,15 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 促分裂活化蛋白激酶(MAPK)信号、玉米素合成、植物激素信号传导 Mitogen-activated protein kinase(MAPK) signaling, zeatin biosynthesis, and plant hormone signal transduction pathways | [ | |
叶片 Leaf | 12~14 ℃,48、72、96 h | 蛋白组学 Proteomics | 转运、光合作用、组蛋白和维生素B生物合成蛋白 Transport, photosynthesis, generation of precursor metabolites and energy, histones and vitamin B biosynthetic proteins | [ | |
叶片 Leaf | 15 ℃,24 h | 蛋白组学 Proteomics | 硫胺生物合成的酶、磷酸核酮糖激酶前体 Thiamine biosynthetic enzyme, phosphoribulokinase precursor | [ | |
细胞 Cell | 12℃,3 d | 蛋白组学 Proteomics | 蛋白代谢过程、转运 Protein metabolic process, transport | [ | |
幼苗 Seedling | 8 ℃,3 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 光敏色素、脱植基叶绿素加氧酶活性、葡聚糖分支酶活性、次生代谢 Phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme, biosynthesis of secondary metabolites | [ |
| 物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法Method | 通路 Pathway | 参考文献 Reference |
|---|---|---|---|---|---|
水稻Rice (Oryza sativa L.) | 幼苗 Seedling | 6 ℃,6、24 h | 蛋白组学 Proteomics | 光合作用、光呼吸、信号传导、氧化还原平衡 Photosynthesis, photorespiration, signal transduction and redox homeostasis | [ |
烟草Tobacco (Nicotiana tabacum L.) | 叶片 Leaf | 4 ℃,12、24 h | 转录组学 Transcriptomics | 次生代谢物合成、光合作用、植物激素信号传导 Biosynthesis of secondary metabolites, photosynthesis, plant hormone signal transduction | [ |
叶片 Leaf | 4 ℃,24 h | 转录组学 Transcriptomics | 核糖体、植物激素信号传导、MAPK信号通路、cAMP信号通路 Ribosome, plant hormone signal transduction, MAPK signaling pathway and cAMP signaling pathway | [ | |
叶片 Leaf | 4 ℃,0、12、24 h | 转录组学 Transcriptomics | 次生代谢物合成 Biosynthesis of secondary metabolites | [ | |
叶片 Leaf | 6 ℃,0、12、24、48 h | 转录组学 Transcriptomics | 细胞壁代谢、转录因子、泛素蛋白酶系统(UPS)及 信号转导、植物昼夜节律 Cell wall metabolism, transcription factors, ubiquitinproteasome system (UPS) and signaling, and plant circadian clock | [ | |
叶片 Leaf | 4 ℃,6 h | 转录组学 Transcriptomics | 信号转导、碳水化合物代谢、苯丙素生物合成 Signal transduction, carbohydrate metabolism and phenylpropanoid biosynthesis | [ | |
叶片 Leaf | 4 ℃,4 h | 蛋白组学 Proteomics | 光合作用、蛋白质加工、氧化还原平衡、信号转导、 细胞分裂/周期、碳和能量代谢 Photosynthesis, protein processing, redox homeostasis, signal transduction, translation, cell division/cycle, and metabolisms of carbon and energy | [ | |
叶片 Leaf | 18 ℃,1、5、10 d | 转录组学 Transcriptomics | 光合作用、淀粉和糖代谢、植物激素信号传导、 核糖体 Photosynthesis, metabolisms of starch and glucose, plant hormone signal transduction, ribosome | 未发表Unpublished |
表1 不同温度处理下烟草及水稻组学研究 (续表Continued)
Table 1 Omics research of tobacco and rice at different temperature
| 物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法Method | 通路 Pathway | 参考文献 Reference |
|---|---|---|---|---|---|
水稻Rice (Oryza sativa L.) | 幼苗 Seedling | 6 ℃,6、24 h | 蛋白组学 Proteomics | 光合作用、光呼吸、信号传导、氧化还原平衡 Photosynthesis, photorespiration, signal transduction and redox homeostasis | [ |
烟草Tobacco (Nicotiana tabacum L.) | 叶片 Leaf | 4 ℃,12、24 h | 转录组学 Transcriptomics | 次生代谢物合成、光合作用、植物激素信号传导 Biosynthesis of secondary metabolites, photosynthesis, plant hormone signal transduction | [ |
叶片 Leaf | 4 ℃,24 h | 转录组学 Transcriptomics | 核糖体、植物激素信号传导、MAPK信号通路、cAMP信号通路 Ribosome, plant hormone signal transduction, MAPK signaling pathway and cAMP signaling pathway | [ | |
叶片 Leaf | 4 ℃,0、12、24 h | 转录组学 Transcriptomics | 次生代谢物合成 Biosynthesis of secondary metabolites | [ | |
