Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (12): 26-34.DOI: 10.13304/j.nykjdb.2022.0283
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Wenjun YANG(), Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN(
)
Received:
2022-04-10
Accepted:
2022-05-17
Online:
2023-12-15
Published:
2023-12-12
Contact:
Quanjia CHEN
杨文俊(), 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家(
)
通讯作者:
陈全家
作者简介:
杨文俊 E-mail: wenjunyang2022@163.com;
基金资助:
CLC Number:
Wenjun YANG, Yuting ZHU, Jie ZHANG, Kaixiang XU, Congmin WEI, Quanjia CHEN. Meta-analysis of QTL for Salt Tolerance-related Traits at Seeding Stage in Cotton[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 26-34.
杨文俊, 朱雨婷, 张杰, 徐凯祥, 韦聪敏, 陈全家. 棉花苗期耐盐相关性状QTL元分析[J]. 中国农业科技导报, 2023, 25(12): 26-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0283
性状 Trait | QTL数量 QTL number | 作图群体 Mapping population | 群体大小 Population size | 群体类型 Population type | 置信度 Logarithm of odds | 贡献率 R2/% |
---|---|---|---|---|---|---|
叶绿素含量 Chlorophyll content | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.80 | 11.60~13.40 |
7 | TM-1×NM24016 | 97 | RIL | 2.54~6.43 | 11.32~20.54 | |
10 | CCRI35×NH | 277 | F2:3 | 2.56~3.97 | 0.02~6.84 | |
电导率 Electrical conductivity | 14 | CCRI35×NH | 277 | F2:3 | 2.51~4.58 | 0.32~8.29 |
鲜重 Fresh weight | 23 | CCRI35×NH | 277 | F2:3 | 2.51~6.05 | 0.01~9.87 |
发芽率 Germination rate | 6 | CCRI35×NH | 277 | F2:3 | 2.54~3.06 | 0.67~5.78 |
叶干重 Leaf dry weight | 13 | CCRI35×NH | 277 | F2:3 | 2.65~4.21 | 0.66~10.50 |
叶鲜重 Leaf fresh weight | 5 | CCRI35×NH | 277 | F2:3 | 2.61~3.25 | 3.09~4.97 |
丙二醛含量 Malondialdehyde content | 11 | CCRI35×NH | 277 | F2:3 | 2.65~5.13 | 0.09~8.41 |
株高 Plant height | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.00 | 7.05~13.30 |
6 | TM-1×NM24016 | 97 | RIL | 2.59~5.60 | 11.43~16.54 | |
光合速率 Photosynthetic rate | 3 | TM-1×NM24016 | 97 | RIL | 3.09~4.71 | 9.43~11.21 |
根干重 Root dry weight | 5 | TM-1×NM24016 | 97 | RIL | 2.78~4.65 | 9.54~14.32 |
根鲜重 Root fresh weight | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.90~3.10 | 5.80~9.58 |
8 | TM-1×NM24016 | 97 | RIL | 2.55~6.53 | 11.32~20.43 | |
主根长Root length | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.50~18.44 |
相对含水量 Relative water content | 11 | CCRI35×NH | 277 | F2:3 | 2.58~4.05 | 0.01~4.13 |
气孔导度 Stomatal conductance | 3 | TM-1×NM24016 | 97 | RIL | 2.43~3.05 | 9.43~12.43 |
地上部干重 Shoot dry weight | 8 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.10 | 3.54~15.16 |
6 | TM-1×NM24016 | 97 | RIL | 3.09~6.99 | 11.34~15.79 | |
地上部鲜重 Shoot fresh weight | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.35~3.43 |
6 | TM-1×NM24016 | 97 | RIL | 2.90~5.43 | 7.87~17.32 | |
茎长 Stem length | 15 | CCRI35×NH | 277 | F2:3 | 2.54~4.26 | 0.03~7.53 |
饱和叶重 Saturated leaf weight | 15 | CCRI35×NH | 277 | F2:3 | 2.53~5.12 | 0.01~7.60 |
蒸腾作用 Transpiration | 3 | TM-1×NM24016 | 97 | RIL | 3.08~4.65 | 9.05~11.45 |
