Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (7): 32-38.DOI: 10.13304/j.nykjdb.2021.0583
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Zhengwen SUN(), Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA(
)
Received:
2021-07-15
Accepted:
2022-03-27
Online:
2022-07-15
Published:
2022-08-15
Contact:
Zhiying MA
通讯作者:
马峙英
作者简介:
孙正文 E-mail: nxszhw@hebau.edu.cn;
基金资助:
CLC Number:
Zhengwen SUN, Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA. Research Progress on Cotton Gene Discovery and Molecular Breeding[J]. Journal of Agricultural Science and Technology, 2022, 24(7): 32-38.
孙正文, 谷淇深, 张艳, 王省芬, 马峙英. 棉花基因发掘与分子育种研究进展[J]. 中国农业科技导报, 2022, 24(7): 32-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0583
QTL | 染色体Chromosome | 分子 标记 Marker | 表型变异 解释率 Phenotypic variation explained/% | 物理区间 Physical interval /Mb |
---|---|---|---|---|
qFL-D02-1 | Dt02 | bin4537 | 5.21~14.65 | 2.84~3.83 |
qFL-D02-4 | Dt02 | bin4669 | 4.37~10.34 | 21.34~30.84 |
qFL-D05-1 | Dt05 | bin5200 | 2.47~6.98 | 4.62~6.64 |
qFS-D02-1 | Dt02 | bin4537 | 3.85~6.70 | 2.95~3.83 |
qFS-D05-2 | Dt05 | bin5165 | 3.53~4.15 | 1.63~2.24 |
qFS-D11-1 | Dt11 | bin6330 | 4.66~12.08 | 62.03~64.45 |
qFS-D13-1 | Dt13 | bin6606 | 3.26~5.95 | 0.00~2.15 |
qFM-A05-1 | At05 | bin1333 | 3.58~5.58 | 9.54~10.55 |
qFM-D05-1 | Dt05 | bin5275 | 3.02~4.77 | 12.21~21.52 |
qFU-D02-3 | Dt02 | bin4537 | 5.72~7.46 | 2.71~3.83 |
qFU-D02-6 | Dt02 | bin4697 | 3.07~4.60 | 27.63~39.98 |
qFU-D11-1 | Dt11 | bin6322 | 2.59~5.59 | 61.94~63.14 |
qFE-A05-1 | At05 | bin1337 | 3.83~15.83 | 9.95~10.57 |
qFE-A11-2 | At11 | bin3388 | 2.29~3.40 | 67.16~81.20 |
qFE-D02-1 | Dt02 | bin4513 | 2.45~5.43 | 0.04~0.94 |
qFE-D13-1 | Dt13 | bin6606 | 2.44%~4.23% | 0.05~1.10 |
Table 1 Marker information closely linked to stable QTL[6]
QTL | 染色体Chromosome | 分子 标记 Marker | 表型变异 解释率 Phenotypic variation explained/% | 物理区间 Physical interval /Mb |
---|---|---|---|---|
qFL-D02-1 | Dt02 | bin4537 | 5.21~14.65 | 2.84~3.83 |
qFL-D02-4 | Dt02 | bin4669 | 4.37~10.34 | 21.34~30.84 |
qFL-D05-1 | Dt05 | bin5200 | 2.47~6.98 | 4.62~6.64 |
qFS-D02-1 | Dt02 | bin4537 | 3.85~6.70 | 2.95~3.83 |
qFS-D05-2 | Dt05 | bin5165 | 3.53~4.15 | 1.63~2.24 |
qFS-D11-1 | Dt11 | bin6330 | 4.66~12.08 | 62.03~64.45 |
qFS-D13-1 | Dt13 | bin6606 | 3.26~5.95 | 0.00~2.15 |
qFM-A05-1 | At05 | bin1333 | 3.58~5.58 | 9.54~10.55 |
qFM-D05-1 | Dt05 | bin5275 | 3.02~4.77 | 12.21~21.52 |
qFU-D02-3 | Dt02 | bin4537 | 5.72~7.46 | 2.71~3.83 |
qFU-D02-6 | Dt02 | bin4697 | 3.07~4.60 | 27.63~39.98 |
qFU-D11-1 | Dt11 | bin6322 | 2.59~5.59 | 61.94~63.14 |
qFE-A05-1 | At05 | bin1337 | 3.83~15.83 | 9.95~10.57 |
qFE-A11-2 | At11 | bin3388 | 2.29~3.40 | 67.16~81.20 |
qFE-D02-1 | Dt02 | bin4513 | 2.45~5.43 | 0.04~0.94 |
qFE-D13-1 | Dt13 | bin6606 | 2.44%~4.23% | 0.05~1.10 |
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
转录因子 | GhbHLH18 | Dt04 | [ |
GhKNL1 | Dt08 | [ | |
激素 Hormone | AKR2A | — | [ |
GhVTC1 | Dt10 | [ | |
激素信号途径 | Gh_D02G0025 | Dt02 | [ |
Ghir_A03G020290 | At03 | [ | |
骨架蛋白 | GhXLIM6 | Dt02 | [ |
GhKCBP | At02 | [ | |
TUA2 | Dt02 | [ | |
Gh_A10G1256 | At10 | [ | |
Ghir_D02G002580 | Dt02 | [ | |
脂肪代谢 Fat metabolism | KCS1 | — | [ |
