Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (12): 195-204.DOI: 10.13304/j.nykjdb.2022.0504
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Peixin LIANG(), Rong TANG, Jianguo LIU(
)
Received:
2022-06-17
Accepted:
2022-07-15
Online:
2023-12-15
Published:
2023-12-12
Contact:
Jianguo LIU
通讯作者:
刘建国
作者简介:
梁培鑫 E-mail:1462442861@qq.com;
基金资助:
CLC Number:
Peixin LIANG, Rong TANG, Jianguo LIU. Effects of Mixed Saline-alkali Stress on Photosynthetic Physiology and Yield in Cyperus esculentus L.[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 195-204.
梁培鑫, 唐榕, 刘建国. 混合盐碱胁迫对油莎豆光合生理及产量的影响[J]. 中国农业科技导报, 2023, 25(12): 195-204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0504
处理Treatment | 盐水平 Salt level/(g·kg-1) | 含量 Content(g·kg-1) | |||
---|---|---|---|---|---|
NaCl | Na2SO4 | NaHCO3 | Na2CO3 | ||
T1 | 3.0 | 0.76 | 1.39 | 0.73 | 0.12 |
T2 | 4.0 | 1.02 | 1.85 | 0.97 | 0.15 |
T3 | 5.0 | 1.27 | 2.32 | 1.21 | 0.19 |
T4 | 7.5 | 1.91 | 3.48 | 1.83 | 0.29 |
T5 | 10.0 | 2.55 | 4.63 | 2.44 | 0.38 |
Table 1 Content of each salt added under different treatments
处理Treatment | 盐水平 Salt level/(g·kg-1) | 含量 Content(g·kg-1) | |||
---|---|---|---|---|---|
NaCl | Na2SO4 | NaHCO3 | Na2CO3 | ||
T1 | 3.0 | 0.76 | 1.39 | 0.73 | 0.12 |
T2 | 4.0 | 1.02 | 1.85 | 0.97 | 0.15 |
T3 | 5.0 | 1.27 | 2.32 | 1.21 | 0.19 |
T4 | 7.5 | 1.91 | 3.48 | 1.83 | 0.29 |
T5 | 10.0 | 2.55 | 4.63 | 2.44 | 0.38 |
Fig. 1 Chlorophyll content of Cyperus esculentus L. at different growth stages under mixed saline-alkali stressNote: Different lowercase letters in same stage indicate significant differences between treatments at P<0.05 level.
时期 Stage | 处理 Treatment | 净光合速率 Pn/(μmol·m-2·s-1) | 气孔导度 Gs/(mol·m-2·s-1) | 胞间 CO2浓度 Ci/(μmol·mol-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 水分利用效率 WUE/(μmol·mmol-1) |
---|---|---|---|---|---|---|
分蘖期 Tillering stage | CK | 10.98±1.14 d | 0.104 3±0.006 2 d | 293.75±6.40 b | 5.19±0.14 d | 2.11±0.19 b |
T1 | 12.00±1.20 d | 0.109 3±0.007 8 cd | 310.00±9.35 a | 5.39±0.35 cd | 2.23±0.25 b | |
T2 | 14.68±0.67 bc | 0.125 5±0.014 2 c | 310.00±11.75 a | 5.94±0.31 bc | 2.48±0.22 b | |
T3 | 17.48±0.65 a | 0.160 0±0.014 2 b | 310.75±6.99 a | 6.01±0.53 b | 2.93±0.31 a | |
T4 | 15.93±0.74 ab | 0.189 5±0.008 4 a | 319.00±8.04 a | 6.86±0.28 a | 2.32±0.09 b | |
T5 | 14.23±0.80 c | 0.159 0±0.009 6 b | 320.50±11.09 a | 5.75±0.28 bcd | 2.48±0.20 b | |
结豆期 Bean setting stage | CK | 18.00±0.74 b | 0.177 5±0.004 4 a | 176.25±5.74 a | 5.52±0.20 a | 3.26±0.11 d |
T1 | 18.40±0.92 b | 0.141 5±0.011 4 b | 110.50±10.97 c | 4.44±0.32 b | 4.17±0.48 c | |
T2 | 20.48±1.21 a | 0.137 0±0.008 8 b | 95.23±4.08 d | 4.18±0.15 b | 4.90±0.25 ab | |
T3 | 21.33±1.89 a | 0.136 8±0.009 9 b | 123.25±3.86 c | 4.13±0.17 b | 5.16±0.33 a | |
T4 | 15.58±0.75 c | 0.116 8±0.002 5 c | 159.00±11.17 b | 3.57±0.09 c | 4.37±0.18 bc | |