叶片 Leaf | 6 ℃,0、12、24、48 h | 转录组学 Transcriptomics | 细胞壁代谢、转录因子、泛素蛋白酶系统(UPS)及 信号转导、植物昼夜节律 Cell wall metabolism, transcription factors, ubiquitinproteasome system (UPS) and signaling, and plant circadian clock | [ | |
叶片 Leaf | 4 ℃,6 h | 转录组学 Transcriptomics | 信号转导、碳水化合物代谢、苯丙素生物合成 Signal transduction, carbohydrate metabolism and phenylpropanoid biosynthesis | [ | |
叶片 Leaf | 4 ℃,4 h | 蛋白组学 Proteomics | 光合作用、蛋白质加工、氧化还原平衡、信号转导、 细胞分裂/周期、碳和能量代谢 Photosynthesis, protein processing, redox homeostasis, signal transduction, translation, cell division/cycle, and metabolisms of carbon and energy | [ | |
叶片 Leaf | 18 ℃,1、5、10 d | 转录组学 Transcriptomics | 光合作用、淀粉和糖代谢、植物激素信号传导、 核糖体 Photosynthesis, metabolisms of starch and glucose, plant hormone signal transduction, ribosome | 未发表Unpublished |
| 1 | DING Y L, SHI Y T, YANG S H. Molecular regulation of plant responses to environmental temperatures [J]. Mol. Plant, 2020, 13(4): 544-564. |
| 2 | LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980 [J]. Science, 2011, 333(6042): 616-620. |
| 3 | GAO H, YANG W J, LI C X, et al.. Gene expression and K+ uptake of two tomato cultivars in response to sub-optimal temperature [J]. Plants, 2020, 9(1): 65 [2022-09-13]. . |
| 4 | CHINNUSAMY V, ZHU J, ZHU J. Cold stress regulation of gene expression in plants [J]. Trends Plant Sci., 2007, 12(10): 444-451. |
| 5 | JOUYBAN Z, HASANZADE R, SHARAFI S. Chilling stress in plants [J]. Int. J. Agric. Crop Sci., 2013, 5(24): 2961-2968. |
| 6 | LU J Y, NAWAZ M A, WEI N N, et al.. Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon [J]. Hortic. Plant J., 2020, 6(1): 49-60. |
| 7 | ALLEN D J, ORT D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants [J]. Trends Plant Sci., 2001, 6(1): 36-42. |
| 8 | MCALLISTER C H, BEATTY P H, GOOD A G. Engineering nitrogen use efficient crop plants: the current status [J]. Plant Biotechnol. J., 2012, 10(9): 1011-1025. |
| 9 | NASHOLM T, KIELLAND K, GANETEG U. Uptake of organic nitrogen by plants [J]. New Phytol., 2009, 182(1): 31-48. |
| 10 | VAN PLOEG D, HEUVELINK E. Influence of sub-optimal temperature on tomato growth and yield: a review [J]. J. Hortic. Sci. Biotechnol., 2005, 80(6): 652-659. |
| 11 | ANWAR A, LI Y, HE C, et al.. 24-epibrassinolide promotes NO 3 - and NH 4 + ion flux rate and NRT1 gene expression in cucumber under suboptimal root zone temperature [J]. BMC Plant Biol., 2019, 19(1): 453 [2022-09-13]. . |
| 12 | ANWAR A, DI Q, YAN Y, et al.. Exogenous 24-epibrassinolide alleviates the detrimental effects of suboptimal root zone temperature in cucumber seedlings [J]. Arch. Agron. Soil Sci., 2019, 65(14): 1927-1940. |
| 13 | BAI L Q, DENG H H, ZHANG X C, et al.. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures [J]. PLoS One, 2016, 11(5): e156188 [2022-09-13]. . |
| 14 | 陶乐圆, 刘智蕾, 刘婷婷, 等. 营养生长期低温持续时间与水稻生长恢复的关系[J].生态学杂志, 2018, 37(12): 3610-3616. |
| TAO L Y, LIU Z L, LIU T T, et al.. The relationship between low temperature duration and growth recovery of rice during the vegetative growth stage [J]. Chin. J. Ecol., 2018, 37(12): 3610-3616. | |
| 15 | JIA Y, WANG J, QU Z, et al.. Effects of low water temperature during reproductive growth on photosynthetic production and nitrogen accumulation in rice [J]. Field Crops Res., 2019, 242: 107587 [2022-09-13]. . |