GhKCS13/CER6 | At01 | [ | |
细胞壁成分 Cell wall component | GhCesA2 | At08/Dt08 | [ |
GhCesA4/8 | At04/Dt08 | [ | |
Ghir_D02G011110 | Dt02 | [ | |
细胞代谢 Cell metabolism | Gh_D07G1799 | Dt02 | [ |
Gh_D13G1792 | Dt13 | [ | |
KRP家族蛋白 KRP family protein | Gh_D11G1929 | Dt11 | [ |
脂质信号转导 Lipids signal transduction | Ghir_D02G010340 | Dt02 | [ |
Table 2 Identification of candidate genes related to fiber development
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
转录因子 | GhbHLH18 | Dt04 | [ |
GhKNL1 | Dt08 | [ | |
激素 Hormone | AKR2A | — | [ |
GhVTC1 | Dt10 | [ | |
激素信号途径 | Gh_D02G0025 | Dt02 | [ |
Ghir_A03G020290 | At03 | [ | |
骨架蛋白 | GhXLIM6 | Dt02 | [ |
GhKCBP | At02 | [ | |
TUA2 | Dt02 | [ | |
Gh_A10G1256 | At10 | [ | |
Ghir_D02G002580 | Dt02 | [ | |
脂肪代谢 Fat metabolism | KCS1 | — | [ |
GhKCS13/CER6 | At01 | [ | |
细胞壁成分 Cell wall component | GhCesA2 | At08/Dt08 | [ |
GhCesA4/8 | At04/Dt08 | [ | |
Ghir_D02G011110 | Dt02 | [ | |
细胞代谢 Cell metabolism | Gh_D07G1799 | Dt02 | [ |
Gh_D13G1792 | Dt13 | [ | |
KRP家族蛋白 KRP family protein | Gh_D11G1929 | Dt11 | [ |
脂质信号转导 Lipids signal transduction | Ghir_D02G010340 | Dt02 | [ |
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
信号转导 Signal | GaGSTF9 | At03 | [ |
MOS2 | At05 | [ | |
GbEDS1 | At12 | [ | |
蛋白激酶 Protein kinase | GbSTK | At10 | [ |
亲环素基因 Cyclophilin | GhCYP-3 | At01 | [ |
细胞壁蛋白 Cell wall protein | GbHyPRP1 | Dt06 | [ |
G蛋白 G protein | GhGPA | Dt05 | [ |
R基因 R gene | CG03 | At10 | [ |
GhDSC1 | At10 | [ | |
GhGLR4.8 | Dt03 | [ | |
GbVe | Dt09 | [ | |
GbRVd | Dt11 | [ | |
次级代谢产物 | GhSNAT1/GhCOMT | Dt02/ Dt12 | [ |
类受体激酶 Receptor-like kinases,RLKs | GhLecRKs-V.9 | Dt11 | [ |
木质素合成 Lignin synthesis | GhLAC15 | At05 | [ |
GhnsLTPs | At10 | [ | |
活性氧相关 Reactive oxygen species related | GhPAO | At08 | [ |
硬脂酰-ACP-去饱和酶家族 Stearoyl-ACP-desaturase family | GhSSI2s | At10/ Dt10 | [ |
谷胱甘肽硫转移酶 Glutathione S-transferase | Gh_A09G1508 | At09 | [ |
Gh_A09G1509 | At09 | [ | |
Gh_A09G1510 | At09 | [ | |
植物病程相关蛋白 Plant pathogenesis-related proteins | GhNCS | Dt11 | [ |
Table 3 Identification of cotton Verticillium Wilt resistance related genes
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
---|---|---|---|
信号转导 Signal | GaGSTF9 | At03 | [ |
MOS2 | At05 | [ | |
GbEDS1 | At12 | [ | |
蛋白激酶 Protein kinase | GbSTK | At10 | [ |
亲环素基因 Cyclophilin | GhCYP-3 | At01 | [ |
细胞壁蛋白 Cell wall protein | GbHyPRP1 | Dt06 | [ |
G蛋白 G protein | GhGPA | Dt05 | [ |
R基因 R gene | CG03 | At10 | [ |
GhDSC1 | At10 | [ | |
GhGLR4.8 | Dt03 | [ | |
GbVe | Dt09 | [ | |
GbRVd | Dt11 | [ | |
次级代谢产物 | GhSNAT1/GhCOMT | Dt02/ Dt12 | [ |
类受体激酶 Receptor-like kinases,RLKs | GhLecRKs-V.9 | Dt11 | [ |
木质素合成 Lignin synthesis | GhLAC15 | At05 | [ |
GhnsLTPs | At10 | [ | |
活性氧相关 Reactive oxygen species related | GhPAO | At08 | [ |
硬脂酰-ACP-去饱和酶家族 Stearoyl-ACP-desaturase family | GhSSI2s | At10/ Dt10 | [ |
谷胱甘肽硫转移酶 Glutathione S-transferase | Gh_A09G1508 | At09 | [ |
Gh_A09G1509 | At09 | [ | |
Gh_A09G1510 | At09 | [ | |
植物病程相关蛋白 Plant pathogenesis-related proteins | GhNCS | Dt11 | [ |
1 | SUN Z W, WANG X F, LIU Z W, et al.. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. [J]. Plant Biotechnol. J., 2017, 15(8): 982-996. |