T5 | 15.08±0.40 c | 0.108 6±0.013 3 c | 171.25±11.87 ab | 3.33±0.23 c | 4.55±0.41 bc | |
成熟期 Maturity stage | CK | 19.65±0.26 a | 0.154 3±0.006 7 a | 158.50±9.33 a | 5.18±0.19 a | 3.80±0.14 a |
T1 | 16.83±1.10 b | 0.125 5±0.005 3 b | 156.75±6.65 ab | 4.44±0.15 b | 3.79±0.25 a | |
T2 | 12.78±1.18 c | 0.088 4±0.007 4 c | 154.75±6.80 ab | 4.40±0.39 b | 2.93±0.46 b | |
T3 | 12.83±1.04 c | 0.091 0±0.006 1 c | 144.50±17.29 ab | 4.14±0.09 b | 3.10±0.19 b | |
T4 | 12.80±1.59 c | 0.089 0±0.008 9 c | 141.25±3.30 b | 3.68±0.14 c | 3.48±0.46 ab | |
T5 | 10.85±0.82 d | 0.078 8±0.018 7 c | 122.00±7.44 c | 3.35±0.08 c | 3.25±0.32 ab |
Table 2 Gas exchange parameters of Cyperus esculentus L. at different growth stages under mixed saline-alkali stress
时期 Stage | 处理 Treatment | 净光合速率 Pn/(μmol·m-2·s-1) | 气孔导度 Gs/(mol·m-2·s-1) | 胞间 CO2浓度 Ci/(μmol·mol-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 水分利用效率 WUE/(μmol·mmol-1) |
---|---|---|---|---|---|---|
分蘖期 Tillering stage | CK | 10.98±1.14 d | 0.104 3±0.006 2 d | 293.75±6.40 b | 5.19±0.14 d | 2.11±0.19 b |
T1 | 12.00±1.20 d | 0.109 3±0.007 8 cd | 310.00±9.35 a | 5.39±0.35 cd | 2.23±0.25 b | |
T2 | 14.68±0.67 bc | 0.125 5±0.014 2 c | 310.00±11.75 a | 5.94±0.31 bc | 2.48±0.22 b | |
T3 | 17.48±0.65 a | 0.160 0±0.014 2 b | 310.75±6.99 a | 6.01±0.53 b | 2.93±0.31 a | |
T4 | 15.93±0.74 ab | 0.189 5±0.008 4 a | 319.00±8.04 a | 6.86±0.28 a | 2.32±0.09 b | |
T5 | 14.23±0.80 c | 0.159 0±0.009 6 b | 320.50±11.09 a | 5.75±0.28 bcd | 2.48±0.20 b | |
结豆期 Bean setting stage | CK | 18.00±0.74 b | 0.177 5±0.004 4 a | 176.25±5.74 a | 5.52±0.20 a | 3.26±0.11 d |
T1 | 18.40±0.92 b | 0.141 5±0.011 4 b | 110.50±10.97 c | 4.44±0.32 b | 4.17±0.48 c | |
T2 | 20.48±1.21 a | 0.137 0±0.008 8 b | 95.23±4.08 d | 4.18±0.15 b | 4.90±0.25 ab | |
T3 | 21.33±1.89 a | 0.136 8±0.009 9 b | 123.25±3.86 c | 4.13±0.17 b | 5.16±0.33 a | |
T4 | 15.58±0.75 c | 0.116 8±0.002 5 c | 159.00±11.17 b | 3.57±0.09 c | 4.37±0.18 bc | |
T5 | 15.08±0.40 c | 0.108 6±0.013 3 c | 171.25±11.87 ab | 3.33±0.23 c | 4.55±0.41 bc | |
成熟期 Maturity stage | CK | 19.65±0.26 a | 0.154 3±0.006 7 a | 158.50±9.33 a | 5.18±0.19 a | 3.80±0.14 a |
T1 | 16.83±1.10 b | 0.125 5±0.005 3 b | 156.75±6.65 ab | 4.44±0.15 b | 3.79±0.25 a | |
T2 | 12.78±1.18 c | 0.088 4±0.007 4 c | 154.75±6.80 ab | 4.40±0.39 b | 2.93±0.46 b | |
T3 | 12.83±1.04 c | 0.091 0±0.006 1 c | 144.50±17.29 ab | 4.14±0.09 b | 3.10±0.19 b | |
T4 | 12.80±1.59 c | 0.089 0±0.008 9 c | 141.25±3.30 b | 3.68±0.14 c | 3.48±0.46 ab | |
T5 | 10.85±0.82 d | 0.078 8±0.018 7 c | 122.00±7.44 c | 3.35±0.08 c | 3.25±0.32 ab |
Fig. 3 F0, Fm, Fv/Fm and ΦPSⅡ in leaves of Cyperus esculentus L. at different growth stages under mixed saline-alkali stressNote: Different lowercase letters in same stage indicate significant differences between treatments at P<0.05 level.
