Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (9): 106-115.DOI: 10.13304/j.nykjdb.2021.0618
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Chuang LU1(), Haitang HU1, Yuan QIN1,2, Heju HUAI1, Cunjun LI1(
)
Received:
2021-07-27
Accepted:
2021-11-22
Online:
2022-09-15
Published:
2022-10-11
Contact:
Cunjun LI
卢闯1(), 胡海棠1, 覃苑1,2, 淮贺举1, 李存军1(
)
通讯作者:
李存军
作者简介:
卢闯 E-mail: lupeichuang@163.com;
基金资助:
CLC Number:
Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image[J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115.
卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0618
土壤指标 Soil properties | 样点数目 Sample points No. | 平均值Average | 最小值Min. | 最大值Max. | 变异系数CV | 偏度Skewness | 峰度Kurtosis |
---|---|---|---|---|---|---|---|
有机质Organic matter /% | 115 | 6.52 | 4.25 | 9.09 | 17.41 | 0.10 | 0.84 |
碱解氮Available nitrogen / (mg·kg-1) | 115 | 238.80 | 158.11 | 320.05 | 19.57 | -0.20 | -0.04 |
有效磷/Available phosphorus/ (mg·kg-1) | 115 | 85.60 | 39.75 | 145.90 | 32.07 | 0.22 | 0.38 |
速效钾/ Available potassium/ (mg·kg-1) | 115 | 211.00 | 149.17 | 298.44 | 19.53 | 0.83 | 0.49 |
土壤含水率Soil water content/% | 115 | 29.81 | 19.76 | 38.47 | 16.37 | 0.18 | -0.13 |
土壤电导率 Soil EC/(μs·cm-1) | 115 | 325.00 | 193.00 | 446.67 | 15.37 | -0.09 | 0.33 |
pH | 115 | 5.41 | 5.10 | 5.60 | 4.38 | -0.56 | 0.77 |
Table 1 Descriptive statistics of soil property
土壤指标 Soil properties | 样点数目 Sample points No. | 平均值Average | 最小值Min. | 最大值Max. | 变异系数CV | 偏度Skewness | 峰度Kurtosis |
---|---|---|---|---|---|---|---|
有机质Organic matter /% | 115 | 6.52 | 4.25 | 9.09 | 17.41 | 0.10 | 0.84 |
碱解氮Available nitrogen / (mg·kg-1) | 115 | 238.80 | 158.11 | 320.05 | 19.57 | -0.20 | -0.04 |
有效磷/Available phosphorus/ (mg·kg-1) | 115 | 85.60 | 39.75 | 145.90 | 32.07 | 0.22 | 0.38 |
速效钾/ Available potassium/ (mg·kg-1) | 115 | 211.00 | 149.17 | 298.44 | 19.53 | 0.83 | 0.49 |
土壤含水率Soil water content/% | 115 | 29.81 | 19.76 | 38.47 | 16.37 | 0.18 | -0.13 |
土壤电导率 Soil EC/(μs·cm-1) | 115 | 325.00 | 193.00 | 446.67 | 15.37 | -0.09 | 0.33 |
pH | 115 | 5.41 | 5.10 | 5.60 | 4.38 | -0.56 | 0.77 |
植被指数 Vegetation index | 叶面积指数 LAI | 地上生物量 Above-ground biomass | 株高 Plant height | SPAD |
---|---|---|---|---|
NDVI | 0.202* | 0.187* | 0.150 | 0.063 4 |
OSAVI | 0.261** | 0.213* | 0.167 | 0.115 0 |
NDREI | 0.313** | 0.297** | 0.259** | 0.143 0 |
RVI | 0.151 | 0.129 | 0.047 | 0.051 4 |
DVI | 0.348** | 0.240* | 0.257** | 0.146 0 |
SAVI | 0.295** | 0.231* | 0.218* | 0.135 0 |
RDVI | 0.298** | 0.226* | 0.204* | 0.128 0 |
Table 2 Correlation between vegetation index and spring maize growth indicators
植被指数 Vegetation index | 叶面积指数 LAI | 地上生物量 Above-ground biomass | 株高 Plant height | SPAD |
---|---|---|---|---|
NDVI | 0.202* | 0.187* | 0.150 | 0.063 4 |
OSAVI | 0.261** | 0.213* | 0.167 | 0.115 0 |
NDREI | 0.313** | 0.297** | 0.259** | 0.143 0 |
RVI | 0.151 | 0.129 | 0.047 | 0.051 4 |
DVI | 0.348** | 0.240* | 0.257** | 0.146 0 |
SAVI | 0.295** | 0.231* | 0.218* | 0.135 0 |
RDVI | 0.298** | 0.226* | 0.204* | 0.128 0 |
主成分Principal component | 特征值Eigenvalue | 贡献率Contribution rate/% | 累积贡献率Accumulative contribution/% |
---|---|---|---|
PC1 | 2.45 | 34.95 | 34.95 |
PC2 | 1.97 | 28.12 | 63.07 |
PC3 | 1.77 | 25.22 | 88.29 |
