








Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (11): 120-130.DOI: 10.13304/j.nykjdb.2024.0393
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Xingjia WANG1,2(
), Jiye ZHENG1,2(
), Qingkai SHENG3, Liang YANG4, Xia ZHANG2
Received:2024-05-17
Accepted:2024-07-02
Online:2025-11-15
Published:2025-11-17
Contact:
Jiye ZHENG
王兴家1,2(
), 郑纪业1,2(
), 盛清凯3, 杨亮4, 张霞2
通讯作者:
郑纪业
作者简介:王兴家 E-mail:wangxingjia2022@163.com;
基金资助:CLC Number:
Xingjia WANG, Jiye ZHENG, Qingkai SHENG, Liang YANG, Xia ZHANG. Research on Group Pig Segmentation Method Based on Improved YOLO v8n-seg[J]. Journal of Agricultural Science and Technology, 2025, 27(11): 120-130.
王兴家, 郑纪业, 盛清凯, 杨亮, 张霞. 基于改进YOLO v8n-seg的群猪分割方法研究[J]. 中国农业科技导报, 2025, 27(11): 120-130.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2024.0393
型号 Model | 精确率 P/% | 召回率 R/% | 均值平均精度(IoU=50%) mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量 Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|
| n | 89.8 | 82.7 | 89.2 | 51.3 | 3.26 | 12.0 | 91.7 |
| s | 94.6 | 88.6 | 94.3 | 60.6 | 11.78 | 42.4 | 63.3 |
| m | 95.6 | 91.5 | 96.1 | 66.1 | 27.22 | 110.0 | 37.5 |
| l | 96.1 | 92.7 | 96.6 | 66.7 | 45.91 | 220.1 | 25.8 |
| x | 96.4 | 93.4 | 97.1 | 68.3 | 71.72 | 343.7 | 16.9 |
Table 1 Data comparison of different models of YOLO v8-seg
型号 Model | 精确率 P/% | 召回率 R/% | 均值平均精度(IoU=50%) mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量 Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|
| n | 89.8 | 82.7 | 89.2 | 51.3 | 3.26 | 12.0 | 91.7 |
| s | 94.6 | 88.6 | 94.3 | 60.6 | 11.78 | 42.4 | 63.3 |
| m | 95.6 | 91.5 | 96.1 | 66.1 | 27.22 | 110.0 | 37.5 |
| l | 96.1 | 92.7 | 96.6 | 66.7 | 45.91 | 220.1 | 25.8 |
| x | 96.4 | 93.4 | 97.1 | 68.3 | 71.72 | 343.7 | 16.9 |
模块 Module | 精确率 P/% | 召回率 R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量 Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|
| ShuffleNet V2 | 84.2 | 71.9 | 80.4 | 39.9 | 2.08 | 9.0 | 104.2 |
| MobileNet V3 | 68.1 | 60.0 | 67.3 | 31.9 | 1.36 | 6.2 | 92.6 |
| EfficientNet V2 | 75.1 | 61.1 | 68.4 | 28.4 | 2.75 | 3.6 | 94.3 |
| C2f-Ghost | 90.2 | 80.7 | 88.9 | 51.0 | 2.66 | 10.7 | 97.2 |
Table 2 Data comparison of different lightweight structures
模块 Module | 精确率 P/% | 召回率 R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量 Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|
| ShuffleNet V2 | 84.2 | 71.9 | 80.4 | 39.9 | 2.08 | 9.0 | 104.2 |
| MobileNet V3 | 68.1 | 60.0 | 67.3 | 31.9 | 1.36 | 6.2 | 92.6 |
| EfficientNet V2 | 75.1 | 61.1 | 68.4 | 28.4 | 2.75 | 3.6 | 94.3 |
| C2f-Ghost | 90.2 | 80.7 | 88.9 | 51.0 | 2.66 | 10.7 | 97.2 |
位置 Location | 模块 Module | 精确率P/% | 召回率R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~0.95%)mAP0.5:0.95/% | 参数量Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|---|
C2f-Ghost模块后 After C2f-Ghost module | MSDA | 92.4 | 81.6 | 90.0 | 51.4 | 4.05 | 12.6 | 72.3 |