Fig. 4 Y (NPQ), Y(NO), qP and qN in leaves of Cyperus esculentus L. at different growth stages under mixed saline-alkali stressNote: Different lowercase letters in same stage indicate significant differences between treatments at P<0.05 level.
Fig. 4 Yield index of Cyperus esculentus L. under mixed saline-alkali stressNote: Different lowercase letters indicate significant differences between treatments at P<0.05 level.
1 | 乔木,周生斌,卢磊,等. 近25a来塔里木盆地灌区土壤盐渍化时空变化特点与改良治理对策[J]. 干旱区地理, 2011, 34 (4): 604-613. |
QIAO M, ZHOU S B, LU L, et al.. Temporal and spatial changes of soil salinization and improved countermeasures of Tarim Basin Irrigation District in recent 25 a [J].Arid Land Geogr., 2011, 34(4): 604-613. | |
2 | ERNARDO P, VICENTE M J, SALVADOR L, et al.. Bchufa(Cyperus esculentus L.var.sativus boeck.) unconventional crop studies related to applications and cultivation [J]. Econ. Botany, 2000, 54(4): 439-448. |
3 | NAZIR K H, DORIS J, YVONNE S, et al.. Physico-chemical properties of globular tiger nut proteins [J]. Eur. Food Res. Technol., 2015, 241: 835-841. |
4 | 杨敏,田丽萍,薛琳. 不同油莎豆品种在新疆干旱气候区的产量表现与品质差异[J].中国油料作物学报, 2013, 35(4): 451-454. |
YANG M, TIAN L P, XUE L. Quality and production potential of different chufa varieties in arid climate region of Xinjiang [J].Chin. J. Oil Crop Sci., 2013, 35(4): 451-454. | |
5 | 张若溪,蔡亚南,李庆卫. 混合盐胁迫对栾树光合生理指标的影响[J].西北植物学报,2022, 42(1):98-106. |
ZHANG R X, CAI Y N, LI Q W. Effect of mixed salt stress on photosynthetic physiological indexes of Koelreuteria paniculata [J]. Acta Bot. Bor-Occid. Sin., 2022, 42(1):98-106. | |
6 | 刘兵,贾旭梅,朱祖雷,等. 盐碱胁迫对垂丝海棠光合作用及渗透调节物质的影响[J].西北植物学报, 2019, 39(9): 1618-1626. |
LIU B, JIA X M, ZHU Z L, et al.. Effect of saline-alkali on photosynthesis and osmotic regulation substances of Malus halliana Koehne [J]. Acta Bot. Bor-Occid. Sin., 2019, 39(9): 1618-1626. | |
7 | 王佺珍,刘倩,高娅妮,等.植物对盐碱胁迫的响应机制研究进展[J].生态学报, 2017, 37(16): 5565-5577. |
WANG Q Z, LIU Q, GAO Y N, et al..Review on the mechanisms of the response to salinity-alkalinity stress in plants [J]. Acta Ecol. Sin., 2017, 37(16): 5565-5577. | |
8 | MAHLOOJI M, SEYED S R, RAZMJOO J, et al.. Effect of salt stress on photosynthesis and physiological parameters of three contrasting barley genotypes [J]. Photosynthetica, 2018, 56(2): 549 -556. |
9 | 付晴晴,孙永江,翟衡,等. 盐胁迫对葡萄种间杂交砧木F1株系光合特性的影响[J].植物生理学报, 2017, 53(9): 1640-1648. |
FU Q Q, SUN Y J, ZHAI H, et al..Effect of salt stress on photosynthetic characteristics in grape rootstock of interspecific F1 hybrids [J]. Plant Physiol. J., 2017, 53(9): 1640-1648. | |
10 | 张瑞坤,李卓成,祝德玉,等. 盐胁迫下不同耐盐性水稻品种苗期光合特性的响应规律[J].青岛农业大学学报, 2020, 37(4): 250-257. |
ZHANG R K, LI Z C, ZHU D Y, et al.. Effects of salt stress on photosynthetic characteristics of different salt-tolerant rice varieties at the seedling stage [J]. J. Qingdao Agric. Univ., 2020, 37(4): 250-257. | |
11 | ROHÁČEK K. Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships [J]. Photosynthetica, 2002, 40(1): 13-29. |
12 | 贾旭梅,朱燕芳,王海,等.垂丝海棠应对盐碱复合胁迫的生理响应[J].生态学报, 2019, 39(17): 6349-6361. |
JIA X M, ZHU Y F, WANG H, et al..Study on physiological response of malus halliana to saline- alkali stress [J]. Acta Ecol. Sin., 2019, 39(17): 6349-6361. | |
13 | 钱玥,饶良懿.盐碱胁迫对枸杞幼苗生长与叶绿素荧光特性的影响[J].森林与环境学报, 2022, 42(3): 271-278. |
