Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (9): 13-22.DOI: 10.13304/j.nykjdb.2022.0257
• AGRICULTURAL INNOVATION FORUM • Previous Articles Next Articles
Ning ZHAO1(), Xing LI1, Yong JIANG1, Zhixiu WANG1, Yulin BI1, Guohong CHEN1,2, Hao BAI2(
), Guobin CHANG1,2(
)
Received:
2022-04-02
Accepted:
2022-12-29
Online:
2023-09-15
Published:
2023-09-28
Contact:
Hao BAI,Guobin CHANG
赵宁1(), 李星1, 江勇1, 王志秀1, 毕瑜林1, 陈国宏1,2, 白皓2(
), 常国斌1,2(
)
通讯作者:
白皓,常国斌
作者简介:
赵宁 E-mail: zhaon1123@qq.com
基金资助:
CLC Number:
Ning ZHAO, Xing LI, Yong JIANG, Zhixiu WANG, Yulin BI, Guohong CHEN, Hao BAI, Guobin CHANG. Application of Image Recognition Technology in the Field of Chicken Breeding[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 13-22.
赵宁, 李星, 江勇, 王志秀, 毕瑜林, 陈国宏, 白皓, 常国斌. 图像识别技术在鸡养殖领域的应用[J]. 中国农业科技导报, 2023, 25(9): 13-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0257
1 | 黄清虎.现代畜牧业发展存在的问题及对策[J].今日畜牧兽医,2021,37(10):70. |
2 | SPEEDY A W. Global production and consumption of animal source foods [J]. J. Nutr., 2003, 133( 2): 4048-4053. |
3 | 邹剑敏.家禽健康养殖的影响因素及其研究动态[J].中国家禽,2013,35(6):2-7. |
4 | 李沛.红外热成像下家禽体温监测、预测方法与装置研究[D].太原:中北大学,2022. |
LI P. Research on methods and devices for monitoring and predicting poultry body temperature under infrared thermal imaging [D]. Taiyuan: North University of China, 2022. | |
5 | 陆明洲,沈明霞,丁永前,等.畜牧信息智能监测研究进展[J].中国农业科学,2012,45(14):2939-2947. |
LU M Z, SHEN M X, DING Y Q, et al.. Review on the intelligent technology for animal husbandry information monitoring [J]. Sci. Agric. Sin., 2012,45(14):2939-2947. | |
6 | PU J, YU C, CHEN X, et al.. Research on Chengdu ma goat recognition based on computer vison [J/OL]. Animals, 2022, 12(14):1746 [2022-03-01]. . |
7 | ALAMEER A, KYRIAZAKIS I, BACARDIT J. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs [J/OL]. Sci. Rep., 2020, 10(1):13665 [2022-03-01]. . |
8 | 刘建飞.图像识别技术在奶牛体况评分中的应用研究[D]. 济南:山东大学,2012. |
LIU J F. Study on application of image recognition technique in the cow body condition score [D]. Jinan: Shandong University, 2012. | |
9 | HARRIS-BRIDGE G, YOUNG L, HANDEL I, et al.. The use of infrared thermography for detecting digital dermatitis in dairy cattle: what is the best measure of temperature and foot location to use? [J]. Vet. J., 2018, 237:26-33. |
10 | VAN HERTEM T, VIAZZI S, STEENSELS M, et al.. Automatic lameness detection based on consecutive 3D-video recordings [J]. Biosyst. Eng. , 2014, 119:108-116. |
11 | 沈明霞,丁奇安,陈佳,等.信息感知技术在畜禽养殖中的研究进展[J].南京农业大学学报,2022,45(5):1072-1085. |
SHEN M X, DING Q A, CHEN J, et al.. A review of information perception technology in livestock breeding [J]. J. Nanjing Agric. Univ., 2022,45(5):1072-1085. | |
12 | 汪开英,赵晓洋,何勇.畜禽行为及生理信息的无损监测技术研究进展[J].农业工程学报, 2017, 33(20): 197-209. |
WANG K Y, ZHAO X Y, HE Y. Review on noninvasive monitoring technology of poultry behavior and physiological information [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(20):197-209. | |
13 | 蒋树强,闵巍庆,王树徽.面向智能交互的图像识别技术综述与展望[J].计算机研究与发展,2016,53(1):113-122. |
JIANG S Q, MIN W Q, WANG S H. Survey and prospect of intelligent interaction oriented image recognition techniques [J]. J. Comput. Res. Dev., 2016,53(1):113-122. | |
14 | 王保东.计算机图像识别技术的细节问题及对策探讨[J].中阿科技论坛, 2020(4): 84-85. |
