Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (7): 12-20.DOI: 10.13304/j.nykjdb.2022.0619
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Xiang WU1(), Juan LI1, Yan CAO1, Yanrong CHENG1, Xuyu YAN1,2(
), Ling LI1,2(
)
Received:
2022-07-22
Accepted:
2022-10-31
Online:
2023-07-15
Published:
2023-08-25
Contact:
Xuyu YAN,Ling LI
吴香1(), 李娟1, 曹艳1, 程艳荣1, 闫旭宇1,2(
), 李玲1,2(
)
通讯作者:
闫旭宇,李玲
作者简介:
吴香E-mail:1653422389@qq.com
基金资助:
CLC Number:
Xiang WU, Juan LI, Yan CAO, Yanrong CHENG, Xuyu YAN, Ling LI. Research Advances on Plant Root Exudates in Response to Cadmium Stress[J]. Journal of Agricultural Science and Technology, 2023, 25(7): 12-20.
吴香, 李娟, 曹艳, 程艳荣, 闫旭宇, 李玲. 植物根系分泌物响应镉胁迫的研究进展[J]. 中国农业科技导报, 2023, 25(7): 12-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0619
1 | NATALIA R E, LUCA M, MICHAEL M, et al.. Environment pollution journal-special issue: global status of soil pollution [J/OL]. Environ. Pollut., 2020, 115231 [2022-06-20]. . |
2 | 中国国家环境保护总局. 全国土壤污染状况调查公报[J]. 中国环保产业,2014(5):10-11. |
3 | WILLIAM H H. Human health effects of exposure to cadmium [J]. Cell Mol. Life Sci., 1984, 40(2): 136-142. |
4 | NING Y C, SCHACHTMAN D. Root exudates impact plant performance under abiotic stress [J]. Trends Plant Sci., 2022, 17(1): 80-91. |
5 | ALBERT D R. Plant root exudates [J]. Bot. Rev., 1969, 35(1): 35-57. |
6 | GIRKIN N T, TURNER B L, OSTLE N, et al.. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat [J]. Soil Biol. Biochem., 2018, 127(1): 280-285. |
7 | 李佳佳,樊妙春,上官周平.植物根系分泌物主要生态功能研究进展[J].植物学报, 2020,55(6):788-796. |
LI J J, FAN M C, SHANGGUAN Z P. Research progress on main ecological functions of plant root exudates [J]. Bull. Bot., 2020, 55(6): 788-796. | |
8 | 毛梦雪,朱峰.根系分泌物介导植物抗逆性研究进展与展望[J].中国生态农业学报,2021,29(10):1649-1657. |
MAO M X, ZHU F. Research progress and prospect of plant stress resistance mediated by root exudates [J]. Chin. J. Eco-Agric., 2021, 29(10): 1649-1657. | |
9 | 李月明,杨帆,韩沛霖,等.植物根系分泌物响应非生物胁迫机理研究进展[J].应用与环境生物学报, 2022,28(5):1384-1392. |
LI Y M, YANG F, HAN P L, et al.. Research progress on mechanism of plant root exudates responding to abiotic stress [J]. Chin. J. Appl. Environ. Biol.,2022,28(5):1384-1392. | |
10 | VICENTE V P, LZAZRO M, ANA S. Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria [J]. J. Plant Physiol., 2018, 228: 208-217. |
11 | 吴红淼,林文雄.药用植物连作障碍研究评述和发展透视[J].中国生态农业学报,2020,28(6):775-793. |
WU H M, LIN W X. Research review and development perspective on continuous cropping obstacle of medicinal plants [J]. Chin. J. Eco-Agric., 2020, 28 (6): 775-793. | |
12 | URSKA Z, CATARINA C, ABILASH C R D, et al.. Exudates from miscanthus x giganteus change the response of a root-associated Pseudomonas putida strain towards heavy metals [J/OL]. Environ. Pollut., 2022, 313: 11998 [2022-06-20]. . |
13 | YU Z H, ZHAO X L, LIANG X R, et al.. Arbuscular mycorrhizal fungi reduce cadmium leaching from sand columns by reducing availability and enhancing uptake by maize roots [J/OL]. J. Fungi, 2022, 8(8): 866 [2022-06-20]. . |
14 | LUO J P, GU S H, GUO X Y, et al.. Core microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant performance [J]. Environ. Sci. Technol., 2022, 56(18): 12975-12987. |