Table 1 Integration of QTLs data for the salt tolerance related trait at seeding stage in cotton
性状 Trait | QTL数量 QTL number | 作图群体 Mapping population | 群体大小 Population size | 群体类型 Population type | 置信度 Logarithm of odds | 贡献率 R2/% |
---|---|---|---|---|---|---|
叶绿素含量 Chlorophyll content | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.80 | 11.60~13.40 |
7 | TM-1×NM24016 | 97 | RIL | 2.54~6.43 | 11.32~20.54 | |
10 | CCRI35×NH | 277 | F2:3 | 2.56~3.97 | 0.02~6.84 | |
电导率 Electrical conductivity | 14 | CCRI35×NH | 277 | F2:3 | 2.51~4.58 | 0.32~8.29 |
鲜重 Fresh weight | 23 | CCRI35×NH | 277 | F2:3 | 2.51~6.05 | 0.01~9.87 |
发芽率 Germination rate | 6 | CCRI35×NH | 277 | F2:3 | 2.54~3.06 | 0.67~5.78 |
叶干重 Leaf dry weight | 13 | CCRI35×NH | 277 | F2:3 | 2.65~4.21 | 0.66~10.50 |
叶鲜重 Leaf fresh weight | 5 | CCRI35×NH | 277 | F2:3 | 2.61~3.25 | 3.09~4.97 |
丙二醛含量 Malondialdehyde content | 11 | CCRI35×NH | 277 | F2:3 | 2.65~5.13 | 0.09~8.41 |
株高 Plant height | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.00 | 7.05~13.30 |
6 | TM-1×NM24016 | 97 | RIL | 2.59~5.60 | 11.43~16.54 | |
光合速率 Photosynthetic rate | 3 | TM-1×NM24016 | 97 | RIL | 3.09~4.71 | 9.43~11.21 |
根干重 Root dry weight | 5 | TM-1×NM24016 | 97 | RIL | 2.78~4.65 | 9.54~14.32 |
根鲜重 Root fresh weight | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.90~3.10 | 5.80~9.58 |
8 | TM-1×NM24016 | 97 | RIL | 2.55~6.53 | 11.32~20.43 | |
主根长Root length | 4 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.50~18.44 |
相对含水量 Relative water content | 11 | CCRI35×NH | 277 | F2:3 | 2.58~4.05 | 0.01~4.13 |
气孔导度 Stomatal conductance | 3 | TM-1×NM24016 | 97 | RIL | 2.43~3.05 | 9.43~12.43 |
地上部干重 Shoot dry weight | 8 | CRI-12×AD3-00 | 188 | F2:3 | 2.80~3.10 | 3.54~15.16 |
6 | TM-1×NM24016 | 97 | RIL | 3.09~6.99 | 11.34~15.79 | |
地上部鲜重 Shoot fresh weight | 2 | CRI-12×AD3-00 | 188 | F2:3 | 2.70~2.90 | 2.35~3.43 |
6 | TM-1×NM24016 | 97 | RIL | 2.90~5.43 | 7.87~17.32 | |
茎长 Stem length | 15 | CCRI35×NH | 277 | F2:3 | 2.54~4.26 | 0.03~7.53 |
饱和叶重 Saturated leaf weight | 15 | CCRI35×NH | 277 | F2:3 | 2.53~5.12 | 0.01~7.60 |
蒸腾作用 Transpiration | 3 | TM-1×NM24016 | 97 | RIL | 3.08~4.65 | 9.05~11.45 |
编号 Code | 染色体 Chromosome | 原始性状(数量) Original trait(amount) | AIC值 AIC value | 位置 Position/cM | 置信区间 Confidence interval/cM | 图距 Map distance/cM | 侧翼标记 Flanking marker |
---|---|---|---|---|---|---|---|
MQTL1 | A03 | EC, SFW(2) | 46.26 | 203.90 | 198.84~208.97 | 10.13 | mk11960~mk2075 |
MQTL2 | A06 | SFW(3), SL, SLW(2) | 46.26 | 34.55 | 34.00~35.11 | 1.11 | mk4998_A06~mk5000_A06 |
MQTL3 | A11 | PH, SFW, SL | 40.90 | 36.19 | 35.52~36.86 | 1.34 | DPL0209(b)~mk7803_A11 |
MQTL4 | A12 | EC, FW, SL | 95.89 | 128.66 | 125.17~132.17 | 7.03 | MON_CGR5815~mk9166_A12 |
MQTL5 | A13 | GR, MDA, RWC | 95.89 | 113.94 | 109.27~118.61 | 9.34 | mk10274_A13~HAU3159 |
MQTL6 | D01 | FW(2), SLW | 54.64 | 111.16 | 109.00~113.32 | 4.32 | mk10917_D01~mk10911_D01 |