QIAN Y, RAO L Y. Effects of saline-alkali stress on growth and chlorophyll fluorescence characteristics of Lycium barbarum seedlings [J]. J. For. Environ., 2022, 42(3): 271-278. | |
14 | 孔强,马晓华,宫莉霞,等. 不同盐胁迫条件下东方杉的生长及生理响应研究[J]. 西南林业大学学报, 2019, 39(2): 179-183. |
KONG Q, MA X H, GONG L X, et al..Growth and physiological responses of Taxodium mucronatum × Cryptomeria Fortunei under different salt stress conditions [J]. J. Southwest For. Univ., 2019, 39(2): 179-183. | |
15 | 张潭,唐达,李思思,等. 盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J].西北植物学报, 2017, 37(12): 2474-2482. |
ZAHNG T, TANG D, LI S S, et al.. Responses of growth and photosynthesis of lycium barbarum L. seedling to salt-stress and alkali-stress [J]. Acta Bot. Bor-Occid. Sin., 2017, 37(12): 2474-2482. | |
16 | 赵秋月,张广臣.碱性盐胁迫对3种番茄根系活力和光合色素的影响[J].江苏农业科学, 2015, 43(11): 219-223. |
ZHAO Q Y, ZHANG G C. Effects of alkaline salt stress on root vigor and photosynthetic pigments of three tomato species [J]. Jiangsu Agric. Sci., 2015, 43(11): 219-223. | |
17 | LUO J, HUANG C H, PENG F, et al.. Effect of salt stress on photosynthesis and related physiological characteristics of lycium ruthenicum murr [J]. Acta Agric. Scandinavica, Section B-Soil Plant Sci., 2017, 67(8): 680-692. |
18 | KODAMA A, WATANABE T, YAMAGUCHI M, et al.. Accession difference in leaf photosynthesis, root hydraulic conductance and gene expression of root aquaporins under salt stress in barley seedlings [J]. Plant Prod. Sci., 2021, 24(1): 73-82. |
19 | KEUN KOH, MANJULATHA M, SUN KKI. Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus) [J]. Hortic. Environ. Biotechnol., 2019, 60(6): 831-839. |
20 | 罗达,史彦江,宋锋惠,等. 盐胁迫对平欧杂种榛幼苗生长、光合荧光特性及根系构型的影响[J].应用生态学报, 2019, 30(10): 3376-3384. |
LUO D, SHI Y J, SONG F H, et al.. Effects of salt stress on growth,photosynthetic and fluorescence characteristics,and root architecture of Corylus heterophylla × C. avellan seedlings [J]. Chin. J. Appl. Ecol., 2019, 30(10): 3376-3384. | |
21 | ZANDALINAS S I, RIVERO R M, MARTĺNEZ, et al.. Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels [J]. BMC Plant Biol., 2016, 16(1): 105-116. |
22 | 张会慧,龙静泓,王均睿,等. 不同种类盐胁迫对高梁幼苗生长及叶片光合机构功能的影响[J].生态学杂志, 2019, 38(1): 161-172. |
ZHANG H H, LONG J H, WANG J R, et al.. Effects of different salt stress conditions on growth of sorghum seedlings and function of leaf photosynthetic apparatus [J]. Chin. J. Ecol., 2019, 38(1): 161-172. | |
23 | HELENA H, FRANTIŠEK H, JAROSLAVA M. Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket [J]. Plant Soil Environ., 2017, 64: 362-367. |
24 | 金微微,张会慧,滕志远,等.盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响[J].草业科学, 2017, 34(10): 2090-2098. |
JIN W W, ZHANG H H, TENG Z Y, et al.. Effects of salt and alkali interaction stress on chlorophyll fluorescence in leaves of Sorghum bicolor × S. sudanense [J]. Pratac. Sci., 2017, 34(10): 2090-2098, | |
25 | 苏兰茜,白亭玉,鱼欢,等. 盐胁迫对2种菠萝蜜属植物幼苗生长及光合荧光特性的影响[J].中国农业科学, 2019, 52(12): 2140-2150 |
SU L X, BAI T Y, YU H, et al.. Effects of salt stress on seedlings growth, photosynthesis and chlorophyll fluorescence of two species of Artocarpus [J]. Sci. Agric. Sin., 2010, 43(8): 1585-1593. |
[1] | Yongxu GUAN, Zhicheng SUN, Yan WANG, Yuan LI, Xiaoli SUN, Bowei JIA, Mingzhe SUN. Functional Analysis of Arabidopsis thalianaAtCHX19 Gene in Response to Salt-alkali Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 60-72. |