| 16 | GILMOUR S J, HAJELA R K, THOMASHOW M F. Cold acclimation in Arabidopsis thaliana1 [J]. Plant Physiol., 1988, 87(3): 745-750. |
| 17 | KENCHANMANE R S K, BARNES A C, SCHNABLE J C, et al.. Low-temperature tolerance in land plants: are transcript and membrane responses conserved? [J]. Plant Sci., 2018, 276: 73-86. |
| 18 | GAZQUEZ A, MAIALE S J, RACHOSKI M M, et al.. Physiological response of multiple contrasting rice (Oryza sativa L.) cultivars to suboptimal temperatures [J]. J. Agron. Crop Sci., 2015, 201(2): 117-127. |
| 19 | GONG Z Z, XIONG L M, SHI H Z, et al.. Plant abiotic stress response and nutrient use efficiency [J]. Sci. China Life Sci., 2020, 63(5): 635-674. |
| 20 | YAN Q Y, DUAN Z Q, MAO J D, et al.. Low root zone temperature limits nutrient effects on cucumber seedling growth and induces adversity physiological response [J]. J. Integr. Agric., 2013, 12(8): 1450-1460. |
| 21 | ANDREWS M, RAVEN J A, LEA P J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants [J]. Ann. Appl. Biol., 2013, 163(2): 174-199. |
| 22 | GEIGER M, HAAKE V, LUDEWIG F, et al.. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco [J]. Plant Cell Environ., 1999, 22(10): 1177-1199. |
| 23 | LIU G Y, DU Q J, LI J M. Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings [J]. Sci. Hortic., 2017, 214: 41-50. |
| 24 | WANG P, WANG Z K, PAN Q C, et al.. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis [J]. J. Exp. Bot., 2019, 70(6): 1859-1873. |
| 25 | WANG J, ZHANG J B, MÜLLER C, et al.. Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau [J]. J. Soils Sediments, 2017, 17(2): 423-431. |
| 26 | CLARKSON D T, HOPPER M J, JONES H P. The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne. I. solutions containing both NO 3 - and NH 4 + [J]. Plant Cell Environ., 1986(9): 535-545. |
| 27 | KHUANKAEW T, TANABATA S, YAMAMOTO M, et al.. Temperature affects N and C assimilation and translocation in Curcuma alismatifolia gagnep [J]. J. Hortic. Sci. Biotechnol., 2014, 89(3): 287-292. |
| 28 | CAO X C, CHU Z, ZHU L F, et al.. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis [J]. Plant Physiol. Biochem., 2017, 112: 251-260. |
| 29 | MALAGOLI P, LAINÉ P, LE DEUNFF E, et al.. Modeling nitrogen uptake in oilseed rape cv capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data [J]. Plant Physiol., 2004, 134(1): 388-400. |
| 30 | LAINE P, OURRY A, MACDUFF J, et al.. Kinetic-parameters of nitrate uptake by different catch crop species-effects of low-temperatures or previous nitrate starvation [J]. Physiol. Plant, 1993, 88(1): 85-92. |
| 31 | WANG M Y, SIDDIQI M Y, RUTH T J, et al.. Ammonium uptake by rice roots [J]. Plant Physiol., 1993, 103(4): 1259-1267. |
| 32 | JUNG J, DOMIJAN M, KLOSE C, et al.. Phytochromes function as thermosensors in Arabidopsis [J]. Science, 2016, 354(6314): 886-889. |
| 33 | LEGRIS M, KLOSE C, BURGIE E S, et al.. Phytochrome B integrates light and temperature signals in Arabidopsis [J]. Science, 2016, 354 (6314): 897-900. |
| 34 | JIANG B, SHI Y, ZHANG X, et al.. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis [J]. Proc. Nat. Acad. Sci. USA, 2017, 114(32): E6695-E6702. |
| 35 | DONG X, YAN Y, JIANG B, et al.. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures [J]. EMBO J., 2020, 39 (13): e103630 [2022-09-13]. . |