| CBAM | 92.7 | 81.5 | 90.4 | 53.6 | 3.26 | 12.0 | 91.7 | |
| SimAM | 92.4 | 82.9 | 90.4 | 54.1 | 3.26 | 12.0 | 90.2 | |
| MCA | 91.6 | 84.3 | 91.0 | 53.2 | 3.26 | 12.0 | 94.3 | |
| SGE | 92.6 | 83.7 | 91.4 | 53.9 | 3.26 | 12.0 | 96.2 | |
C2f模块后 After C2f module | FCA | 93.2 | 83.2 | 90.8 | 52.8 | 5.10 | 15.8 | 90.9 |
| EMA | 91.5 | 84.1 | 90.8 | 53.0 | 3.26 | 12.1 | 89.7 | |
| SimAM | 91.8 | 82.5 | 90.3 | 52.3 | 3.26 | 12.0 | 89.3 | |
| SGE | 92.0 | 81.5 | 90.4 | 52.7 | 3.26 | 12.0 | 95.2 | |
| MCA | 92.6 | 84.1 | 91.2 | 53.9 | 3.26 | 12.0 | 93.5 |
Table 3 Performance comparison of different attention mechanisms
位置 Location | 模块 Module | 精确率P/% | 召回率R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~0.95%)mAP0.5:0.95/% | 参数量Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|---|
C2f-Ghost模块后 After C2f-Ghost module | MSDA | 92.4 | 81.6 | 90.0 | 51.4 | 4.05 | 12.6 | 72.3 |
| CBAM | 92.7 | 81.5 | 90.4 | 53.6 | 3.26 | 12.0 | 91.7 | |
| SimAM | 92.4 | 82.9 | 90.4 | 54.1 | 3.26 | 12.0 | 90.2 | |
| MCA | 91.6 | 84.3 | 91.0 | 53.2 | 3.26 | 12.0 | 94.3 | |
| SGE | 92.6 | 83.7 | 91.4 | 53.9 | 3.26 | 12.0 | 96.2 | |
C2f模块后 After C2f module | FCA | 93.2 | 83.2 | 90.8 | 52.8 | 5.10 | 15.8 | 90.9 |
| EMA | 91.5 | 84.1 | 90.8 | 53.0 | 3.26 | 12.1 | 89.7 | |
| SimAM | 91.8 | 82.5 | 90.3 | 52.3 | 3.26 | 12.0 | 89.3 | |
| SGE | 92.0 | 81.5 | 90.4 | 52.7 | 3.26 | 12.0 | 95.2 | |
| MCA | 92.6 | 84.1 | 91.2 | 53.9 | 3.26 | 12.0 | 93.5 |
| 模块Module | 精确率 P/% | 召回率 R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| C2f-Ghost | SGE | Involution | MCA | WIoU | |||||||
| - | - | - | - | - | 89.8 | 82.7 | 89.2 | 51.3 | 3.26 | 12.0 | 91.7 |
| √ | - | - | - | - | 90.2 | 80.7 | 88.9 | 51.0 | 2.66 | 10.7 | 97.2 |
| √ | - | - | - | √ | 91.9 | 83.4 | 90.5 | 53.7 | 2.66 | 10.7 | 97.2 |
| √ | √ | - | - | √ | 92.8 | 85.3 | 92.1 | 56.3 | 2.87 | 11.0 | 97.0 |
| √ | √ | √ | - | √ | 93.0 | 86.2 | 92.7 | 57.1 | 2.86 | 11.0 | 97.1 |
| √ | √ | √ | √ | √ | 93.5 | 87.5 | 93.8 | 58.9 | 2.87 | 11.0 | 96.9 |
Table 4 Results of ablation experiments with different improved modules
| 模块Module | 精确率 P/% | 召回率 R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| C2f-Ghost | SGE | Involution | MCA | WIoU | |||||||
| - | - | - | - | - | 89.8 | 82.7 | 89.2 | 51.3 | 3.26 | 12.0 | 91.7 |
| √ | - | - | - | - | 90.2 | 80.7 | 88.9 | 51.0 | 2.66 | 10.7 | 97.2 |
| √ | - | - | - | √ | 91.9 | 83.4 | 90.5 | 53.7 | 2.66 | 10.7 | 97.2 |
| √ | √ | - | - | √ | 92.8 | 85.3 | 92.1 | 56.3 | 2.87 | 11.0 | 97.0 |
| √ | √ | √ | - | √ | 93.0 | 86.2 | 92.7 | 57.1 | 2.86 | 11.0 | 97.1 |
| √ | √ | √ | √ | √ | 93.5 | 87.5 | 93.8 | 58.9 | 2.87 | 11.0 | 96.9 |
模型 Model | 精确率P/% | 召回率R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量 Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|
| Mask RCNN | 88.5 | 73.8 | 86.3 | 44.7 | — | — | 12.6 |