WANG B D. Detailed problems and countermeasures of computer image recognition technology [J]. China-Arab States Sci. Technol. Forum, 2020(4):84-85. | |
15 | 王晓阳,俞伟聪,郭显久.计算机图像识别技术的现状和改进建议[J].电脑知识与技术,2020,16(8):204-205. |
16 | 李亚奇.计算机图像识别技术的发展现状与应用实践[J].信息与电脑(理论版),2019(14):30-31, 34. |
LI Y Q. Development status and application practice of computer image recognition technology [J]. China Comput. Communic., 2019(14):30-31, 34. | |
17 | 李敏.图像识别技术在人工智能中的应用探究[J].中国新通信,2022,24(16):74-76. |
18 | 李涛,徐高,梁思涵,等.人工智能图像识别在水利行业的应用进展[J].人民黄河,2022,44(11):163-168. |
LI T, XU G, LIANG S H, et al.. Application progress of artificial intelligence image recognition in water conservancy industry [J]. Yellow River, 2022,44(11):163-168. | |
19 | 范文斌,王亚平,张世武,等.基于图像识别技术在智慧医疗领的研究[J].电子测试,2022,36(11):117-119, 55. |
FAN W B, WANG Y P, ZHANG S W, et al.. Research on intelligent medical collar based on image recognition technology [J]. Electron. Test, 2022,36(11):117-119, 55. | |
20 | 彭荣杰,彭亚雄,陆安江.基于改进PCA+SVM的人脸识别系统[J]. 电子科技, 2021, 34(12):56-61. |
PENG R J, PENG Y X, LU A J, et al.. Face recognition system based on improved PCA+SVM [J]. Electron. Sci. Technol., 2021,34(12):56-61. | |
21 | 李赫.人工智能中的图像识别技术分析[J].无线互联科技,2021,18(17):93-94. |
LI H. Analysis of image recognition technology in artificial intelligence [J]. Wireless Int. Technol., 2021, 18(17):93-94. | |
22 | 蔺伟,张驰.人工智能背景下图像识别技术研究[J].无线互联科技,2022,19(14):108-110. |
LIN W, ZHANG C. Research on image recognition technology in the background of artificial intelligence [J]. Wireless Int. Technol., 2022,19(14):108-110. | |
23 | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks [C]//Advances in Neural Information Processing Systems. USA:Neural Information Processing Systems, 2012:1097-1105. |
24 | XIAO J R, CHUNG P C, WU H Y, et al.. Detection of strawberry diseases using a convolutional neural network [J/OL]. Plants, 2021, 10(1):31[2022-03-01]. . |
25 | ZHANG K F, LI D, HUANG J Y, et al.. Automated video behavior recognition of pigs using two-stream convolutional networks [J/OL]. Sensors, 2020, 20(4):1085[2022-03-01]. . |
26 | 陆志香,杨梅.基于卷积神经网络的复杂光照变化车牌图像识别[J].激光杂志,2022,43(5):145-150. |
LU Z X, YANG M. Recognition of license plate image with complex illumination change based on convolutiorneural network [J]. Laser J., 2022, 43(5): 145-150. | |
27 | SAKAI K, GILMOUR S, HOSHINO E, et al.. A machine learning-based screening test for sarcopenic dysphagia using image recognition [J/OL]. Nutrients, 2021, 13(11):4009 [2022-03-01]. . |
28 | LEROY T, VRANKEN E, BRECHT A V, et al.. A computer vision method for on-line behavioral quantification of individually caged poultry [J]. Trans. Asabe, 2006, 49(3):795-802. |
29 | 劳凤丹,滕光辉,李军,等.机器视觉识别单只蛋鸡行为的方法[J].农业工程学报,2012,28(24):157-163. |
LAO F D, TENG G H, LI J, et al.. Behavior recognition method for individual laying hen based on computer vision [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(24): 157-163. | |
30 | 劳凤丹,杜晓冬,滕光辉.基于深度图像的蛋鸡行为识别方法[J].农业机械学报,2017,48(1):155-162. |
LAO F D, DU X D, TENG G H. Automatic recognition method of laying hen behaviors based on depth image processing [J]. Trans. Chin. Soc. Agric. Mach., 2017,48(1):155-162. | |