| 36 | POOAM M, DIXON N, HILVERT M, et al.. Effect of temperature on the Arabidopsis cryptochrome photocycle [J]. Physiol. Plant, 2021, 172 (3): 1653-1661. |
| 37 | LI Y, SHI Y, LI M, et al.. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis [J]. Plant Cell, 2021, 33(11): 3555-3573. |
| 38 | ANDREWS M. The partitioning of nitrate assimilation between root and shoot of higher plants [J]. Plant Cell Environ., 1986, 9(7): 511-519. |
| 39 | ZHANG G B, MENG S, GONG J M. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation [J]. Int. J. Mol. Sci., 2018, 19 (11): 3535 [2022-09-13]. . |
| 40 | ZHANG G B, YI H Y, GONG J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-Off between growth and environmental adaptation [J]. Plant Cell, 2014, 26(10): 3984-3998. |
| 41 | HO C H, LIN S H, HU H C, et al.. CHL1 functions as a nitrate sensor in plants [J]. Cell, 2009, 138(6): 1184-1194. |
| 42 | VIDAL E A, ALVAREZ J M, ARAUS V, et al.. Nitrate in 2020: thirty years from transport to signaling networks [J]. Plant Cell, 2020, 32(7): 2094-2119. |
| 43 | LV X Z, GE S B, JALAL AHAMMED G, et al.. Crosstalk between nitric oxide and MPK1/2 mediates cold acclimation-induced chilling tolerance in tomato [J]. Plant Cell Physiol., 2017, 58(11): 1963-1975. |
| 44 | BOUGUYON E, BRUN F, MEYNARD D, et al.. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1 [J]. Nature Plants, 2015, 1(3): 15015 [2022-09-13]. . |
| 45 | GAZQUEZ A, VILAS J M, COLMAN LERNER J E, et al.. Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity [J]. Plant Physiol. Biochem., 2018, 127: 537-552. |
| 46 | DAMETTO A, SPEROTTO R A, ADAMSKI J M, et al.. Cold tolerance in rice germinating seeds revealed by deep RNA-seq analysis of contrasting indica genotypes [J]. Plant Sci., 2015, 238: 1-12. |
| 47 | JIA Y, LIU H L, QU Z J, et al.. Transcriptome sequencing and iTRAQ of different rice cultivars provide insight into molecular mechanisms of cold-tolerance response in japonica rice [J]. Rice, 2020, 13(1): 43 [2022-09-13]. . |
| 48 | NEILSON K A, MARIANI M, HAYNES P A. Quantitative proteomic analysis of cold-responsive proteins in rice [J]. Proteomics, 2011, 11 (9): 1696-1706. |
| 49 | CUI S X, HUANG F, WANG J, et al.. A proteomic analysis of cold stress responses in rice seedlings [J]. Proteomics, 2005, 5(12): 3162-3172. |
| 50 | GAMMULLA C G, PASCOVICI D, ATWELL B J, et al.. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress [J]. Proteomics, 2010, 10 (16): 3001-3019. |
| 51 | WANG W X, DU J, CHEN L M, et al.. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage [J]. BMC Genomics, 2021, 22 (1): 176 [2022-09-13]. . |
| 52 | YAN S P, ZHANG Q Y, TANG Z C, et al.. Comparative proteomic analysis provides new insights into chilling stress responses in rice [J]. Mol. Cell. Proteomics, 2006, 5(3): 484-496. |
| 53 | ZHOU P, KHAN R, LI Q, et al.. Transcriptomic analyses of chilling stress responsiveness in leaves of tobacco (Nicotiana tabacum) seedlings [J]. Plant Mol. Biol. Rep., 2020, 38(1): 1-13. |
| 54 | JIN J J, ZHANG H, ZHANG J F, et al.. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum [J]. BMC Genomics, 2017, 18(1): 496 [2022-09-13]. . |
| 55 | ZHOU P, LI Q, LIU G, et al.. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress [J]. Funct. Plant Biol., 2019, 46 (1): 30-43. |