PC4 | 0.45 | 6.49 | 94.78 |
PC5 | 0.20 | 2.91 | 97.69 |
PC6 | 0.11 | 1.56 | 99.25 |
PC7 | 0.05 | 0.75 | 100.00 |
Table 3 Principal Component analysis of soil variables and factor loadings
主成分Principal component | 特征值Eigenvalue | 贡献率Contribution rate/% | 累积贡献率Accumulative contribution/% |
---|---|---|---|
PC1 | 2.45 | 34.95 | 34.95 |
PC2 | 1.97 | 28.12 | 63.07 |
PC3 | 1.77 | 25.22 | 88.29 |
PC4 | 0.45 | 6.49 | 94.78 |
PC5 | 0.20 | 2.91 | 97.69 |
PC6 | 0.11 | 1.56 | 99.25 |
PC7 | 0.05 | 0.75 | 100.00 |
主成分Principal component | 有机质OM | 碱解氮AN | 有效磷AP | 速效钾AK | 土壤水分SWC | 电导率EC | pH |
---|---|---|---|---|---|---|---|
PC1 | 0.92 | 0.867 | 0.639 | 0.532 | -0.048 | -0.168 | -0.354 |
PC2 | -0.216 | -0.409 | 0.709 | 0.688 | -0.348 | -0.021 | 0.61 |
PC3 | 0.229 | -0.025 | 0.002 | 0.195 | 0.931 | 0.757 | 0.273 |
Table 4 Principal component factor loads
主成分Principal component | 有机质OM | 碱解氮AN | 有效磷AP | 速效钾AK | 土壤水分SWC | 电导率EC | pH |
---|---|---|---|---|---|---|---|
PC1 | 0.92 | 0.867 | 0.639 | 0.532 | -0.048 | -0.168 | -0.354 |
PC2 | -0.216 | -0.409 | 0.709 | 0.688 | -0.348 | -0.021 | 0.61 |
PC3 | 0.229 | -0.025 | 0.002 | 0.195 | 0.931 | 0.757 | 0.273 |
分区方法Strategy | 样点重合率Similarity/% |
---|---|
M1-S1 | 40.00 |
M2-S2 | 46.51 |
M3-S3 | 57.45 |
M4-S4 | 59.38 |
M-S | 51.32 |
Table 5 Comparison of the percentage of points classified by different strategies
分区方法Strategy | 样点重合率Similarity/% |
---|---|
M1-S1 | 40.00 |
M2-S2 | 46.51 |
M3-S3 | 57.45 |
M4-S4 | 59.38 |
M-S | 51.32 |
分区 Zone | 样点数 Sample points No | i e l d /(kg·hm-2) 产量 Y | 有机质 OM/% | N /(mg·kg-1) 碱解氮 A | P /(mg·kg-1) 速效磷 A | K /(mg·kg-1) 速效钾 A | 水分 SWC/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | ||
M1 | 14 | 7 597.53 d | 13.52 | 5.71 c | 11.87 | 196.26 c | 10.57 | 62.45 c | 26.71 | 180.28 c | 16.62 | 31.28 a | 19.68 |
M2 | 38 | 8 236.35 c | 13.66 | 6.31 b | 14.91 | 225.35 b | 18.66 | 82.16 b | 12.92 | 211.90 b | 15.09 | 30.28 a | 15.59 |
M3 | 36 | 8 686.98 b | 13.39 | 6.78 a | 11.23 | 252.05 a | 10.12 | 91.12 a | 16.68 | 225.65 a | 12.99 | 29.21 a | 14.16 |
M4 | 27 | 9 119.93 a | 15.61 | 7.03 a | 12.17 | 260.08 a | 13.05 | 93.99 a | 28.18 | 233.34 a | 15.88 | 29.48 a | 15.64 |
S1 | 28 | 7 754.81 c | 15.39 | 5.90 d | 9.84 | 207.93 d | 11.21 | 69.30 d | 16.67 | 175.92 d | 11.38 | 27.96 c | 12.45 |
S2 | 25 | 8 173.44 b | 14.84 | 6.28 c | 8.39 | 221.10 c | 13.36 | 77.93 c | 21.48 | 190.48 c | 16.52 | 33.13 a | 12.30 |
S3 | 38 | 8 860.05 a | 14.36 | 6.76 b | 6.34 | 248.21 b | 5.99 | 91.25 b | 14.66 | 213.01 b | 12.33 | 28.44 c | 10.92 |
S4 | 24 | 9 153.23 a | 13.61 | 7.26 a | 10.24 | 272.76 a | 8.41 | 102.42 a | 15.79 | 235.78 a | 14.71 | 30.81 b | 11.41 |
总计All | 115 | 8 507.1 | 16.23 | 6.55 | 17.41 | 237.98 | 19.57 | 85.34 | 32.07 | 210.60 | 19.53 | 29.81 | 16.37 |
Table 6 Variance analysis of spring maize yield and soil properties among management zones
分区 Zone | 样点数 Sample points No | i e l d /(kg·hm-2) 产量 Y | 有机质 OM/% | N /(mg·kg-1) 碱解氮 A | P /(mg·kg-1) 速效磷 A | K /(mg·kg-1) 速效钾 A | 水分 SWC/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
均值 Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | 均值Mean | CV | ||
M1 | 14 | 7 597.53 d | 13.52 | 5.71 c | 11.87 | 196.26 c | 10.57 | 62.45 c | 26.71 | 180.28 c | 16.62 | 31.28 a | 19.68 |
