Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (10): 95-104.DOI: 10.13304/j.nykjdb.2024.0318
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Heng PAN1(), Lin WAN1,2(
), Gang CHE1,2, Sijia WANG3, Yu ZHENG1, Qiang ZHANG1
Received:
2024-04-19
Accepted:
2024-06-21
Online:
2025-10-15
Published:
2025-10-15
Contact:
Lin WAN
潘衡1(), 万霖1,2(
), 车刚1,2, 王思佳3, 郑宇1, 张强1
通讯作者:
万霖
作者简介:
潘衡 E-mail:2771410953@qq.com;
基金资助:
CLC Number:
Heng PAN, Lin WAN, Gang CHE, Sijia WANG, Yu ZHENG, Qiang ZHANG. Design and Experiment of Rice Moisture Content Prediction Model Based on RSM-GA[J]. Journal of Agricultural Science and Technology, 2025, 27(10): 95-104.
潘衡, 万霖, 车刚, 王思佳, 郑宇, 张强. 基于RSM-GA的稻谷含水率预测模型设计与试验[J]. 中国农业科技导报, 2025, 27(10): 95-104.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2024.0318
Fig. 1 Mixed flow rice drying experimental deviceNote:1—Temperature and humidity sensor; 2—Mixed flow rice dryer; 3—Air inlet pipeline; 4—Grain discharge motor; 5—Unloading device; 6—Control system cabinet; 7—Mixing pipeline; 8—Mixing device; 9—Hot air pipeline; 10—Electric heating control cabinet; 11—Electric heating device.
仪器名称 Instrument name | 数量 Quantity | 生产公司 Production company |
---|---|---|
PM-8188New型谷物水分检测仪 PM-8188New type grain moisture detector | 1 | 日本凯特公司 Japan Kett Company |
温湿度传感器 Temperature and humidity sensor | 10 | 北京昆仑远洋仪表科技有限公司 Beijing Kunlun Ocean Instrument Technology Co., Ltd. |
AMI300多功能测量仪 AMI300 multifunctional measuring instrument | 1 | KIMO公司 KIMO Company |
管道式风速传感器 Duct type wind speed sensor | 8 | 建大仁科 Kenda People Soft |
Table 1 Parameters of testing instrument
仪器名称 Instrument name | 数量 Quantity | 生产公司 Production company |
---|---|---|
PM-8188New型谷物水分检测仪 PM-8188New type grain moisture detector | 1 | 日本凯特公司 Japan Kett Company |
温湿度传感器 Temperature and humidity sensor | 10 | 北京昆仑远洋仪表科技有限公司 Beijing Kunlun Ocean Instrument Technology Co., Ltd. |
AMI300多功能测量仪 AMI300 multifunctional measuring instrument | 1 | KIMO公司 KIMO Company |
管道式风速传感器 Duct type wind speed sensor | 8 | 建大仁科 Kenda People Soft |
序号 Serial number | 编码值 Encoding value | A:热风温度 Hot air temperature/℃ | B:粮层温度 Grain layer temperature/℃ | C:环境相对湿度 Ambient relative humidity/% |
---|---|---|---|---|
+γ | +1.682 | 55 | 35 | 90 |
+1 | +1 | 51 | 33 | 82 |
0 | 0 | 45 | 30 | 70 |
-1 | -1 | 39 | 27 | 58 |
-γ | -1.682 | 35 | 25 | 50 |
Table 2 Encoding of orthogonal experimental factors
序号 Serial number | 编码值 Encoding value | A:热风温度 Hot air temperature/℃ | B:粮层温度 Grain layer temperature/℃ | C:环境相对湿度 Ambient relative humidity/% |
---|---|---|---|---|
+γ | +1.682 | 55 | 35 | 90 |
+1 | +1 | 51 | 33 | 82 |