| 56 | HU R, ZHU X, XIANG S, et al.. Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco [J]. Biochem. Biophys. Res. Commun., 2016, 469 (3): 535-541. |
| 57 | XU J, CHEN Z, WANG F, et al.. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation [J]. Sci. Rep., 2020, 10(1): 5242 [2022-09-13]. . |
| 58 | YAN J, CAO Z. Proteomic analysis of cold stress responses in tobacco seedlings [J]. Afr. J. Biotechnol., 2011, 10(82): 18991-19004. |
| 59 | HANNAH M A, HEYER A G, HINCHA D K. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana [J]. PLoS Genet., 2005, 1(2): e26 [2022-09-13]. . |
| 60 | SHIBASAKI K, UEMURA M, TSURUMI S, et al.. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms [J]. Plant Cell, 2009, 21(12): 3823-3838. |
| 61 | HUANG N C, LIU K H, LO H J, et al.. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake [J]. Plant Cell, 1999, 11(8): 1381-1392. |
| 62 | KANNO Y, KAMIYA Y, SEO M. Nitrate does not compete with abscisic acid as a substrate of AtNPF4.6/NRT1.2/AIT1 in Arabidopsis [J]. Plant Signal. Behav., 2014, 8(12): e26624 [2022-09-13]. . |
| 63 | LEE H G, SEO P J. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis [J]. Plant J., 2015, 82(6): 962-977. |
| 64 | CHEN C C, LIANG C S, KAO A L, et al.. HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis [J]. J. Exp. Bot., 2010, 61(12): 3305-3320. |
| 65 | DING Y, LI H, ZHANG X, et al.. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis [J]. Dev. Cell., 2015, 32(3): 278-289. |
| 66 | KREPS J A, WU Y, CHANG H, et al.. Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress [J]. Plant Physiol., 2002, 130 (4): 2129-2141. |
| 67 | MEGA R, MEGURO-MAOKA A, ENDO A, et al.. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice(Oryza sativa L.) [J]. Sci. Rep., 2015, 5(1): 13819 [2022-09-13]. . |
| [1] | 毛桃桃, 赵小强, 柏小栋, 余斌. 低温胁迫对玉米幼苗光合性能、抗氧化酶系统及相关基因表达的影响[J]. 中国农业科技导报, 2025, 27(5): 49-60. |
| [2] | 马蓓, 公杰, 杜银柯, 甘雨薇, 程蓉, 朱波, 易丽霞, 马锦绣, 高世庆. 小麦花粉孔发育相关TaINP1基因鉴定及表达分析[J]. 中国农业科技导报, 2025, 27(4): 22-35. |
| [3] | 蒋沛含, 杨晓楠, 杨晨旭, 张爱军. 基于偏最小二乘回归的谷子冠层氮素含量高光谱估测研究[J]. 中国农业科技导报, 2024, 26(6): 91-101. |
| [4] | 张绥林, 李洋, 李琰, 张赟齐, 齐建勋, 侯智霞. 核桃晚霜危害特性及影响机制研究进展[J]. 中国农业科技导报, 2024, 26(4): 18-26. |
| [5] | 苗宇, 王婕, 赵尧尧, 张丽佳, 刘美君. 低温胁迫后紫花苜蓿叶片光合作用的恢复特性研究[J]. 中国农业科技导报, 2024, 26(2): 80-89. |
| [6] | 杨朝阳, 徐鹏, 苑铁键, 李晓琼, 彭冬根, 张振涛, 杨俊玲, 丁闯闯, 朱纪洲. 杂交构树低温干燥特性及品质研究[J]. 中国农业科技导报, 2024, 26(11): 157-170. |
| [7] | 蒲子天, 王菲, 李畅, 王鑫鑫. 丛枝菌根真菌影响植物氮素吸收和转运的研究进展[J]. 中国农业科技导报, 2024, 26(11): 171-179. |
| [8] | 刘威, 赵园园, 陈小龙, 史宏志. 土壤含水率对豫中植烟土壤微生物群落多样性及氮循环功能基因丰度的影响[J]. 中国农业科技导报, 2024, 26(1): 214-225. |
| [9] | 钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121. |
| [10] | 单莉莉. 孕穗期低温对水稻叶片生理、产量的影响及外源褪黑素缓解效应[J]. 中国农业科技导报, 2023, 25(9): 23-33. |
| [11] | 钟鹏, 苗丽丽, 王建丽, 刘杰, 王晓龙. 油莎豆种质资源低温胁迫生理响应与耐寒性评价[J]. 中国农业科技导报, 2023, 25(9): 83-96. |
| [12] | 朱莹雪, 王琪, 马献发, 焦玉生, 高金旭, 毛卫佳, 付佳, 孙雪岽, 元野. 烤烟生长期叶片颜色特征值及其氮素诊断模型[J]. 中国农业科技导报, 2023, 25(7): 54-62. |
| [13] | 张冬梦, 姚栋萍, 吴俊, 罗秋红, 庄文, 刘雄伦, 邓启云, 柏斌. 灌浆期田间自然低温对稻米蒸煮食味品质的影响[J]. 中国农业科技导报, 2023, 25(6): 144-153. |
| [14] | 张盼盼, 李川, 张美微, 赵霞, 牛军, 乔江方. 氮肥减施下添加硝化抑制剂对夏玉米氮素累积转运和产量的影响[J]. 中国农业科技导报, 2023, 25(6): 181-189. |
| [15] | 闫艺薇, 田洁. 大蒜NAC基因家族的鉴定与低温表达分析[J]. 中国农业科技导报, 2023, 25(4): 67-76. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||