M2 | 38 | 8 236.35 c | 13.66 | 6.31 b | 14.91 | 225.35 b | 18.66 | 82.16 b | 12.92 | 211.90 b | 15.09 | 30.28 a | 15.59 |
M3 | 36 | 8 686.98 b | 13.39 | 6.78 a | 11.23 | 252.05 a | 10.12 | 91.12 a | 16.68 | 225.65 a | 12.99 | 29.21 a | 14.16 |
M4 | 27 | 9 119.93 a | 15.61 | 7.03 a | 12.17 | 260.08 a | 13.05 | 93.99 a | 28.18 | 233.34 a | 15.88 | 29.48 a | 15.64 |
S1 | 28 | 7 754.81 c | 15.39 | 5.90 d | 9.84 | 207.93 d | 11.21 | 69.30 d | 16.67 | 175.92 d | 11.38 | 27.96 c | 12.45 |
S2 | 25 | 8 173.44 b | 14.84 | 6.28 c | 8.39 | 221.10 c | 13.36 | 77.93 c | 21.48 | 190.48 c | 16.52 | 33.13 a | 12.30 |
S3 | 38 | 8 860.05 a | 14.36 | 6.76 b | 6.34 | 248.21 b | 5.99 | 91.25 b | 14.66 | 213.01 b | 12.33 | 28.44 c | 10.92 |
S4 | 24 | 9 153.23 a | 13.61 | 7.26 a | 10.24 | 272.76 a | 8.41 | 102.42 a | 15.79 | 235.78 a | 14.71 | 30.81 b | 11.41 |
总计All | 115 | 8 507.1 | 16.23 | 6.55 | 17.41 | 237.98 | 19.57 | 85.34 | 32.07 | 210.60 | 19.53 | 29.81 | 16.37 |
1 | CRUZ C, SILVA J T, OCHO A, et al.. Delineation of environmental units by multivariate techniques in the duero river watershed, Michoacan, Mexico [J]. Environ. Model. Assess., 2016, 22(3):1-10. |
2 | 刘刚,闫静雯,谢云,等.黑土坡耕地土壤有机质空间变异及其与土壤侵蚀的关系——以黑龙江省鹤山农场为例[J].地理科学, 2016, 36(11): 1751-1758. |
LIU G, YAN J W, XIE Y, et al.. Spatial variation of soil organic matter on black soil sloping cropland and its relationship with soil erosion: a case study of Heshan farm in Heilongjiang province [J]. Sci. Geographica Sin., 2016, 36(11): 1751-1758. | |
3 | OLDONI H, TERRA V, TIMM L C, et al.. Delineation of management zones in a peach orchard using multivariate and geostatistical analyses [J]. Soil Tillage Res., 2019, 191: 1-10. |
4 | GILI A, ALVAREZ C, BAGNATO R, et al.. Comparison of three methods for delineating management zones for site-specific crop management [J]. Comput. Electronics Agric., 2017, 139: 213-223. |
5 | 张泽,吕新,吕宁,等.基于GIS、RS的滴灌棉田土壤养分精确管理分区研究[J].农业机械学报,2014,45(7):125-132. |
ZHANG Z, LV X, LV N, et al.. Defining agricultural management zones using remote sensing and GIS techniques for drip-irrigated cotton fields [J]. Trans. Chin. Soc. Agric. Mach.., 2014, 45(7): 125-132. | |
6 | BREUNIG F M, GALVAO L S, DALAGNOL R, et al.. Delineation of management zones in agricultural fields using cover-crop biomass estimates from PlanetScope data [J/OL]. Int. J. Appl. Earth OBS, 2020, 85: 102004 [2022-05-27]. . |
7 | KUIAWSKI A C, SAFANELLI J L, BOTTEGA E, et al.. Vegetation indexes and delineation of management zones for soybean [J]. Pesqui. Agrop. Trop., 2017, 47(2): 168-177. |
8 | 乔浪,张智勇,陈龙胜,等.基于无人机图像的玉米冠层叶绿素含量检测与分布研究[J].农业机械学报,2019,50:182-186. |
QIAO L, ZHANG Z Y, CHEN L S, et al.. Chlorophyll content detection and distribution research of maize canopy based on UAV image [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50: 182-186. | |
9 | 韩文霆,彭星硕,张立元,等.基于多时相无人机遥感植被指数的夏玉米产量估算[J].农业机械学报,2020,51(1):149-155. |
HAN W T, PENG X S, ZHANG L Y, et al.. Summer maize yield estimation based on vegetation ondex derived from multitemporal UAV remote sensing [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(1):149-155. | |