0 | 0 | 45 | 30 | 70 |
-1 | -1 | 39 | 27 | 58 |
-γ | -1.682 | 35 | 25 | 50 |
隐含层节点数 Number of hidden layers | 均方根误差 RMSE | 决定系数 R2 |
---|---|---|
3 | 0.781 | 0.83 |
4 | 0.640 | 0.87 |
5 | 0.585 | 0.88 |
6 | 0.662 | 0.82 |
7 | 0.533 | 0.84 |
8 | 0.328 | 0.86 |
9 | 0.191 | 0.90 |
10 | 0.026 | 0.93 |
11 | 0.257 | 0.91 |
12 | 0.719 | 0.81 |
13 | 0.794 | 0.79 |
14 | 0.867 | 0.77 |
15 | 0.618 | 0.85 |
Table 3 RMSE and R2 to different number of hidden layer nodes
隐含层节点数 Number of hidden layers | 均方根误差 RMSE | 决定系数 R2 |
---|---|---|
3 | 0.781 | 0.83 |
4 | 0.640 | 0.87 |
5 | 0.585 | 0.88 |
6 | 0.662 | 0.82 |
7 | 0.533 | 0.84 |
8 | 0.328 | 0.86 |
9 | 0.191 | 0.90 |
10 | 0.026 | 0.93 |
11 | 0.257 | 0.91 |
12 | 0.719 | 0.81 |
13 | 0.794 | 0.79 |
14 | 0.867 | 0.77 |
15 | 0.618 | 0.85 |
Fig. 4 Moisture content of rice grains under different treatments hot air temperature, ambient relative humidity and grain layer temperatureA: Ambient relative humidity; B: Grain layer temperature; C: Hot air temperature
编号 Number | A:热风温度 Hot air temperature/℃ | B:粮层温度 Grain layer temperature/℃ | C:环境相对湿度 Ambient relative humidity/% | Y:稻谷含水率 Rice moisture content/% |
---|---|---|---|---|
1 | 39 | 27 | 58 | 16.6 |
2 | 51 | 27 | 58 | 18.2 |
3 | 39 | 33 | 58 | 17.1 |
4 | 51 | 33 | 58 | 16.9 |
5 | 39 | 27 | 82 | 17.4 |
6 | 51 | 27 | 82 | 20.5 |
7 | 39 | 33 | 82 | 21.5 |
8 | 51 | 33 | 82 | 17.2 |
9 | 35 | 0 | 70 | 16.3 |
10 | 55 | 0 | 70 | 16.3 |
11 | 45 | 25 | 70 | 17.8 |
12 | 45 | 35 | 70 | 19.7 |
13 | 45 | 30 | 50 | 16.7 |
14 | 45 | 30 | 90 | 18.8 |
15 | 45 | 30 | 70 | 18.5 |
16 | 45 | 30 | 70 | 18.3 |
17 | 45 | 30 | 70 | 18.9 |
18 | 45 | 30 | 70 | 16.9 |
19 | 45 | 30 | 70 | 17.3 |
20 | 45 | 30 | 70 | 17.3 |
21 | 45 | 30 | 70 | 16.3 |
22 | 45 | 30 | 70 | 16.2 |
23 | 45 | 30 | 70 | 17.4 |
Table 4 Quadratic regression orthogonal rotation combination experiment and results
编号 Number | A:热风温度 Hot air temperature/℃ | B:粮层温度 Grain layer temperature/℃ | C:环境相对湿度 Ambient relative humidity/% | Y:稻谷含水率 Rice moisture content/% |
---|---|---|---|---|
1 | 39 | 27 | 58 | 16.6 |
2 | 51 | 27 | 58 | 18.2 |
3 | 39 | 33 | 58 | 17.1 |
4 | 51 | 33 | 58 | 16.9 |
5 | 39 | 27 | 82 | 17.4 |
6 | 51 | 27 | 82 | 20.5 |
7 | 39 | 33 | 82 | 21.5 |
8 | 51 | 33 | 82 | 17.2 |
9 | 35 | 0 | 70 | 16.3 |
10 | 55 | 0 | 70 | 16.3 |
11 | 45 | 25 | 70 | 17.8 |
12 | 45 | 35 | 70 | 19.7 |
13 | 45 | 30 | 50 | 16.7 |
14 | 45 | 30 | 90 | 18.8 |
15 | 45 | 30 | 70 | 18.5 |
16 | 45 | 30 | 70 | 18.3 |
17 | 45 | 30 | 70 | 18.9 |
18 | 45 | 30 | 70 | 16.9 |
19 | 45 | 30 | 70 | 17.3 |
20 | 45 | 30 | 70 | 17.3 |
21 | 45 | 30 | 70 | 16.3 |
22 | 45 | 30 | 70 | 16.2 |