31 | 刘修林.基于视觉技术的蛋鸡信息监测方法与应用研究[D].太原:中北大学,2018. |
LIU X L. Study on methods and applications of layer chicken information monitoring based on visual technology [D]. Taiyuan: North University of China, 2018. | |
32 | AYDIN A. Development of an early detection system for lameness of broilers using computer vision [J]. Comput. Electron. Agric., 2017, 136: 140-146. |
33 | FANG C, ZHANG T M, ZHENG H K, et al.. Pose estimation and behavior classification of broiler chickens based on deep neural networks [J/OL]. Comput. Electron. Agric., 2020, 105863 [2022-03-01]. . |
34 | FANG C, ZHENG H, YANG J, et al.. Study on poultry pose estimation based on multi-parts detection [J/OL]. Animals, 2022, 12(10): 1322 [2022-03-01]. . |
35 | MOLLAH M B R, HASAN M A, SALAM M A, et al.. Digital image analysis to estimate the live weight of broiler [J]. Comput. Electron. Agric., 2010, 72(1): 48-52. |
36 | MORTENSEN K A, LISOUSKI P, AHRENDT P. Weight prediction of broiler chickens using 3D computer vision [J]. Comput. Electron. Agric., 2016, 123:319-326. |
37 | 王琳,孙传恒,李文勇,等.基于深度图像和BP神经网络的肉鸡体质量估测模型[J].农业工程学报,2017,33(13):199-205. |
WANG L, SUN C H, LI W Y, et al.. Establishment of broiler quality estimation model based on depth image and BP neural network [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(13):199-205. | |
38 | AMRAEI S, Mehdizadeh S A, Naas I D. Development of a transfer function for weight prediction of live broiler chicken using machine vision [J]. Eng. Agric., 2018, 38(5): 776-782. |
39 | 张宝全.蛋鸡体重评估的视觉检测方法研究[D].太原:中北大学,2021. |
ZHANG B Q. Study on visual detection method for weight assessment of layer chicken [D]. Taiyuan: North University of China, 2021. | |
40 | 郭蓓佳,籍颖,锡建中,等.基于图像处理的蛋鸡体重估测方法研究[J].中国家禽,2021,43(11):68-73. |
GUO B J, JI Y, XI J Z, et al.. Study on estimation model of layer weight based on image processing [J]. China Poultry, 2021, 43(11):68-73. | |
41 | JIE H, LIU Y P. Breeding for disease resistance in poultry: opportunities with challenges [J]. World’s Poultry Sci. J., 2011, 67(4): 687-696. |
42 | WILCOX C S, PATTERSON J, CHENG H W. Use of thermography to screen for subclinical bumblefoot in poultry [J]. Poultry Sci., 2009, 88(6): 1176-1180. |
43 | MOE R O, BOHLIN J, FLØ A, et al.. Effects of subclinical footpad dermatitis and emotional arousal on surface foot temperature recorded with infrared thermography in turkey toms (Meleagris gallopavo) [J]. Poult. Sci., 2018, 97(7): 2249-2257. |
44 | ZHUANG X L, ZHUANG T M. Detection of sick broilers by digital image processing and deep learning [J]. Biosyst. Eng., 2019, 179: 106-116. |
45 | QUACH L D, QUOC N P, THI N H, et al.. Using surf to improve resnet-50 model for poultry disease recognition algorithm [C]// Proceedings of 2020 International Conference on Computational Intelligence (ICCI). Malaysia: IEEE, 2020: 317-321. |
46 | MBELWA H, MBELWA J, MACHUVE D. Deep convolutional neural network for chicken diseases detection [J/OL]. Int. J. Adv. Comput. Sci. Appl., 2021, 12(2): 120295 [2022-03-01]. . |
47 | COLLES F M, CAIN R J, NICKSON T, et al.. Monitoring chicken flock behaviour provides early warning of infection by human pathogen campylobacter [J/OL]. Proc. Biol. Sci., 2016, 283(1822):2323 [2022-03-01]. . |