15 | 张杨,朱林,程云龙,等.根系分泌物研究现状及趋势——基于CiteSpace的知识图谱分析[J].江苏农业科学,2022,50(14): 34-45. |
ZHANG Y, ZHU L, CHENG Y L, et al.. Research status and trend of root exudates—knowledge map analysis based on CiteSpace [J]. Jiangsu Agric. Sci., 2022, 50(14): 34-45. | |
16 | BORA M S, SARMA K P. Anatomical and ultrastructural alterations in Ceratopteris pteridoides under cadmium stress: a mechanism of cadmium tolerance [J/OL]. Ecotox. Environ. Safe, 2021, 218: 112285 [2022-06-20]. . |
17 | 冯天朕,陈苏,陈影,等.微塑料与Cd交互作用对小麦种子发芽的生态毒性研究[J].中国环境科学,2022,42(4):1892-1900. |
FENG T Z, CHEN S, CHEN Y, et al.. Ecological toxicity of interaction between microplastics and Cd on wheat seed germination [J]. Chin. Environ. Sci., 2022, 42 (4): 1892-1900. | |
18 | 唐希望,周阳,王龙雪,等.盐镉耦合胁迫对玉米种子萌发和幼苗生长的影响[J]. 东北农业科学,2022, 47(5):25-29. |
TANG X W, ZHOU Y, WANG L X, et al.. Effects of salt cadmium coupling stress on seed germination and seedling growth of maize [J]. J. Northeast Agric. Sci., 2022, 47(5):25-29. | |
19 | 王迪华,王改玲,樊存虎.镉胁迫对小白菜种子萌发、生理特性及其镉积累的影响[J].中国瓜菜,2021,34(9):80-83. |
WANG D H, WANG G L, FAN C H. Effects of cadmium stress on seed germination, physiological characteristics and cadmium accumulation of Chinese cabbage [J]. China Cucurbits Veget., 2021, 34 (9): 80-83. | |
20 | 李桂玲,王琦,王金水,等.重金属对植物种子萌发胁迫及缓解的机制[J].生物技术通报,2019,35(6): 147-155. |
LI G L, WANG Q, WANG J S, et al.. Mechanism of heavy metal stress on plant seed germination and its mitigation [J]. Biotechnol. Bull., 2019, 35(6): 147-155. | |
21 | ABBAS T, RIZWAN M, ALI S, et al.. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil [J]. Environ. Sci. Pollut. Res., 2017, 25(26): 25668-25680. |
22 | SIVAKOTI R, AWADHESH K T, AJAY K,et al.. Potential of cotton for remediation of Cd‑contaminated soils [J/OL]. Environ. Monit. Assess., 2021, 193(4): 186 [2022-06-20]. . |
23 | 滕振宁,方宝华,刘洋,等.镉对不同品种水稻光合作用的影响[J].中国农业气象,2016,37(5):538-544. |
TENG Z N, FANG B H, LIU Y, et al.. Effect of cadmium on photosynthesis of different rice varieties [J]. Chin. J. Agrometeorol., 2016, 37(5): 538-544. | |
24 | 周际海,程坤,郜茹茹,等.土壤镉污染对香樟幼苗光合和生理特性的影响[J].林业科学,2020,56(6):193-201. |
ZHOU J H, CHENG K, GAO R R, et al.. Effects of cadmium pollution in soil on photosynthesis and physiological characteristics of Cinnamomum camphora seedlings [J]. Sci. Silvae Sin., 2020, 56(6): 193-201. | |
25 | GISELI S R, CHRISTOPHER C P, EVALDO L G E. Shifts in photosynthetic parameters and lipid production of the freshwater microalga Selenastrum gracile (Chlorophyceae) under cadmium exposure [J]. J. Appl. Phycol., 2020, 32(6): 4047-4055. |
26 | 陈丽丽,鲁伟丹,李俊华,等.三种植物生长与富集特性对镉污染土壤修复的响应[J].石河子大学学报(自然科学版),2022,40(2):172-179. |
CHEN L L, LU W D, LI J H, et al.. Response of growth and enrichment characteristics of three plants to remediation of cadmium contaminated soil [J]. J. Shihezi Univ.(Nat. Sci.), 2022, 40(2): 172-179. | |
27 | 梅磊,李玲, DAUD M K, 等.棉花对重金属胁迫的应答反应与抗性机理研究进展[J].棉花学报,2018,30(1):102-110. |
MEI L, LI L, DAUD M K, et al.. Research progress on response and resistance mechanism of cotton to heavy metal stress [J]. Cotton Sci., 2018, 30(1): 102-110. | |