23 | 45 | 30 | 70 | 17.4 |
参数 Parameter | 稻谷含水率Rice moisture content | ||
---|---|---|---|
系数Coefficient | F值F value | P值P value | |
模型Model | 34.480 0 | 5.930 0 | 0.002 2 |
A:热风温度Hot air temperature | 6.070 0 | 9.400 0 | 0.009 0 |
B:粮层温度Grain layer temperature | 4.370 0 | 6.760 0 | 0.022 0 |
C:环境相对湿度Ambient relative humidity | 14.320 0 | 22.170 0 | 0.000 4 |
AB | 0.031 3 | 0.048 4 | 0.829 3 |
AC | 0.911 2 | 1.410 0 | 0.256 2 |
BC | 1.360 0 | 2.110 0 | 0.170 3 |
A² | 0.070 8 | 0.109 5 | 0.745 9 |
B² | 7.260 0 | 11.230 0 | 0.005 2 |
C² | 0.088 6 | 0.137 2 | 0.717 0 |
残差平方和Sum of squared residuals | 0.916 3 | ||
纯误差平方和Sum of squares of pure errors | 0.476 9 | ||
决定系数R2 | 0.804 2 | ||
校正决定系数RAdj2 | 0.668 6 | ||
预测决定系数RPre2 | 0.072 0 | ||
变异系数Coefficient of variation | 4.530 0 |
Table 5 Significance test and analysis of variance of regression model coefficients for rice moisture content
参数 Parameter | 稻谷含水率Rice moisture content | ||
---|---|---|---|
系数Coefficient | F值F value | P值P value | |
模型Model | 34.480 0 | 5.930 0 | 0.002 2 |
A:热风温度Hot air temperature | 6.070 0 | 9.400 0 | 0.009 0 |
B:粮层温度Grain layer temperature | 4.370 0 | 6.760 0 | 0.022 0 |
C:环境相对湿度Ambient relative humidity | 14.320 0 | 22.170 0 | 0.000 4 |
AB | 0.031 3 | 0.048 4 | 0.829 3 |
AC | 0.911 2 | 1.410 0 | 0.256 2 |
BC | 1.360 0 | 2.110 0 | 0.170 3 |
A² | 0.070 8 | 0.109 5 | 0.745 9 |
B² | 7.260 0 | 11.230 0 | 0.005 2 |
C² | 0.088 6 | 0.137 2 | 0.717 0 |
残差平方和Sum of squared residuals | 0.916 3 | ||
纯误差平方和Sum of squares of pure errors | 0.476 9 | ||
决定系数R2 | 0.804 2 | ||
校正决定系数RAdj2 | 0.668 6 | ||
预测决定系数RPre2 | 0.072 0 | ||
变异系数Coefficient of variation | 4.530 0 |
[1] | 国家统计局.国家统计局关于2023年粮食产量数据的公告[N].中国信息报,2023-12-12(001). |
[2] | 彭冬根, 聂江涛, 陈文华.基于分层模型的溶液除湿谷物就仓干燥系统性能及能耗[J].农业工程学报,2021,37(14):274-282. |
PENG D G, NIE J T, CHEN W H. Performance and energy consumption of liquid desiccant dehumidification grain in-Bin drying system via layered model [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(14): 274-282. | |
[3] | MUJUMDARA S. Handbook of Industrial Drying [M].New York: Marcel dekker,1987: 21-25. |
[4] | 徐永阳,邓安,邱伟强,等.不同含水率稻谷电学物理量变化规律 [J].食品工业,2024,45(2):114-120. |
XU Y Y, DENG A, QIU W Q, et al.. The change law of electrical physical quantity of rice with different moisture [J]. Food Ind., 2024, 45(2):114-120 | |
[5] | 王赫,刘国辉,林琳,等.基于神经网络的玉米干燥过程预测控制模型建立[J].粮食与油脂,2021,34(12):37-40. |
WANG H, LIU G H, LIN L, et al.. Predictive control model of corn drying process based on neural network [J]. Cereals Oils, 2021, 34(12): 37-40. | |
[6] | 车刚,高瑞丽,万霖,等.水稻负压混流干燥室结构优化设计与试验[J].农业工程学报,2021,37(4):87-96. |