48 | AYDIN A. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens [J]. Comput. Electron. Agric., 2017, 135:4-10. |
49 | 沈明霞,李嘉位,陆明洲,等.基于动态多特征变量的黄羽肉鸡跛行状态定量评价方法[J].农业机械学报,2018,49(9):35-44. |
SHEN M X, LI J W, LU M Z, et al.. Evaluation method of limping status of broilers based on dynamic multi-feature variables [J]. Trans. Chin. Soc. Agric. Machin., 2018, 49(9):35-44. | |
50 | NAAS I D, LAGANA M, NETO M M, et al.. Image analysis for assessing broiler breeder behavior response to thermal environment [J]. Eng. Agric.,2012, 32(4):624-632. |
51 | 郑双阳,王琳琳.基于机器视觉对高阶直立式鸡笼内蛋鸡的监视系统的开发[J].吉林农业大学学报,2009,31(4):476-480. |
ZHENG S Y, WANG L L. Development of monitoring system for layers rearing in multi-tier vertical cages using machine vision [J]. J. Jilin Agric. Univ., 2009, 31(4):476-480. | |
52 | OKINDA C, LU M, LIU L, et al.. A machine vision system for early detection and prediction of sick birds: a broiler chicken model [J]. Biosyst. Eng., 2019, 188 : 229-242. |
53 | 李亚硕,毛文华,胡小安,等.基于机器视觉识别鸡冠颜色的病鸡检测方法[J].机器人技术与应用,2014(5):23-25 |
54 | CHEN J Y. Using CNN for detection of diseases [J/OL]. J. Phys.: Conference Series, 2021, 1936(1): 012022 [2022-03-01]. . |
55 | ZHUANG X, BI M, GUO J, et al.. Development of an early warning algorithm to detect sick broilers [J]. Comput. Electron. Agric., 2018, 144: 102-113. |
56 | 庄晓霖.基于机器视觉的家禽异常行为检测方法研究[D].广州:华南农业大学,2019. |
ZHUANG X L. Research on detection methods of poultry abnormal behaviors based on machine vision [D]. Guangzhou: South China Agricultural University, 2019. | |
57 | 毕敏娜,张铁民,庄晓霖,等.基于鸡头特征的病鸡识别方法研究[J].农业机械学报,2018,49(1):51-57. |
BI M N, ZHANG T M, ZHUANG X L, et al.. Recognition method of sick yellow feather chicken based on head features [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(1):51-57. | |
58 | 沈明霞,陆鹏宇,刘龙申,等.基于红外热成像的白羽肉鸡体温检测方法[J].农业机械学报,2019,50(10):222-229. |
SHEN M X, LU P Y, LIU L S, et al.. Body temperature detection method of ross broiler based on infrared thermography [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(10):222-229. | |
59 | WANG J, SHEN M, LIU L, et al.. Recognition and classification of broiler droppings based on deep convolutional neural network [J/OL]. J. Sensors, 2019, 3823515 [2022-03-01]. . |
60 | GERONIMO B C, MASTELINI S M, CARVALHO R H, et al.. Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization [J]. Infrared Phys. Technol., 2019, 96 : 303-310. |
61 | TAHERI-GARAVAND A, FATAHI S, SHAHBAZI F, et al.. A nondestructive intelligent approach to real‐time evaluation of chicken meat freshness based on computer vision technique [J/OL]. J. Food Process Eng., 2019, 42(4):13039 [2022-03-01]. . |
62 | 涂冬成. 禽肉肉色、弹性和嫩度的图像和激光诱导荧光无损检测技术研究[D].南昌:江西农业大学,2011. |
TU D C. Meat quality and nondestructive detection methods of broiler breast fillets with woody breast myopathy [D]. Nanchang: Jiangxi Agricultural University, 2011. | |
63 | 丁筱玲,吴玉红,周田田,等.基于机器视觉技术的鸡翅质量预测[J].江苏农业科学,2017,45(9):208-212. |
64 | 邢志中,张海东,王孟,等.基于计算机视觉和神经网络的鸡蛋新鲜度检测[J].江苏农业科学,2017,45(11):160-163. |
65 | 梁丹,李平,梁冬泰,等.基于机器视觉的鸡蛋内外品质一体化检测与分级系统[J].中国食品学报,2020,20(11):247-254. |
LIANG D, LI P, LIANG D T, et al.. Integrated inspecting and grading system of the egg quality based on machine vision [J]. J. Chin. Inst. Food Sci. Technol., 2020, 20(11):247-254. | |