MQTL7 | D01 | FW(2), SLW(2) | 54.64 | 139.25 | 135.85~142.65 | 6.80 | mk10884_D01~mk10753_D01 |
MQTL8 | D03 | LDW, LFW(2), SLW(2) | 185.41 | 219.66 | 217.89~221.41 | 3.53 | mk12142_D03~mk12152_D03 |
MQTL9 | D06 | LDW(2), LFW, SL, SLW | 31.16 | 136.04 | 129.70~142.39 | 12.69 | mk13562_D09~mk13549_D09 |
MQTL10 | D07 | CHL(2), RFW | 64.74 | 31.89 | 31.43~32.35 | 0.92 | MUSB0921~mk14878_D07 |
MQTL11 | D08 | FW(3). SLW | 55.18 | 268.62 | 263.66~273.59 | 9.93 | MulMa514_D08~MulMa185-m |
Table 2 Meta-analysis of QTL for salt tolerance-related traits at seedlings stage of cotton
编号 Code | 染色体 Chromosome | 原始性状(数量) Original trait(amount) | AIC值 AIC value | 位置 Position/cM | 置信区间 Confidence interval/cM | 图距 Map distance/cM | 侧翼标记 Flanking marker |
---|---|---|---|---|---|---|---|
MQTL1 | A03 | EC, SFW(2) | 46.26 | 203.90 | 198.84~208.97 | 10.13 | mk11960~mk2075 |
MQTL2 | A06 | SFW(3), SL, SLW(2) | 46.26 | 34.55 | 34.00~35.11 | 1.11 | mk4998_A06~mk5000_A06 |
MQTL3 | A11 | PH, SFW, SL | 40.90 | 36.19 | 35.52~36.86 | 1.34 | DPL0209(b)~mk7803_A11 |
MQTL4 | A12 | EC, FW, SL | 95.89 | 128.66 | 125.17~132.17 | 7.03 | MON_CGR5815~mk9166_A12 |
MQTL5 | A13 | GR, MDA, RWC | 95.89 | 113.94 | 109.27~118.61 | 9.34 | mk10274_A13~HAU3159 |
MQTL6 | D01 | FW(2), SLW | 54.64 | 111.16 | 109.00~113.32 | 4.32 | mk10917_D01~mk10911_D01 |
MQTL7 | D01 | FW(2), SLW(2) | 54.64 | 139.25 | 135.85~142.65 | 6.80 | mk10884_D01~mk10753_D01 |
MQTL8 | D03 | LDW, LFW(2), SLW(2) | 185.41 | 219.66 | 217.89~221.41 | 3.53 | mk12142_D03~mk12152_D03 |
MQTL9 | D06 | LDW(2), LFW, SL, SLW | 31.16 | 136.04 | 129.70~142.39 | 12.69 | mk13562_D09~mk13549_D09 |
MQTL10 | D07 | CHL(2), RFW | 64.74 | 31.89 | 31.43~32.35 | 0.92 | MUSB0921~mk14878_D07 |
MQTL11 | D08 | FW(3). SLW | 55.18 | 268.62 | 263.66~273.59 | 9.93 | MulMa514_D08~MulMa185-m |
MQTL | 基因序列号Gene ID | 注释信息Annotation information | |
---|---|---|---|
棉花 Gossypium hirsutum | 拟南芥 Arabidopsis thaliana | ||
MQTL3 | Ghi_A11G02286 | AT5G61790 | 钙离子结合、碳水化合物结合 Calcium ion binding, carbohydrate binding |
Ghi_A11G02291 | AT5G07350 | mRNA分解代谢过程 mRNA catabolic process | |
Ghi_A11G02376 | AT1G74920 | 乙醛脱氢酶(NAD+)活性、甜菜碱醛脱氢酶活性 Aldehyde dehydrogenase (NAD+) activity, betaine-aldehyde dehydrogenase activity | |
Ghi_A11G02386 | AT3G51370 | 金属离子结合 Metal ion binding | |
Ghi_A11G02401 | AT1G19910 | 质子转运ATPase活性 Proton-transporting ATPase activity | |
Ghi_A11G02416 | AT4G36130 | mRNA结合 mRNA binding | |
Ghi_A11G02421 | AT1G19835 | 微管聚合、毛状体形态发生 Microtubule polymerization, brichome morphogenesis | |
Ghi_A11G02456 | AT2G17820 | 磷酸酯酶传感器激酶活性、组氨酸磷酸转移激酶活性、渗透传感器活性 Phosphorelay sensor kinase activity, histidine phosphotransfer kinase activity, osmosensor activity | |
Ghi_A11G02496 | AT2G18170 | MAP激酶活性、丝氨酸/苏氨酸激酶活性、ATP结合 MAP kinase activity, protein serine/threonine kinase activity, ATP binding | |
Ghi_A11G02546 | AT4G36740 | DNA结合转录因子活性 DNA-binding transcription factor activity | |
Ghi_A11G02611 | AT5G66960 | 苏氨酸类内肽酶活性 Serine-type endopeptidase activity | |