CHE G, GAO R L, WAN L, et al.. Optimized design and experimental study on rice negative pressure mixed flow drying chamber [J]. Trans. Chin. Soc. Agric. Eng., 2021, 37(4):87-96. | |
[7] | 赵丽清,段东瑶,殷元元,等.基于PSO-Elman算法的茶叶烘干含水率预测[J].农业工程学报,2021,37(19):284-292. |
ZHAO L Q, DUAN D Y, YIN Y Y, et al.. Prediction of tea drying moisture content based on PSO-Elman algorithm [J].Trans. Chin. Soc. Agric. Eng., 2021, 37(19):284-292. | |
[8] | 谢辉煌,金毅,张忠杰,等.基于LSTM网络的粮食干燥机水分预测与优化[J].中国粮油学报,2023,38(11):196-204. |
XIE H H, JIN Y, ZHANG Z J, et al.. Prediction and optimization of grain dryer outlet moisture content based on LSTM [J]. J. Chin. Cereals Oils Assoc., 2023, 38(11):196-204. | |
[9] | 罗建军,杨红云,路艳,等.基于遗传算法优化的BP神经网络进行水稻氮素营养诊断[J].中国农业科技导报,2020,22(8):83-92. |
LUO J J, YANG H Y, LU Y, et al.. Identification of nitrogen nutrition in rice based on BP neural network optimized by genetic algorithms [J]. J. Agric. Sci. Technol., 2020, 22(8):83-92. | |
[10] | 白竣文,周存山,蔡健荣,等.南瓜片真空脉动干燥特性及含水率预测[J].农业工程学报,2017,33(17):290-297. |
BAI J W, ZHOU C S, CAI J R, et al.. Vacuum pulse drying characteristics and moisture content prediction of pumpkin slices [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(17):290-297. | |
[11] | 代爱妮,周晓光,刘相东,等.基于BP神经网络的旁热式辐射与对流粮食干燥过程模型[J].农业机械学报,2017,48(3):351-360. |
DAI A N, ZHOU X G, LIU X D, et al.. Model of drying process for combined side-heat infrared radiation and convection grain dryer based on BP neural network [J]. Trans. Chin. Soc. Agric.Mach., 2017, 48(3):351-360. | |
[12] | 朱文学,孙淑红,陈鹏涛,等.基于BP神经网络的牡丹花热风干燥含水率预测模型[J].农业机械学报,2011,42(8):128-130, 137. |
ZHU W X, SUN S H, CHEN P T, et al.. Moisture content prediction modeling of hot-air drying for pressed peony based on BP neural network [J]. Trans. Chin. Soc. Agric. Mach., 2011,42(8):128-130, 137. | |
[13] | 陈正发,车刚,万霖,等.稻谷四向通风混流干燥段数值模拟与试验[J].农业工程学报,2022,38(24):237-247. |
CHEN Z F, CHE G, WAN L, et al.. Numerical simulation and experiment of four-way ventilation mixed flow drying section for rice [J]. Trans. Chin. Soc. Agric. Eng., 2022,38(24):237-247. | |
[14] | 卓金武. MATLAB在数学建模中的应用[M].2版.北京:北京航空航天大学出版社,2014:122-123. |
[15] | 赵辰,南星恒.基于MEA-BP神经网络的财务危机预警研究[J]. 财会通讯,2016(1):43-46. |
[16] | 刘艺梦,丁小明,王会强,等.基于蜣螂算法优化BP的冬夏生菜根区温度预测模型[J].农业工程学报 2024,40(5):231-238. |
LIU Y M, DING X M, WANG H Q, et al.. Prediction model for winter and summer lettuce root zone temperature based on dung beetle algorithm to optimize BP [J]. Trans. Chin. Soc. Agric. Eng., 2024, 40(5): 231-238. | |
[17] | 周勇,胡中功.改进的快速遗传算法在函数优化中的应用[J].现代电子技术,2018,41(17):153-157. |