2 | MA Z Y, HE S P, WANG X F, et al.. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield [J]. Nat. Genet., 2018, 50(6):803-813. |
3 | SUN Z W, WANG X F, LIU Z W, et al.. Evaluation of the genetic diversity of fibre quality traits in upland cotton (Gossypium hirsutum L.) inferred from phenotypic variations [J]. J. Cotton Res., 2019, 2(4):183-190. |
4 | MA Z Y, ZHANG Y, WU L Q, et al.. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement [J]. Nat. Genet., 2021, 53(9):1385-1391. |
5 | SUN Z W, WANG X F, LIU Z W, et al.. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton [J]. Theor. Appl. Genet., 2018, 131(11):2413-2425. |
6 | GU Q S, KE H F, LIU Z W, et al.. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton [J]. Theor. Appl. Genet., 2020, 133(12):3395-3408. |
7 | GAO Z, SUN W, WANG J, et al.. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers [J]. Plant Sci., 2019, 286:7-16. |
8 | GONG S Y, HUANG G Q, SUN X, et al.. Cotton KNL1, encoding a class Ⅱ KNOX transcription factor, is involved in regulation of fibre development [J]. J. Exp. Bot., 2014, 65:4133-4147. |
9 | HU W, CHEN L, QIU X, et al.. AKR2A participates in the regulation of cotton fiber development by modulating biosynthesis of very-long-chain fatty acids [J]. Plant Biotechnol. J., 2019, 18(2):526-539. |
10 | SONG W, WANG F, CHEN L, et al.. GhVTC1, the key gene for ascorbate biosynthesis in Gossypium hirsutum, involves in cell elongation under control of ethylene [J/OL]. Cell, 2019, 8(9):1039 [2022-05-25]. . |
11 | LI Y, WANG N N, WANG Y, et al.. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis [J]. Plant J., 2018, 96:1269-1282. |
12 | PREUSS M L, DELMER D P, LIU B, et al.. The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers [J]. Plant Physiol., 2003, 132(1):154-160. |
13 | QIN Y, SUN H, HAO P, et al.. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines [J/OL]. BMC Genomics, 2019, 20:633 [2022-05-25]. . |
14 | QIN Y M, HU C Y, PANG Y, et al.. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis [J]. Plant Cell, 2007, 19(11): 3692-3704. |
15 | KIM H J, Triplett B A, Zhang H B, et al.. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.) [J]. Gene, 2012, 494:181-189. |
16 | NING Z Y, ZHAO R, CHEN H, et al.. Molecular tagging of a major quantitative trait locus for broad-spectrum resistance to Verticillium wilt in upland cotton cultivar prema [J]. Crop Sci., 2013, 53:2304-2312. |
17 | LI T, MA X, LI N, et al.. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.) [J]. Plant Biotechnol. J., 2017, 15(12):1520-1532. |
18 | ZHANG Y, CHEN B, SUN Z W, et al.. A large-scale genomic association analysis identifies a fragment in Dt11 chromosome conferring cotton Verticillium wilt resistance [J]. Plant Biotechnol. J., 2021, 19(10): 2126-2138. |
19 | GONG Q, YANG Z, CHEN E, et al.. A Phi-class glutathione S-transferase gene for Verticillium wilt resistance in Gossypium arboreum identified in a genome-wide association study [J]. Plant Cell Physiol., 2018, 59:275-289. |
20 | LI P T, RASHID M H O, CHEN T T, et al.. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G . hirsutum× G. barbadense in response to Verticillium dahliae infection [J/OL]. BMC Plant Biol., 2019, 19(1):19 [2022-05-25]. . |