Ghi_A11G02631 | AT5G66880 | 蛋白激酶活性、ATP结合、丝氨酸激酶活性 Protein kinase activity, ATP binding, protein serine kinase activity | |
Ghi_A11G02636 | AT4G37180 | DNA结合转录因子活性、基因表达的负调控 DNA-binding transcription factor activity, negative regulation of gene expression | |
Ghi_A11G02641 | AT5G66850 | MAP激酶激酶激酶活性 MAP kinase kinase kinase activity |
Table 3 Candidate genes within the MQTL interval of salt tolerance-related traits at seeding stage in cotton
MQTL | 基因序列号Gene ID | 注释信息Annotation information | |
---|---|---|---|
棉花 Gossypium hirsutum | 拟南芥 Arabidopsis thaliana | ||
MQTL3 | Ghi_A11G02286 | AT5G61790 | 钙离子结合、碳水化合物结合 Calcium ion binding, carbohydrate binding |
Ghi_A11G02291 | AT5G07350 | mRNA分解代谢过程 mRNA catabolic process | |
Ghi_A11G02376 | AT1G74920 | 乙醛脱氢酶(NAD+)活性、甜菜碱醛脱氢酶活性 Aldehyde dehydrogenase (NAD+) activity, betaine-aldehyde dehydrogenase activity | |
Ghi_A11G02386 | AT3G51370 | 金属离子结合 Metal ion binding | |
Ghi_A11G02401 | AT1G19910 | 质子转运ATPase活性 Proton-transporting ATPase activity | |
Ghi_A11G02416 | AT4G36130 | mRNA结合 mRNA binding | |
Ghi_A11G02421 | AT1G19835 | 微管聚合、毛状体形态发生 Microtubule polymerization, brichome morphogenesis | |
Ghi_A11G02456 | AT2G17820 | 磷酸酯酶传感器激酶活性、组氨酸磷酸转移激酶活性、渗透传感器活性 Phosphorelay sensor kinase activity, histidine phosphotransfer kinase activity, osmosensor activity | |
Ghi_A11G02496 | AT2G18170 | MAP激酶活性、丝氨酸/苏氨酸激酶活性、ATP结合 MAP kinase activity, protein serine/threonine kinase activity, ATP binding | |
Ghi_A11G02546 | AT4G36740 | DNA结合转录因子活性 DNA-binding transcription factor activity | |
Ghi_A11G02611 | AT5G66960 | 苏氨酸类内肽酶活性 Serine-type endopeptidase activity | |
Ghi_A11G02631 | AT5G66880 | 蛋白激酶活性、ATP结合、丝氨酸激酶活性 Protein kinase activity, ATP binding, protein serine kinase activity | |
Ghi_A11G02636 | AT4G37180 | DNA结合转录因子活性、基因表达的负调控 DNA-binding transcription factor activity, negative regulation of gene expression | |
Ghi_A11G02641 | AT5G66850 | MAP激酶激酶激酶活性 MAP kinase kinase kinase activity |
1 | 苏莹,郭安慧,华金平.棉花耐盐性鉴定方法探讨[J].中国农业大学学报,2021,26(12):11-19. |
SU Y, GUO A H, HUA J P. Stratrgies for evaluation the salt tolerance in cotton [J]. J. China Agric. Univ., 2021, 26(12):11-19. | |
2 | 联合国粮食和农业组织.世界盐渍土壤分布图发布[EB/OL].(2021-10-20)[2022-03-05]. . |
3 | 杨真,王宝山.中国盐渍土资源现状及改良利用对策[J].山东农业科学,2015,47(4):125-130. |
YANG Z, WANG B S. Present status of saline soil resources and countermeasures for improvement and utilization in China [J]. Shandong Agric. Sci., 2015, 47(4):125-130. | |
4 | SHARIF I, ALEEM S, FAROOQ J, et al.. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies [J]. Physiol. Mol. Biol. Plant, 2019, 25(4):807-820. |
5 | 彭振,何守朴,孙君灵,等.陆地棉苗期耐盐性的高效鉴定方法[J].作物学报,2014,40(3):476-486. |
PENG Z, HE S P, SUN J L, et al.. An efficient approach to identify salt tolerance of upland cotton at seedling stage [J]. Acta Agron. Sin., 2014, 40(3):476-486. | |
6 | ASHRAF M. Salt tolerance of cotton: some new advances [J]. Crit. Rev. Plant Sci., 2002, 21(1):1-30. |
7 | 刘晨晨.陆地棉重组自交系群体耐盐性鉴评及QTL定位[D].保定:河北农业大学,2021. |