28 | 姚文斌,黄磊,杨志辉,等.有机酸对污染土壤中重金属释放或固定的影响[J]. 中国有色金属学报,2022, 32(4): 1277-1289. |
YAO W B, HUANG L, YANG Z H, et al.. Effects of organic acids on the release or fixation of heavy metals in contaminated soil [J]. Trans. Nonferrous Met. Soc. Chin., 2022, 32(4): 1277-1289. | |
29 | LUO Q, SUN L N, HU X M, et al.. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress: metabonomics analysis [J/OL]. PLoS One, 2014, 9(12): e115581 [2022-06-20]. . |
30 | FU H J, YU H Y, LI T X, et al.. Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.) [J]. Ecotox. Environ. Safe., 2018, 150(1): 168-175. |
31 | 王沛琦,胡尊红,胡学礼,等.镉胁迫对蓖麻有机酸含量及镉吸收的影响[J].山西农业科学,2021,49(7):822-827. |
WANG P Q, HU Z H, HU X L, et al.. Effects of cadmium stress on organic acid content and cadmium absorption of ricin [J]. J. Shanxi Agric. Sci., 2021, 49(7): 822-827. | |
32 | XUE W J, ZHANG C B, HUANG Y C. Rice organs concentrate cadmium by chelation of amino acids containing dicarboxyl groups and enhance risks to human and environmental health in Cd-contaminated areas [J/OL]. J. Hazard. Mater., 2022, 426: 128130 [2022-06-20]. . |
33 | CLEMENTINE L, PIERRE L, CEDRIC P, et al.. Profiling of main metabolites in root exudates and mucilage collected from maize submitted to cadmium stress [J]. Environ. Sci. Pollut. Res., 2019, 26: 17520-17534. |
34 | WU J, KE C D, ZU Y Q, et al.. Root morphological, Cd accumulation and tolerance characteristics of 2 Dianthus caryophyllus cultivars under Cd stress [J/OL]. E3S Web Conf., 2021, 271: 4012 [2022-06-20]. . |
35 | SUN L J, CAO X Y, TAN C Y, et al.. Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics [J/OL]. Ecotox. Environ. Safe., 2020, 205: 111152 [2022-06-20]. . |
36 | 王若男,乜兰春,张双双,等.植物抗重金属胁迫研究进展[J].园艺学报, 2019, 46 (1):157-170. |
WANG R N, NIE L C, ZHANG S S, et al.. Research progress in plant resistance to heavy metal stress [J]. Acta Hortic. Sin., 2019, 46(1): 157-170. | |
37 | WANG Y, CUI T, NIU K J, et al.. Comparison and characterization of oxidation resistance and carbohydrate content in Cd tolerant and sensitive Kentucky bluegrass under Cd stress [J]. J. Agron., 2021, 11(11): 2358 [2022-06-20]. . |
38 | LUO Q, SUN L N, HU X M. Metabonomics study on root exudates of cadmium hyperaccumulator Sedum alfredii [J]. Chin. J. Anal. Chem., 2015, 43(1): 7-12. |
39 | SHATRUPA R, SANDHYA M, KARTIKAY B, et al.. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway [J]. Microbiol. Res., 2018, 207: 100-107. |
40 | OLEGHE E, NAVEED M, BAGGSD E M, et al.. Residues with varying decomposability interact differently with seed or root exudate compounds to affect the biophysical behaviour of soil [J]. Geoderma, 2019, 343: 50-59. |
41 | 李杨,仲波,陈冬明,等.不同浓度和多样性的根系分泌物对土壤团聚体稳定性的影响[J]. 应用与环境生物学报,2019,25(5):1061-1067. |
LI Y, ZHONG B, CHEN D M, et al.. Effects of root exudates of different concentrations and diversity on the stability of soil aggregates [J]. J. Appl. Environ. Biol., 2019, 25(5): 1061-1067. | |
42 | 王亚,冯发运,葛静,等. 植物根系分泌物对土壤污染修复的作用及影响机理[J]. 生态学报,2022,42(3):829-842. |