21 | LI T G, WANG B L, YIN C M, et al.. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt [J]. Mol. Plant Pathol., 2019, 20(6):857-876. |
22 | LIU S M, ZHANG X J, XIAO S H, et al.. A single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum [J/OL]. Adv. Sci., 2021, 8(7):2002723 [2022-05-25]. . |
23 | LI C, HE Q, ZHANG F, et al.. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis [J]. Plant J., 2019, 100(4):784-800. |
24 | ZHANG Y, WANG X F, RONG W, et al.. Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation [J/OL]. Front. Plant Sci., 2016, 7:1830 [2022-05-25]. . |
25 | ZHANG Y, WANG X F, RONG W, et al.. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae [J]. Mol. Plant Microbe Interact., 2017, 30: 984-996. |
26 | ZHANG Y, WANG X F, LI Y Y, et al.. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis [J]. Plant Cell Rep., 2013, 32:1703-1713. |
27 | YANG J, WANG G, KE H, et al.. Genome-wide identification of cyclophilin genes in Gossypium hirsutum and functional characterization of a CYP with antifungal activity against Verticillium dahliae [J/OL]. BMC Plant Biol., 2019, 19:272 [2022-05-25]. . |
28 | YANG J, ZHANG Y, WANG X F, et al.. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation [J/OL]. BMC Plant Biol., 2018, 18(1):339 [2022-05-25]. . |
29 | CHEN B, ZHANG Y, YANG J, et al.. The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation [J/OL]. Crop J., 2021, 9(4):125-135. |
30 | ZHANG Y, WANG X F, YANG S, et al.. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana [J]. Plant Cell Rep., 2011, 30:2085-2096. |
31 | YANG J, MA Q, ZHANG Y, et al.. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt [J]. Gene, 2015, 575:687-694. |
32 | ZHANG Y, WU L Z, WANG X F, et al.. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants [J]. Mol. Plant Pathol., 2019, 20(3):309-322. |
33 | MO H J, ZHANG Y, WANG X F, et al.. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae [J]. Plant J., 2015, 83(6):962-975. |
34 | CHEN B, ZHANG Y, SUN Z W, et al.. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease- and insect-resistance by regulating metabolic flux redirection in cotton [J]. Plant J., 2021, 107(3):831-846. |
35 | MO S J, ZHANG Y, WANG X F, et al.. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance [J]. Mol. Plant Pathol., 2021, 22(9):1041-1056. |
36 | LI Z K, CHEN B, LI X X, et al.. A newly identified cluster of glutathione S-transferase genes provides Verticillium wilt resistance in cotton [J]. Plant J., 2019, 98, 213-227. |
[1] | Hao JIA, Hongzhe WANG, Zhengwen SUN, Qishen GU, Dongmei ZHANG, Xingyi WANG, Yan ZHANG, Huaiyu LU, Zhiying MA, Xingfen WANG. Genome-wide Identification of VOZ Genes Family in Cotton and Study on Salt Tolerance Function of GhVOZ1 [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 58-68. |
[2] | Guiyuan ZHAO, Yongqiang WANG, Jianguang LIU, Zhao GENG, Hanshuang ZHANG, Liqiang WU, Xingfen WANG, Guiyin ZHANG. Effect of Exogenous Gene Insertion Site on Bt Protein Content in Insect-resistant Cotton [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 44-53. |