LIU C C. Salt tolerance evaluation and QTL mapping of recombinant upland cotton inbred lines [J]. Baoding: Hebei Agricultural University, 2021. | |
8 | IQBAL M S.陆地棉耐盐性的QTL定位和候选基因鉴定[D].北京:中国农业科学院,2019. |
IQBAL M S. MUHAMMAD S I. QTL mapping and candidate genes conferring to salinity tolerance in upland cotton [J]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
9 | 朱协飞,司占峰.棉花导入系耐盐性鉴定及耐盐基因QTL定位[J].棉花学报,2019,31(1):23-30. |
ZHU X F, SI Z F. Evaluation and QTL mapping of tolerance to salinity using interspecific introgression lines from Gossypium barbadense in G. hirsutum [J]. Cott. Sci., 2019, 31(1):23-30. | |
10 | 王鹏,田甜,张沛沛, 等.小麦粒形QTL元分析及候选基因预测[J].麦类作物学报,2021,41(9):1090-1098. |
WANG P, TIAN T, ZHANG P P, et al.. Mete-analysis of quantitative trait loci and prediction of candidate genes for kernel morphology in wheat [J]. J. Triticeae Crops, 2021, 41(9):1090-1098. | |
11 | ARCADE A, LABOURDETTE A, FALQUE M, et al.. BioMercator: integrating genetic maps and QTL towards discovery of candidate genes [J]. Bioinformatics, 2004, 20(14):2324-2326. |
12 | 冯世超,赵宏伟,王敬国, 等.水稻耐盐QTL图谱整合[J].东北农业大学学报,2013,44(4):24-29. |
FEN S C, ZHAO H W, WANG J G, et al.. Inegrated map of rice salt tolerance QTL [J]. J. Northeast Agric. Univ., 2013, 44(4):24-29. | |
13 | 王晓丽,李新海,王振华.玉米产量因子QTL整合图谱构建与“一致性”QTL确定[J].核农学报,2008,22(6):756-761, 838. |
WANG X L, LI X H, WANG Z H. Construction of integration map and consensus QTL identification for grain yield components in maize [J]. J. Nucl. Agric. Sci., 2008, 22(6):756-761, 838. | |
14 | 杨鑫雷.四倍体棉花纤维品质相关性状QTL定位及元分析[D].保定:河北农业大学,2013. |
YANG X L. Traits in tetraploid cotton QTL mapping and meta-analysis for fiber quality [J]. Baoding: Hebei Agricultural University, 2013. | |
15 | SAID J I, LIN Z, ZHANG X, et al.. A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton [J/OL]. BMC Genomics, 2013, 14(1):776 [2022-03005]. . |
16 | ZHANG J, YU J, PEI W, et al.. Genetic analysis of Verticillium wilt resistance in a backcross inbred line population and a meta-analysis of quantitative trait loci for disease resistance in cotton [J/OL]. BMC Genomics, 2015, 16(1):577 [2022-03-05]. . |
17 | DARVASI A, SOLLER M. A simple method to calculate resolving power and confidence interval of QTL map location [J]. Behav. Genet., 1997, 27(2):125-132. |
18 | DIOUF L, PAN Z, HE S P, et al.. High-density linkage map construction and mapping of salt-tolerant QTLs at seedling stage in upland cotton using genotyping by sequencing (GBS) [J]. Int. J. Mol. Sci., 2017, 18(12):2622-2632. |
19 | OLUOCH G, ZHENG J, WANG X, et al.. QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum [J]. Euphytica, 2016, 209(1):223-235. |
20 | ABDELRAHEEM A, FANG D D, ZHANG J. Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of upland cotton under the greenhouse and field conditions [J]. Euphytica, 2018, 214(1):1-20. |
21 | CHARDON F, VIRLON B, MOREAU L, et al.. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome [J]. Genetics, 2004, 168(4):2169-2185. |