WANG Y, FENG F Y, GE J, et al.. Effect of plant root exudates on soil pollution remediation and its influence mechanism [J]. Acta Ecol. Sin., 2022, 42 (3): 829-842. | |
43 | ZHANG Y L, HE S R, ZHANG Z, et al.. Glycine transformation induces repartition of cadmium and lead in soil constituents [J]. Environ. Pollut., 2019, 251: 930-937. |
44 | LIU X Y, GUO D, REN C Y, et al.. Performance of Streptomyces pactum-assisted phytoextraction of Cd and Pb: in view of soil properties, element bioavailability, and phytoextraction indices [J]. Environ. Sci. Pollut. Res., 2020, 27(35): 43514-43525. |
45 | CHEN Y T, WANG Y, YEH K C. Role of root exudates in metal acquisition and tolerance [J]. Curr. Opin. Plant Biol., 2017, 39: 66-72. |
46 | 杨露,辛建攀,田如男.根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J].生物技术通报,2022,38(4):1-13. |
YANG L, XIN J P, TIAN R N. Research progress on alleviative effect of rhizosphere microorganisms on heavy metal stress in plants and its mechanism [J]. Biotechnol. Bull., 2022, 38 (4): 1-13. | |
47 | 孙雨,常晶晶,田春杰.根际微生物组中细菌趋化系统的生态功能[J].生态学报,2021,41(24):9963-9969. |
SUN Y, CHANG J J, TIAN C J. Ecological function of bacterial chemotaxis system in rhizosphere microbiome [J]. Acta Ecol. Sin., 2021, 41(24): 9963-9969. | |
48 | 安琦,殷博,张介驰,等.外源类黄酮对大豆根瘤菌趋化性与结瘤效果的影响[J].大豆科学,2017,36(6):900-904. |
AN Q, YIN B, ZHANG J C, et al.. Effects of exogenous flavonoids on chemotaxis and nodulation of soybean rhizobia [J]. Soybean Sci., 2017, 36(6): 900-904. | |
49 | JISHMA P, RADHAKRISHNAN E K. Root exudate components induced production of plant beneficial metabolites in rhizospheric Pseudomonas spp [J/OL]. Rhizosphere, 2021, 19: 100366 [2022-06-20]. . |
50 | 陈粮,白艳,刘书铭,等.镉胁迫下植物促生菌密歇根克雷伯氏菌TS8和Lelliottia jeotgali MR2对拟南芥生长及镉富集的影响[J].生物工程学报,2022, 38(5):1915-1928. |
CHEN L, BAI Y, LIU S M, et al.. Effects of plant growth promoting bacteria Klebsiella michigan TS8 and Lelliottia jeotgali MR2 on the growth and cadmium accumulation of Arabidopsis thaliana under cadmium stress [J]. J. Biol. Eng., 2022, 38(5): 1915-1928. | |
51 | SHARMA R K, ARCHANA G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria [J]. Appl. Soil Ecol., 2016, 107(1): 66-78. |
52 | DAVID B M, FAYEZEH A, F´ELIX J M R, et al.. The knowns and unknowns of intracellular partitioning of carbon and nitrogen, with focus on the organic acid-mediated interplay between mitochondrion and chloroplast [J/OL]. J. Plant Physiol., 2021, 266: 153521 [2022-06-20]. . |
53 | HONG C C, SONG L Z, KE J W, et al.. The effects of exogenous organic acids on the growth, photosynthesis and cellular ultrastructure of Salix variegata Franch. under Cd stress [J/OL]. Ecotox. Environ. Safe., 2020, 187: 109790 [2022-06-20]. . |
54 | GUO J K, ZHOU R, REN X H, et al.. Effects of salicylic acid, Epi-brassinolide and calcium on stress alleviation and Cd accumulation in tomato plants [J]. Ecotox. Environ. Safe., 2018, 157(15): 491-496. |
55 | JUBAYER A M, MIRZA H, KAMRUN N. Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems [J]. Ecotox. Environ. Safe., 2018, 147: 990-1001. |