ZHOU Y, HU Z G. Application of improved fast-convergent genetic algorithm in function optimization [J]. Mod. Electron.Tech., 2018, 41(17):153-157. | |
[18] | 史峰,王辉,郁磊,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011:27-35. |
[19] | 弭宝福,徐梅,王福林,等.交叉概率对遗传算法运算速度影响的测试与分析[J].数学的实践与认识,2013,43(22):180-183. |
MI B F, XU M, WANG F L, et al.. The testing and analysis of the effects of crossover probability on genetic algorithms’ calculating speed [J]. J. Math. Pract. Theory, 2013, 43(22):180-183. | |
[20] | 张学锋,朱梅,汤亚玲,等.基于GA-BP的烧结风箱阀门预测模型[J/OL].西华大学学报(自然科学版),2024:1-7[2024-04-07].. |
ZHANG X F, ZHU M, TANG Y L, et al.. GA-BP Based Sintering Airbox Valve Prediction Model [J/OL]. J. Xihua Univ. (Nat. Sci.), 2024:1-7 [2024-04-07]. . | |
[21] | 王佳楠,王玉莹,何淑林,等.基于改进遗传算法优化BP神经网络的土壤湿度预测模型[J].计算机系统应用,2022,31(2):273-278. |
WANG J N, WANG Y Y, HE S L, et al.. Optimized BP neural network model based on lmproved genetic algorithm for soil moisture prediction [J]. Comput. Syst. Appl., 2022, 31(2):273-278. | |
[22] | 葛继科,邱玉辉,吴春明,等.遗传算法研究综述[J].计算机应用研究, 2008, 25(10): 2911-2916. |
GE J K, QIU Y H, WU C M, et al.. Summary of genetic algorithms research [J]. Appl.Res.Comput., 2008, 25(10):2911-2916. | |
[23] | 邱进栋,王同勋,万芳新.基于改进BP神经网络的香菇真空远红外辐射干燥含水率预测[J].林业机械与木工设备,2023,51(10):32-38. |
QIU J D, WANG T X, WAN F X.Prediction of moisture content in vacuum far-infrared radiation drying of shiitake mushroom based on improved BP neural network [J]. For. Mach. Woodwork. Equip., 2023, 51(10):32-38. | |
[24] | 梁兆超,郭显炜,宋艳娟,等.响应面法优化双孢蘑菇多糖提取工艺及其体外抗氧化活性研究[J].中国农业科技导报,2019,21(8):161-168. |
LIANG Z C, GUO X W, SONG Y J, et al.. Extraction process of polysaccharide in Agaricus bisporus optimized by response surface method and its antioxidant activity in vitro [J]. J. Agric. Sci. Technol., 2019, 21(8):161-168. |
[1] | Haidong ZHANG, Zhixian TANG, Liyun ZHANG, Qi YU, Chaojun SONG. Optimization of Discrete Elemental Simulation Parameters for Forest Panax pseudoginseng Plantation Red Soil Based on GA-BP-GA [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 120-130. |
[2] | Jianfeng ZHANG, Wenfeng HOU, Yongqing WU, Kaixu LI, Xiaokun LI. Effects of Nitrogen Fertilizer and Density Interactions on Occurrence of Diseases and Insect Pests and Grain Yield of Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 145-154. |
[3] | Zhien LIU, Yong HE, Zhicheng WANG, Xiaokang ZHAN, Tingbao WANG, Yaowei LIU, Zhihong TIAN. Identification and Bioinformatics Analysis of Growth Regulating Factor GRF Gene Family in Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 18-27. |
[4] | Zheng WU, Hongyun YANG, Aizhen SUN, Jie KONG, Shumei HUANG. Diagnosis of Potassium Nutrition in Rice Based on CA_MobileViT Model [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 80-88. |