| YOLACT | 79.6 | 63.5 | 75.8 | 35.2 | — | — | 26.3 |
| YOLO v5s-seg | 86.4 | 75.1 | 83.6 | 42.7 | 7.40 | 25.7 | 83.3 |
| YOLO v8n-seg | 89.8 | 82.7 | 89.2 | 51.3 | 3.26 | 12.0 | 91.7 |
| 本研究This study | 93.5 | 87.5 | 93.8 | 58.9 | 2.87 | 11.0 | 96.9 |
Table 5 Comparison of model training results
模型 Model | 精确率P/% | 召回率R/% | 均值平均精度(IoU=50%)mAP0.5/% | 均值平均精度(IoU=50%~95%)mAP0.5:0.95/% | 参数量 Params/M | 浮点运算量FLOPs/G | 每秒帧数FPS |
|---|---|---|---|---|---|---|---|
| Mask RCNN | 88.5 | 73.8 | 86.3 | 44.7 | — | — | 12.6 |
| YOLACT | 79.6 | 63.5 | 75.8 | 35.2 | — | — | 26.3 |
| YOLO v5s-seg | 86.4 | 75.1 | 83.6 | 42.7 | 7.40 | 25.7 | 83.3 |
| YOLO v8n-seg | 89.8 | 82.7 | 89.2 | 51.3 | 3.26 | 12.0 | 91.7 |
| 本研究This study | 93.5 | 87.5 | 93.8 | 58.9 | 2.87 | 11.0 | 96.9 |
| [1] | 杨亮,熊本海,王辉,等.人工智能养猪在我国的发展现状与研究展望[J].猪业科学,2022,39(11):41-44. |
| [2] | 沈明霞,陈金鑫,丁奇安,等.生猪自动化养殖装备与技术研究进展与展望[J].农业机械学报,2022,53(12):1-19. |
| SHEN M X, CHEN J X, DING Q A, et al.. Current situation and development trend of pig automated farming equipment application [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(12):1-19. | |
| [3] | 杨亮,王辉,陈睿鹏,等.智能养猪工厂的研究进展与展望[J].华南农业大学学报,2023,44(1):13-23. |
| YANG L, WANG H, CHEN R P, et al.. Research progress and prospect of intelligent pig factory [J]. J.South China Agric.Univ., 2023, 44(1):13-23. | |
| [4] | 胡云鸽,苍岩,乔玉龙.基于改进实例分割算法的智能猪只盘点系统设计[J].农业工程学报,2020,36(19):177-183. |
| HU Y G, CANG Y, QIAO Y L. Design of intelligent pig counting system based on improved instance segmentation algorithm [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(19):177-183. | |
| [5] | LIU C, SU J, WANG L, et al.. LA-DeepLab V3+: a novel counting network for pigs [J/OL]. Agriculture, 2022, 12(2): 284[2024-04-16]. . |
| [6] | HU Z, YANG H, YAN H. Attention-guided instance segmentation for group-raised pigs [J/OL]. Animals,2023,13(13):2181 [2024-04-16]. . |
| [7] | LIU S, ZHAO C, ZHANG H, et al.. ICNet: a dual-branch instance segmentation network for high-precision pig counting [J/OL]. Agriculture, 2024, 14(1): 141 [2024-04-16]. . |
| [8] | 肖德琴,刘俊彬,刘又夫,等.常态养殖下妊娠母猪体质量智能测定模型[J].农业工程学报,2022,38():161-169. |
| XIAO D Q, LIU J B, LIU Y F, et al.. Intelligent mass measurement model for gestating sows under normality breeding [J]. Trans. Chin. Soc. Agric. Eng., 2022, 38(S1): 161-169. | |
| [9] | 杜晓冬,李笑笑,樊士冉,等.生猪体尺检测和体重预估方法研究进展[J].中国畜牧杂志,2023,59(1):41-46, 56. |
| DU X D, LI X X, FAN S R, et al.. A review of the methods of pig body size measurement and body weight estimation [J]. Chin. J. Anim. Sci., 2023,59(1): 41-46, 56. | |
| [10] | HE H X, QIAO Y L, LI X M, et al.. Optimization on multi-object tracking and segmentation in pigs’ weight measurement [J/OL].Comput. Electron. Agric.,2021,186:106190 [2024-04-16]. . |
| [11] | 姚超,倪福川,李国亮. 基于深度学习的图像分割在畜禽养殖中的应用研究进展[J].华中农业大学学报,2023,42(3):39-46. |