56 | XUE W J, ZHANG C B, HUANG Y C, et al.. Rice organs concentrate cadmium by chelation of amino acids containing dicarboxyl groups and enhance risks to human and environmental health in Cd-contaminated areas [J/OL]. J. Hazard. Mater., 2022, 426: 128130 [2022-06-20]. . |
57 | FARDUS J, HOOSIAN M, FUJITA M. Potential role of L-glutamic acid in mitigating cadmium toxicity in lentil (Lens culinaris Medik.) through modulating the antioxidant defence system and nutrient homeostasis [J/OL]. Not. Bot. Horti Agrobo., 2021, 49(4): 12485 [2022-06-20]. . |
58 | XING C, LI J Y, LAM S M, et al.. The role of glutathione-mediated triacylglycerol synthesis in the response to ultra-high cadmium stress in Auxenochlorella protothecoides [J]. J. Environ. Sci., 2021, 108: 58-69. |
59 | SADIA R, MUHAMMAD U C, IMRAN K, et al.. Exogenously applied trehalose augments cadmium stress tolerance and yield of mung bean (Vigna radiata L.) grown in soil and hydroponic systems through reducing Cd uptake and enhancing photosynthetic efficiency and antioxidant defense systems [J/OL]. Plants, 2022, 11(822): 822 [2022-06-20]. . |
60 | 张星雨,叶志彪,张余洋.植物响应镉胁迫的生理与分子机制研究进展[J].植物生理学报,2021,57(7):1437-1450. |
ZHANG X Y, YE Z B, ZHANG Y Y. Research progress on physiological and molecular mechanisms of plants in response to cadmium stress [J]. Plant Physiol. J., 2021, 57(7): 1437-1450. | |
61 | DHRITI K, SIMRANJEET S, PRAVEEN C R, et al.. Molecular consequences of cadmium toxicity and its regulatory networks in plants [J/OL]. Plant Gene, 2021, 28: 100342 [2022-06-20]. . |
62 | SUN N, LIU M, ZHANG W T, et al.. Bean metal-responsive element-binding transcription factor confers cadmium resistance in tobacco [J]. Plant Physiol., 2015, 167: 1136-1148. |
63 | SU H X, ZOU T, LIN R Y, et al.. Characterization of a phytochelatin synthase gene from Ipomoea pes-caprae involved in cadmium tolerance and accumulation in yeast and plants [J]. Plant Physiol. Biochem., 2020, 155: 743-755. |
64 | JUN S, SHENG J F, JIAN C, et al.. A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity [J/OL]. BMC Plant Biol., 2017, 17(1): 187 [2022-06-20]. . |
65 | PUJA A, MEHALI M, SAMRAT B, et al.. MYB4 transcription factor, a member of R 2R3-subfamily of MYB domain protein, regulates cadmium tolerance via enhanced cprotection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis [J/OL]. Plant Sci., 2020, 297: 110501 [2022-06-20]. . |
66 | WEI S, ZHU S J, JIE Y C, et al.. Expression profiling of cadmium response genes in ramie (Boehmeria nivea L.) root [J]. Bull. Environ. Contam. Toxicol., 2015, 94: 453-459. |
[1] | Xiang DAI, Haichao SONG, Chuan SU. Design and Experiment of Self-propelled Garlic Vertically-planting and Fertilizing Integrated Machine [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 131-144. |
[2] | Junyu ZHOU, Yu GU, Haiyong WU, Mingde LI, Qiongfeng LIU, Xuan ZHOU, Chunhua DONG. Effects of Citric Acid on Enhance the Remediation of Cd-contaminated Soil by Amaranthus hypochondriacus L. [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 215-223. |
[3] | Hao JIA, Hongzhe WANG, Zhengwen SUN, Qishen GU, Dongmei ZHANG, Xingyi WANG, Yan ZHANG, Huaiyu LU, Zhiying MA, Xingfen WANG. Genome-wide Identification of VOZ Genes Family in Cotton and Study on Salt Tolerance Function of GhVOZ1 [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 58-68. |