[2] | Xianhua DING, Shuangdui YAN, Ming YAN. Preparation and Characteristics of High-quality Biochar Fuel by Pressurized Torrefaction of Pine Sawdust [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 204-216. |
[3] | Huiyan QIAO, Yali SHI, Haojian HAN. Research Progress of Cellulase Derived from Microorganisms [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 21-38. |
[4] | Lei LING, Huixin JIANG, Mingjing LI, Yajie YIN, Naiyu CHEN, Xiaoju ZHAO. Proteinome and Metabolome Combined to Analyze the Response Mechanism of Oat to Saline-alkali Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 61-71. |
[5] | Min YAN, Yan WANG, Chengcheng WANG, Songchao GUO, Dengyang LU, Cuiyun WU. Effect of Mixed Saline-alkali Stress on Leaf Structure and Photosynthetic Fluorescence Properties of Jujube [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 57-65. |
[6] | Huijun LI, Weijian ZHANG, Weijian WU, Gaoyang LI, Yijie CHEN, Fengcheng HUANG, Yongxiang HUANG, Zhong LIN, Zhen ZHEN. Effects of Sea Rice on Soil Chemical Properties and Microbial Community Structure in Coastal Solonchaks [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 147-156. |
[7] | Xingsheng YIN, Lingfeng BAO, Yongyu PU, Jiali SUN, Qing ZHANG, Haiping LI, Mingying YANG, Yueping LIN, Huaixin WANG, Yonghong HE, Peiwen YANG. Effects of Chemical Fertilizer Reduction Combined with Bio-organic Fertilization on Tobacco Soil Characteristics and Tobacco Bacterial Wilt Control [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 122-131. |
[8] | Lupeng SUN, Yang YANG, Weichao WANG, Tingdong FU, Guangsheng ZHOU, Fenghua ZHANG. Ion Response Mechanism of Canola Seedlings to Saline-alkali Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 46-54. |
[9] | Yajuan WEI, Jing GUO, Yunhu XIE, Xiangfei WANG, Shan JIN. Study on Branching Architecture of Clipping Hedysarum scoparium in Desert-oasis Ecotone of Jilantai [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 207-217. |
[10] | Yuanwei CHEN, Huabin ZHENG, Weiqin WANG, Na KUANG, Youyi LUO, Dan ZOU, Qiyuan TANG. Effect of Mowing Treatment on the Main Season Whole Plant Biomass and Silage Quality and Yield in Regeneration Season of Ratooning Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 161-171. |
[11] | Yue GU, Jinggui WU. Study on Dynamic Effects of Organic Materials on Soil Carbon, Nitrogen and Microbial Biomass [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 126-133. |
[12] | FAN Hongye, LI Yaoyao, LU Xiaju, GU Shenghao, GUO Xinyu, , LIU Yuhua. [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 112-120. |
[13] | ZHU Lixia, CHEN Jutian, XU Siwei, CHEN Rubing, LI Lili. Dynamics of Soil Microbial Biomass Carbon and Nitrogen After Biochar Application [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 193-200. |
[14] | HUANG Qingyang, JIANG Chao, YU Yuanchun, XIE Zubin. Effects of Different Straw Biochar Substrate on the Physiological Properties of Cosmos bipinnatus [J]. Journal of Agricultural Science and Technology, 2021, 23(6): 147-153. |
[15] | TAN Jinghong, WU Qixia*, ZHU Jianqiang, KE Xinyao, MA Hongyu. Study on the Optimal Nitrogen Application Rate for Transplanted Cotton following Wheat Harvest in Jianghan Plain [J]. Journal of Agricultural Science and Technology, 2020, 22(9): 122-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||