22 | 杨鑫雷,周晓栋,王省芬, 等.棉花纤维品质性状QTL的元分析[J].棉花学报,2013,25(6):503-509. |
YANG X L, ZHOU X D, WANG S F, et al.. Quantitative traits locus meta-analysis of fiber quality traits in cotton [J]. Cott. Sci., 2013, 25(6):503-509. | |
23 | GILLANI S F, RASHEED A, YUHONG G, et al.. Assessment of cold stress tolerance in maize through quantitative trait locus, genome-wide association study and transcriptome analysis [J]. Not. Bot. Hortic. Agrobo., 2021, 49(4):12525-12525. |
24 | HUANG G, WU Z, PERCY R G, et al.. Genome sequence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution [J]. Nat. Genet., 2020, 52(5):516-524. |
25 | URAO T, YAKUBOV B, SATOH R, et al.. A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor [J]. Plant Cell, 1999, 11(9):1743-1754. |
26 | TRAN L P, URAO T, QIN F, et al.. Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 2007, 104(51):20623-20628. |
27 | WOHLBACH D J, QUIRINO B F, SUSSMAN M R. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation [J/OL]. Plant Cell, 2008: 055871 [2022-03-05]. . |
28 | DÓCZI R, BRADER G, PETTKÓ-SZANDTNER A, et al.. The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling [J]. Plant Cell, 2007, 19(10):3266-3279. |
29 | YAMADA K, YAMAGUCHI K, SHIRAKAWA T, et al.. The Arabidopsis CERK 1‐associated kinase PBL 27 connects chitin perception to MAPK activation [J]. EMBO J., 2016, 35(22):2468-2483. |
30 | GUTIERREZ B E, MOSCHOU P N, SMERTENKO A P, et al.. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis [J]. Plant Cell, 2015, 27(3):926-943. |
31 | ZAREI A, TROBACHER C P, SHELP B J. Arabidopsis aldehyde dehydrogenase 10 family members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA) production [J]. Sci. Rep., 2016, 6(1):1-11. |
32 | SEIDEL T, SCHNITZER D, GOLLDACK D, et al.. Organelle-specific isoenzymes of plant V-ATPase as revealed by in vivo-FRET analysis [J]. BMC Cell Biol., 2008, 9(1):1-14. |
33 | KAWA D, MEYER A J, DEKKER H L, et al.. SnRK2 protein kinases and mRNA decapping machinery control root development and response to salt [J]. Plant Physiol., 2020, 182(1):361-377. |
[1] | Hao JIA, Hongzhe WANG, Zhengwen SUN, Qishen GU, Dongmei ZHANG, Xingyi WANG, Yan ZHANG, Huaiyu LU, Zhiying MA, Xingfen WANG. Genome-wide Identification of VOZ Genes Family in Cotton and Study on Salt Tolerance Function of GhVOZ1 [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 58-68. |
[2] | Guiyuan ZHAO, Yongqiang WANG, Jianguang LIU, Zhao GENG, Hanshuang ZHANG, Liqiang WU, Xingfen WANG, Guiyin ZHANG. Effect of Exogenous Gene Insertion Site on Bt Protein Content in Insect-resistant Cotton [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 44-53. |
[3] | Manhong WANG, Meijuan XIAO, Ahmad IRSHAD, Eltyb Ahmed Nimir NIMIR, Ibrahim El Dessougi HANADI, Guisheng ZHOU, Guanglong ZHU. Identification and Evaluation of Salt Tolerance in Sorghum at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 52-63. |