66 | ALIKHANOV J, PENCHEV S M, GEORGIEVA T D, et al.. Design and performance of an automatic egg sorting system based on computer vision [J]. TEM J., 2019, (8) 4:1319-1325. |
67 | HARNSOONGNOEN S, JAROENSUK N. The grades and freshness assessment of eggs based on density detection using machine vision and weighing sensor [J/OL]. Sci. Rep., 2021, 11(1): 16640 [2022-03-01] . . |
68 | ZHU Z H, YE Z F, TANG Y. Nondestructive identification for gender of chicken eggs based on GA-BPNN with double hidden layers [J/OL]. J. Appl. Poultry Res., 2021, 30(4): 100203 [2022-03-01]. . |
69 | SCHOLZ A M, BÜNGER L, KONGSRO J, et al.. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review [J]. Animal, 2015, 9(7):1250-1264. |
70 | SCHALLIER S, LI C, LESUISSE J, et al.. Dual-energy X-ray absorptiometry is a reliable non-invasive technique for determining whole body composition of chickens [J]. Poultry Sci., 2019, 98(6): 2652-2661. |
71 | GRANDHAYE J, LECOMPTE F, STAUB C, et al.. Assessment of the body development kinetic of broiler breeders by non-invasive imaging tools [J]. Poultry Sci., 2019, 98(9):4140-4152. |
72 | 戚超,徐佳琪,刘超,等.基于机器视觉和机器学习技术的鸡胴体质量自动分级方法[J].南京农业大学学报,2019,42(3):551-558. |
QI C, XU J Q, LIU C, et al.. Automatic classification of chicken carcass weight based on machine vision and machine learning technology [J]. J. Nanjing Agric. Univ., 2019, 42(3):551-558. | |
73 | 王树才,陶凯,李航.基于机器视觉定位的家禽屠宰净膛系统设计与试验[J].农业机械学报,2018,49(1):335-343. |
WANG S C, TAO K, LI H. Design and experiment of poultry eviscerator system based on machine vision positioning [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(1):335-343. | |
74 | 陈坤杰,李航,于镇伟,等.基于机器视觉的鸡胴体质量分级方法[J].农业机械学报,2017,48(6):290-295, 372. |
CHEN K J, LI H, YU Z W, et al.. Grading of chicken carcass weight based on machine vision [J]. Trans. Chin. Soc. Agric. Mach., 2017, 48(6):290-295, 372. | |
75 | 瞿子淇.无人养鸡场死鸡检测方法研究[D].长春:吉林大学,2019. |
QU Z Q. Study on detection method of dead chicken in unmanned chicken farm [D]. Changchun: Jilin University, 2019. | |
76 | 刘冬.精准畜牧中机器视觉关键技术研究及应用[D]. 杨凌:西北农林科技大学,2020. |
LIU D. Key technology of computer vision in precision livestock farming [D]. Yangling: Northwest A&F University, 2020. | |
77 | LI G, HUANG Y, CHEN Z, et al.. Practices and applications of convolutional neural network-based computer vision systems in animal farming: a review [J/OL]. Sensors, 2021, 21: 1492 [2022-03-01]. . |
78 | 何东健,刘冬,赵凯旋.精准畜牧业中动物信息智能感知与行为检测研究进展[J].农业机械学报,2016,47(5):231-244. |
HE D J, LIU D, ZHAO K X. Review of perceiving animal information and behavior in precision livestock farming [J]. Trans. Chin. Soc. Agric. Mach., 2016,47(5):231-244. | |
79 | 连京华,李惠敏,祝伟,等.家禽生产智能巡检机器人的设计[J].中国家禽,2019,41(18):72-75. |
LIAN J H, LI H M, ZHU W, et al.. Design and realization of intelligent inspection robot for poultry production [J]. China Poultry, 2019,41(18):72-75. |
[1] | Haidong ZHANG, Zhixian TANG, Liyun ZHANG, Qi YU, Chaojun SONG. Optimization of Discrete Elemental Simulation Parameters for Forest Panax pseudoginseng Plantation Red Soil Based on GA-BP-GA [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 120-130. |