| YAO C, NI F C, LI G L. Research progress on application of image segmentation based on deep learning in poultry and livestock farming [J]. J. Huazhong Agric. Univ., 2023, 42(3): 39-46. | |
| [12] | 刘坤,杨怀卿,杨华,等.基于循环残差注意力的群养生猪实例分割[J].华南农业大学学报,2020,41(6):169-178. |
| LIU K, YANG H Q, YANG H, et al.. Instance segmentation of group-housed pigs based on recurrent residual attention [J]. J. South China Agric. Univ., 2020, 41(6): 169-178. | |
| [13] | 徐昕.规模化养殖的群猪图像分割与行为识别研究[D].南京:南京理工大学,2024. |
| XU X. Research on image segmentation and behavior recognition of large scale pigs [D]. Nanjing: Nanjing University of Science and Technology, 2024. | |
| [14] | XIAO D Q, LIN S C, LIU Y F, et al.. Group-housed pigs and their body parts detection with Cascade Faster R-CNN [J]. Int. J. Agric. Biol. Eng., 2022, 15(3): 203-209. |
| [15] | 胡云鸽.基于深度学习的遮挡猪只实例分割算法研究[D].哈尔滨:哈尔滨工程大学,2024. |
| HU Y G. Research on instance segmentation algorithm of occluded pigs based on deep learning [D]. Harbin: Harbin Engineering University, 2024. | |
| [16] | 胡志伟,杨华,娄甜田,等.基于全卷积网络的生猪轮廓提取[J].华南农业大学学报,2018,39(6):111-119. |
| HU Z W, YANG H, LOU T T, et al.. Extraction of pig contour based on fully convolutional networks [J]. J. South China Agric.Univ., 2018, 39(6): 111-119. | |
| [17] | 高云,郭继亮,黎煊,等.基于深度学习的群猪图像实例分割方法[J].农业机械学报,2019,50(4):179-187. |
| GAO Y, GUO J L, LI X, et al.. Instance-level segmentation method for group pig images based on deep learning [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(4): 179-187. | |
| [18] | 高云,廖慧敏,黎煊,等.基于双金字塔网络的RGB-D群猪图像分割方法[J].农业机械学报,2020,51(7):36-43. |
| GAO Y, LIAO H M, LI X, et al.. RGB-D segmentation method for group piglets images based on double-pyramid network [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(7): 36-43. | |
| [19] | TU S, YUAN W, LIANG Y, et al.. Automatic detection and segmentation for group-housed pigs based on PigMS R-CNN [J/OL].Sensors, 2021,21(9):3251 [2024-04-16]. . |
| [20] | WITTE J H, GERBERDING J, MELCHING C, et al.. Evaluation of deep learning instance segmentation models for pig precision livestock farming [J]. Bus. Inf. Sys., 2021, 1: 209-220. |
| [21] | 王荣,高荣华,李奇峰,等.融合特征金字塔与可变形卷积的高密度群养猪计数方法[J].农业机械学报,2022,53(10):252-260. |
| WANG R, GAO R H, LI Q F,et al..High-density pig herd counting method combined with feature pyramid and deformable convolution [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(10): 252-260. | |
| [22] | LU J, WANG W, ZHAO K, et al.. Recognition and segmentation of individual pigs based on Swin Transformer [J]. Anim. Genet., 2022, 53(6): 794-802. |
| [23] | 王海燕,江烨皓,黎煊,等.基于弱监督数据集的猪只图像实例分割[J].农业机械学报,2023,54(10):255-265. |
| WANG H Y, JIANG Y H, LI X, et al.. Pig image instance segmentation based on weakly supervised dataset [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(10): 255-265. | |
| [24] | 屈露,苍岩.基于卷积神经网络的群猪图像实例分割方法[J].应用科技,2023,50(3):78-84. |