[3] | Yixin CHEN, Xiubo YANG, Shijun TIAN, Cong WANG, Zhiying BAI, Cundong LI, Ke ZHANG. Response of GhCOMT28 to Drought Stress in Gossypium hirsutum [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 45-56. |
[4] | Zhiduo DONG, Qiuping FU, Jian HUANG, Tong QI, Yanbo FU, Kuerban Kaisaier. Analysis of Salt Tolerance Capacity of Xinjiang Cotton Guring Germination [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 57-67. |
[5] | Zicheng PENG, Hongli DU, Ming WANG, Fenghua ZHANG, Haichang YANG. Research on AMF Regulation of Cotton Growth and Ion Balance Under Salt Alkali Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 33-41. |
[6] | Songjiang DUAN, Haoran HU, Chengjie ZHANG, Wei SUN, Yifan WU, Rensong GUO, Jusong ZHANG. Differences in Nitrogen Efficiency of Different Genotypes of Island Cotton and Their Effects on Photosynthetic Characteristics and Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 61-71. |
[7] | Huiting WENG, Haiyang LIU, Huiming GUO, Hongmei CHENG, Jun LI, Chao ZHANG, Xiaofeng SU. Preliminary Function Analysis of GhERF020 Gene in Response to Verticillium Wilt in Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 112-121. |
[8] | Ziqin LI, Jiaqiang WANG, Zhen LI, Deqiu ZOU, Xiaogong ZHANG, Xiaoyu LUO, Weiyang LIU. Estimation of Chlorophyll Density of Cotton Leaves Based on Spectral Index [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 103-111. |
[9] | Yukun QIN, Junying CHEN, Lijuan ZHANG. Response of Dry Matter Accumulation Characteristics and Yield of Cotton in North Jiangxi Cotton Region to Nitrogen Reduction Measures [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 191-199. |
[10] | Ling LIN, Yujie ZHU, Lei FENG, Guangmu TANG, Yunshu ZHANG, Wanli XU. Effects of Aged Cotton Straw Biochars on Soil Properties and Nitrogen Utilization of Wheat [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 184-191. |
[11] | Jiangbo LI, Wenju GAO, Xiaodong YUN, Jieyin ZHAO, Shiwei GENG, Chunbin HAN, Quanjia CHEN, Qin CHEN. Effects of Different Water Stress Treatments on Core Germplasm Resources of Upland Cotton [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 26-39. |
[12] | Lihua LI, Zhengwen SUN, Huifeng KE, Qishen GU, Liqiang WU, Yan ZHANG, Guiyin ZHANG, Xingfen WANG. Development and Effect Evaluation of KASP Markers for Fiber Strength in Gossypium hirsutum L. [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 46-55. |
[13] | Menghua ZHAI, Minghui SUN, Xuerui LI, Xinlong XU, Haizhou GAO, Jusong ZHANG. Effects of DPC on Plant Type Shaping of Cotton Under Different Plant Spacing Configurations [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 145-156. |
[14] | Zhen CHENG, Jianlong NIU, Yuting MA, weiyang LIU, Xuewei JIANG, Xueqi LIANG, Hongqiang DONG. Dynamic Changes of Cotton Phenological Stages in Alar Reclamation Area of Southern Xinjiang from 1990 to 2020 [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 206-214. |
[15] | Deyou ZHENG, Dongyun ZUO, Qiaolian WANG, Limin LYU, Hailiang CHENG, Aixing GU, Guoli SONG. Screening of Combination of Flumetralin and Fungicide to Control Cotton Fusarium wilt [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 119-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||