[2] | Mingxuan WANG, Wenyan ZHENG, Weidong LI, Jiaqiang HUANG, Lianshun WANG. Research Progress on Antagonistic Effects of Selenium Against Heavy Metal Contamination [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 35-43. |
[3] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[4] | Junya DUAN, Yuanyuan ZHAO, Tingting WANG, Jianyu WEI, Zheng WANG, Dexun WANG, Juan LI, Hongzhi SHI. Effects of Nitrogen Reduction Combined with Polyaspartic Acid on Nitrogen Utilization, Yield and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 227-238. |
[5] | Yanxia MA, Jingru CHEN, Xiaowei WANG, Yuxin ZHANG, Junfeng ZHANG, Jialin KUAI. Effects of Irrigation Lower Limit and Fertilizer Application Amount on Water Consumption and Photosynthetic Characteristics of Mini Chinese Cabbage Under Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 239-249. |
[6] | Dabing YANG, Liang HU, Xueshu DU, Bingliang WAN, Mingyuan XIA, Huaxiong QI, Jinbo LI. Progress in Creation of Rice Male Sterile Lines by CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 24-34. |
[7] | Xueqing MA, Aoran JI, Jiaoli ZHENG, Chunxia CAO, Yan GONG, Daye HUANG, Beibei WANG. Research Progress on Growth-promoting Mechanism and Application of Plant Growth-promoting Rhizobacteria [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 13-23. |
[8] | Tingting NIE, Yiqiang DONG, Qinghe SU, Yongjuan ZHANG, Helong YANG, Shazhou AN. Effects of Nitrogen Application and Cattle Manure Addition on Vegetation Restoration in Coal Mine Replanting Area [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 218-227. |
[9] | Chunjiao MI, Hongren SUN, Jiping ZHANG, Yucai LYU, Yandi ZHANG. Abundance-deficiency Index of Soil Available Phosphorus and Recommended Phosphorus Fertilizer Application Rates for Tomato in China [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 222-232. |
[10] | Zhuoran XING, Songshuang DING, Kai ZHANG, Ming MA, Wenlong GUO, Xudong LIU, Xiangdong SHI. Research Progress of Deep Learning and Computer Vision in Tobacco Leaf Production [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 96-106. |
[11] | Huiping JIN, Haiwen MOU, Teng LIU, Jialin YU, Xiaojun JIN. Bok Choy and Weed Identification Based on Deep Convolutional Neural Networks [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 122-130. |
[12] | Xiaofei XIONG, Wenqian WU, Hongyan HUO, Xin ZHANG, Yan YU, Dong AN, Tong ZHANG, Jianwei WU. Research on Sensor-based Agricultural Greenhouse Data Direct Reporting System and Intelligent Control [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 93-102. |
[13] | Ruifeng LI, Yunfu YANG, Yongfa YANG, Yongshun YU. Rose Flower Detection and Feature Extraction Based on Machine Vision [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 106-113. |
[14] | Jiahao LIU, Junwei GAO. Research on Apple Grading System Based on Machine Vision and BA-BP [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 117-125. |
[15] | Hang XU, Hao SONG, Gaocheng FAN, Shujian HUANG, Yuzi LUO, Huaji QIU. Research Advances of Monoclonal Antibody Production Technologies [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 210-224. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||