10 | LEROUX C, JONES H, CLENET A, et al.. A new approach for zoning irregularly-spaced, within-field data [J]. Comput. Electron. Agric., 2017,141:196-206. |
11 | BENZ U C, HOFMANN P, WILLHAUCK, et al.. Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J]. ISPRS-J. Photogramm. Remote Sens., 2004,58(3-4): 239-258. |
12 | 马龙飞,胡乃月,李伟,等.利用无人机多光谱数据监测玉米对不同灌溉模式的响应差异[J]. 植物营养与肥料学报,2022,28(4):743-753. |
MA L F, HU N Y, LI W, et al.. Using multispectral drone data to monitor maize's response to various irrigation modes [J]. J. Plant Nutr. Fert., 2022,28(4):743-753. | |
13 | 田庆久.植被指数研究进展[J].地球科学进展,1998,13(4):328-333. |
TIAN Q J. Advances in study on vegetation indices [J]. Adv. Earth Sci., 1998, 13(4):328-333. | |
14 | 陈春雷,武刚.面向对象的遥感影像最优分割尺度评价[J].遥感技术与应用,2011,26(1):96-102. |
CHEN C L, WU G. Evaluation of optimal segmentation scale with object-oriented method in remote sensing [J]. Remote Sen. Technol. Appl., 2011, 26(1):96-102. | |
15 | 王露,刘庆元.面向对象的高分辨率遥感影像多尺度分割参数及分类研究[J].测绘与空间地理信息,2015,38(3):167-169. |
WANG L, LIU Q Y. The methods summary of optimal segmentation scale selection in high resolution remote sensing images multiscale segmentation [J]. Geomatics Spatial Inf. Technol., 2015, 38(3): 167-169. | |
16 | GAVIOLI A, SOUZA E G, BAZZI C L, et al.. Optimization of management zone delineation by using spatial principal components [J]. Comput. Electron. Agric., 2016. 127: 302-310. |
17 | FRIDGEN J J, NEWELL R, KITCHEN, et al.. Management zone analyst (MZA): software for subfield management zone delineation [J]. Agron. J., 2004. 96(1): 100-108. |
18 | 刘建刚,赵春江,杨贵军,等.无人机遥感解析田间作物表型信息研究进展[J].农业工程学报,2016,32(24):98-106. |
LIU J G, ZHAO C J, YANG G J, et al.. Review of field based phenotyping by unmanned aerial vehicle remote sensing platforrm [J]. Trans. Chin. Soc. Agric. Eng., 2016, 32(24): 98-106. | |
19 | CHANG D, ZHANG J, ZHU L, et al.. Delineation of management zones using an active canopy sensor for a tobacco field [J]. Comput. Electron. Agric., 2014, 109: 172-178. |
20 | LI F, MIAO Y X, FENG G H, et al.. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices [J]. Field Crops Res., 2014, 157: 111-123. |
21 | 赵明明.基于无人机与卫星影像的农田精准管理分区研究[D].哈尔滨:东北农业大学,2019. |
ZHAO M M. Study on site-specific management zones in field using unmanned aerial vehicle and satellite images [D]. Harbin: Northeast Agricultural University, 2019. | |
22 | 任佰朝,张吉旺,董树亭,等.生育前期淹水对夏玉米冠层结构和光合特性的影响[J].中国农业科学,2017,50(11):2093-2103. |
REN B C, ZHANG J W, DONG S T, et al.. Effect of waterlogging at early period on canopy structure and photosynthetic characteristics of summer maize [J]. Sci. Agric. Sin., 2017, 50(11): 2093-2103. | |
23 | 葛翠萍,赵军,王秀峰,等.东北黑土区坡耕地地形因子对土壤水分和容重的影响[J].水土保持通报,2008,28(6):16-21. |
GE C P, ZHAO J, WANG X F, et al.. Influence of topographic factors on soil water and bulk density in a typical slope land in the black soil area of Northeast China [J]. Bull. Soil Water Conser., 2008, 28(6): 16-21. |
[1] | Zhenfei ZHANG, An YAN, Jing GUO, Yuhang ZHAO, Yilin YUAN, Peng LIU, Zuohao QU, Chuan YUAN. Research on Apple Yield Estimation Model Based on Unmanned Aerial Vehicle Remote Sensing [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 110-119. |