[4] | Yixin CHEN, Xiubo YANG, Shijun TIAN, Cong WANG, Zhiying BAI, Cundong LI, Ke ZHANG. Response of GhCOMT28 to Drought Stress in Gossypium hirsutum [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 45-56. |
[5] | Zhiduo DONG, Qiuping FU, Jian HUANG, Tong QI, Yanbo FU, Kuerban Kaisaier. Analysis of Salt Tolerance Capacity of Xinjiang Cotton Guring Germination [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 57-67. |
[6] | Yuefeng WANG, Chenyang ZHANG, Zhengming LUO, Jianhua LI, Ran LI, Nan SUN, Minggang XU. Effect of Adding Organic Materials on Microbial Residues in Farmland in China: A Meta-analysis [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 180-191. |
[7] | Zicheng PENG, Hongli DU, Ming WANG, Fenghua ZHANG, Haichang YANG. Research on AMF Regulation of Cotton Growth and Ion Balance Under Salt Alkali Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 33-41. |
[8] | Songjiang DUAN, Haoran HU, Chengjie ZHANG, Wei SUN, Yifan WU, Rensong GUO, Jusong ZHANG. Differences in Nitrogen Efficiency of Different Genotypes of Island Cotton and Their Effects on Photosynthetic Characteristics and Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 61-71. |
[9] | Huiting WENG, Haiyang LIU, Huiming GUO, Hongmei CHENG, Jun LI, Chao ZHANG, Xiaofeng SU. Preliminary Function Analysis of GhERF020 Gene in Response to Verticillium Wilt in Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 112-121. |
[10] | Ronghua WEI, Ming YIN, Wensheng WANG, Yanru CUI. Discovering of QTLs and Candidate Genes Related to Rice Heading Period Traits Based on BSA-seq [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 12-24. |
[11] | Ziqin LI, Jiaqiang WANG, Zhen LI, Deqiu ZOU, Xiaogong ZHANG, Xiaoyu LUO, Weiyang LIU. Estimation of Chlorophyll Density of Cotton Leaves Based on Spectral Index [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 103-111. |
[12] | Yukun QIN, Junying CHEN, Lijuan ZHANG. Response of Dry Matter Accumulation Characteristics and Yield of Cotton in North Jiangxi Cotton Region to Nitrogen Reduction Measures [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 191-199. |
[13] | Ling LIN, Yujie ZHU, Lei FENG, Guangmu TANG, Yunshu ZHANG, Wanli XU. Effects of Aged Cotton Straw Biochars on Soil Properties and Nitrogen Utilization of Wheat [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 184-191. |
[14] | Limin GAO, Zechen GU, Xuefei GONG, Lianming CUI, Dongsen GUO, Ying ZHOU, Lin WANG, Qishun WEI. Effects of Grass Growing on the Productivity of Orchard-Soil System in China: A Meta-Analysis [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 184-194. |
[15] | Jiangbo LI, Wenju GAO, Xiaodong YUN, Jieyin ZHAO, Shiwei GENG, Chunbin HAN, Quanjia CHEN, Qin CHEN. Effects of Different Water Stress Treatments on Core Germplasm Resources of Upland Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 26-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||