[4] | Haitao XU, Hongzhen MA, Wenwen WANG, Wenxiang FAN, Bo XU, Jungang ZHANG, Haibin GUO, Youhua WANG. Research on Dynamic Development and Accumulated Temperature Model of Maize Plant Height and Stem Diameter Based on Effective Accumulated Temperature [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 187-201. |
[5] | Xianhua DING, Shuangdui YAN, Ming YAN. Preparation and Characteristics of High-quality Biochar Fuel by Pressurized Torrefaction of Pine Sawdust [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 204-216. |
[6] | Huanbin ZHENG, Ming LI, Suxin YANG, Weilin WU. Alkaline Tolerance Screening and Evaluation Analysis of Soybean Germplasm Resources at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 54-71. |
[7] | Weiming WANG, Xin PAN, Deping KONG, Yu AN, Shuang GUO, Zhimei SUN, Cheng XUE, Rongjun SUN, Wenqi MA, Huasen XU. Spatiotemporal Characteristics and Their Influencing Factors of Crop Diversification in China [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 16-27. |
[8] | Xiaoyu QI, Yanjie GUO, Lu LIU, Zitao ZHANG, Lijuan ZHANG, Yanzhi JI. Effects of Planting Years on Soil Salinization and Microbial Community in Facility Vineyards [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 218-228. |
[9] | Xinwei XUE, Dan LIU, Shi ZHANG, Wenyu HAN, Ankang MU, Zhikun YU, Fan YANG, Yahui WEN, Jialin ZHANG, Yongping ZHANG, Xianrui WANG. Comprehensive Evaluation and Screening of Drought Resistance of 86 Millet Germplasm Resources During Germination Period [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 39-51. |
[10] | Manhong WANG, Meijuan XIAO, Ahmad IRSHAD, Eltyb Ahmed Nimir NIMIR, Ibrahim El Dessougi HANADI, Guisheng ZHOU, Guanglong ZHU. Identification and Evaluation of Salt Tolerance in Sorghum at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 52-63. |
[11] | Jianglin LAN, Rongfeng XIAO, Jieping WANG, Haifeng ZHANG, Bo LIU. Effects of Integrated Microbiome Agent on Tomato Plant Growth and Rhizosphere Bacterial Community Diversity [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 173-181. |
[12] | Zhongzhong DOU, Yiqi LIU. Simulation Analysis of Arc-jaw Type Potato Precision Seed Discharger [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 110-119. |
[13] | Guobin JIANG. Analysis of Status and Development Trend on the Protection of New Agricultural Plant Varieties in China [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 1-11. |
[14] | Gang LEI, Rong FANG, Kunhua ZHOU, Xuejun CHEN, Xinjie YUAN, Yueqin HUANG, Gege LI, Yuanyuan XIE, Xiaomin SONG. Establishment of Comprehensive Evaluation System of Pepper Germplasm Resources on Heat Tolerance at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 60-70. |
[15] | Jinxian LIU, Lijuan WANG, Jie LIU, Xianyu FU, Guangheng WU. Identification and Expression Analysis of Calmodulin-binding Transcription Activator (CAMTA) Family Genes in Tea Plants [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 71-82. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||