[2] | Mingjun JIANG, Yanmin FAN, Hongqi WU, Hao ZHANG, Zhuo LIU, Dejun WANG. Remote Sensing Inversion Study of Relative Chlorophyll Content in Processing Tomato Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 89-99. |
[3] | Xiyu ZHANG, Xing SHEN, Wei LI, Wenge XIE, Jie LI, Changhao YANG, Zhongping CHAI. Influence of Reduced Nitrogen Fertilizer Combined with Organic Fertilizer on Soil Bacterial Community Structure in Korla Pear Orchards [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 217-228. |
[4] | Sile HU, Yulong BAO, Tubuxinbayaer, Jifeng TAO, Enliang GUO. Chlorophyll Content Inversion of Spring Wheat Based on Unmanned Aerial Vehicle Hyperspectral and Integrated Learning [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 93-103. |
[5] | Shuyuan ZHENG, Jian DAO, Xuelin ZHANG, Shanshan LIU, Jianxiong WANG. Research on Green Vegetation Extraction Method Based on Visible Light Band [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 107-117. |
[6] | Wei WANG, Hongyu FU, Jianning LU, Yunkai YUE, Ruifang YANG, Guoxian CUI, Wei SHE. Research on Interpretation of Ramie Lodging Information Based on Unmanned Aerial Vehicles [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 91-97. |
[7] | Tianjun TANG, Yang CHEN, Jun HU, Haotian JIANG. Research on Tobacco Precise Recognition Method Based on UAV Image Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 145-157. |
[8] | Chenyang ZHANG, Minggang XU, Fei WANG, Ran LI, Nan SUN. Effects of Manure Application on Soybean Yield and Soil Nutrients in China [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 148-156. |
[9] | Caiyan DU, Haiyan LU, Yanzhu XIONG, Xi SUN, Xiumei SUN, Jixiong PU, Naiming ZHANG. Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Peach Growth and Soil Physical and Chemical Properties for Two Consecutive Years [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 165-175. |
[10] | Rui XIAO, Lu TAN, Liang WU, Hao ZHANG, Jiayuan GUO, Haijun YANG. Microbial Community Structure and Diversity in Rhizosphere and Non-rhizosphere Soil of Kochia scoparia Under Cd Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 203-215. |
[11] | Jia YAO, Jiaxin LIU, Yan SU, Xiaojuan SU. Effects of Combined Application of Tobacco Stem Biochar and Nitrogen Fertilizers on Corn Growth and Soil Properties in Seeding Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 140-151. |
[12] | Tingting NIE, Yiqiang DONG, Helong YANG, Asitaiken Julihaiti, Shijie ZHOU, Shazhou AN. Effects of Enclosure on Plant and Soil Stoichiometric Characteristics in an Artemisia Desert [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 178-187. |
[13] | Yunzhu ZHENG, Shuchen SUN. Effects of Straw Biochar and Straw on Soil Nutrients and Crop Yield in Wheat-Maize Rotation System [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 152-162. |
[14] | Linjiang YIN, Wei LI, Weiquan ZHAO, Zulun ZHAO, Sisi LYU, Xiaoqiong SUN. Research on Characteristics and Coverage Extraction of Rice Multi-phase Vegetation Index [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 83-98. |
[15] | Lingwen HU, Zhongfa ZHOU, Linjiang YIN, Meng ZHU, Denghong HUANG. Rape Identification at Seedling Stage Based on UAV RGB Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 116-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||