| QU L, CANG Y. Instance segmentation method for group pig images based on convolutional neural network [J]. Appl.Sci. Technol., 2023, 50(3): 78-84. | |
| [25] | JIA Z, WANG Z, ZHAO C, et al.. Pixel self-attention guided real-time instance segmentation for group raised pigs [J/OL].Animals, 2023, 13(23):3591 [2024-04-16]. . |
| [26] | 孙云涛,何秀文,黄巍,等.基于深度学习的群猪分割方法[J].南方农机,2023,54(18):6-9. |
| [27] | 王鲁,刘晴,曹月,等.基于改进Cascade Mask R-CNN与协同注意力机制的群猪姿态识别[J].农业工程学报,2023,39(4):144-153. |
| WANG L, LIU Q, CAO Y, et al.. Posture recognition of group-housed pigs using improved Cascade Mask R-CNN and cooperative attention mechanism [J]. Trans. Chin. Soc. Agric.Eng., 2023, 39(4): 144-153. | |
| [28] | 李丹,陈一飞,李行健,等.计算机视觉技术在猪行为识别中应用的研究进展[J].中国农业科技导报,2019,21(7):59-69. |
| LI D, CHEN Y F, LI X J, et al.. Research advance on computer vision in behavioral analysis of pigs [J]. J. Agric. Sci. Technol., 2019, 21(7): 59-69. | |
| [29] | 李德平,朱伟兴.基于YOLO目标检测的生猪多阈值Otsu分割方法[J].软件导刊,2021,20(8):179-184. |
| LI D P, ZHU W X. Multi-threshold otsu segmentation method of pigs based on YOLO target detection [J]. Software Guide, 2021, 20(8): 179-184. |
| [1] | Mengzhen HUANG, Hao LI, Huanjun HU, Zipeng LI, Zhongyin SHENG, Yifan LIU, Zhenyan XIA, Aoyun ZHENG. Research on End-to-end Low-light Environment Black Pig Detection Technology Integrating IAT Module [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 113-125. |
| [2] | Jialiang YUAN, Runnan LIAN, Wuping ZHANG. Accurate Identification and Grading Method for Daylily Flower Buds [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 103-112. |
| [3] | Chen CHEN, Haoran LIU, Tomas NORTON. Model for Identification of Group-housed Pigs Based on Improved YOLOv9 [J]. Journal of Agricultural Science and Technology, 2025, 27(10): 134-143. |
| [4] | Jun TIE, Jie ZHAO, Lu ZHENG, Lifeng WU, Bowen HONG. Application of Improved YOLOv5 Model in Citrus Recognition in Natural Environment [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 111-120. |
| [5] | Mingbo LI, Yule LIU, Zhimin MU, Junwang GUO, Yong WEI, Dongyue REN, Jishen JIA, Zezhong WEI, Yuhong LI. Tomato Fruit Recognition Based on YOLOX-L-TN Model [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 97-105. |
| [6] | Xiaowei ZHANG, Bo CHEN, Yueming WANG, Zijian LI, Jihong ZHANG, Tianyi CAO. Research on Dairy Cattle Identification Algorithm in Farm Access Based on Multi-angle Data Fusion [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 98-106. |
| [7] | GAO Juan, XIA Li\|ning*, XIA Xu\|jin, CHENG Wei\|hua. Tolerance Survey of Escherichia coli Isolated from pig to Antimicrobial Drugs in Karamay City of Xinjiang [J]. , 2014, 16(6): 103-108. |
| [8] | ZHANG Su-qiong, ZHANG An-quan, YAN Jie-chen. Study on the Performance Enhancing Effect of Rare Earth Elements |on Fattening Pigs, Broilers and Laying Hens [J]. , 2006, 8(1): 35-39. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010802021197号