[5] | Lihua SHAO, Peng LI. Proteome Analysis of Rice Response to Gibberella fujikuroi Infection [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 126-135. |
[6] | Wenting ZHANG, Yang LI, Shi QIU, Guangming LU, Dongshu GUO, Baolong ZHANG, Jinyan WANG. Effects of Badh2 Gene on Rice Quality Based on CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 39-48. |
[7] | Yan WU, Leping ZOU, Huijie SONG, Dandan HU, Kailou LIU, Wanli LIANG. Effect of Controlled-release Nitrogen Fertilizer Combined Urea on Ammonium Nitrogen of Surface Water and Early Rice Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 192-200. |
[8] | Lintao CHEN, Zhaoxiang LIU, Ying LAN, Xiangwei MOU, Xu MA, Rijun WANG. Research on Rice Variety Identification Based on Hyperspectral Technology and Principal Component Analysis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 104-111. |
[9] | Changlong FENG, Chenyang NING, Yixin ZHU, Shuping LI, Chunguang HUANG. Research on Design and Optimization of Ring Winding Mechanism for Trunk Bandages [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 122-132. |
[10] | Lecheng SHEN, Zhigang WEN, Han LIAO, Xianbiao LIU, Yaocong JIANG, Yuancong ZHANG, Ting LIU, Mei WANG. Effects of Foliar Spraying of Different Selenium Fertilizers on Selenium Content, Selenium Speciation and Components in Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 206-215. |
[11] | Dabing YANG, Liang HU, Xueshu DU, Bingliang WAN, Mingyuan XIA, Huaxiong QI, Jinbo LI. Progress in Creation of Rice Male Sterile Lines by CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 24-34. |
[12] | Guoliang ZHONG, Lin WAN, Gang CHE, Hao TANG, Tianqi QU, Qilin ZHANG. Influence of Drying Parameters on Hot Air Drying Rate and Energy Consumption of Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 95-103. |
[13] | Ruyan ZHANG, Shenhao LI, Qipeng ZHU, Taigang FENG, Hongbo LI, Zebing XING, Yu XIAN. Effect of Biochar Content on Physical and Mechanical Properties of Garden Greening Waste/polylactic Acid Composites [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 192-200. |
[14] | Changlong FENG, Chunguang HUANG, Chenyang NING, Shuping LI, Kejin CHEN. Optimization of Performance and Characteristics of Spiral Drill Bit Excavation Mechanism for Planting Machine [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 89-98. |
[15] | Yuan XU, Dingxuan HE, Liping ZHAO, Tingting ZHANG, Tingting DIAO, Jing CAI, Yaqin HUANG, Jingjing BI, Qiong CHEN, Qiaoyu ZHANG, Yu SHEN. Optimization of Extraction Process and Analysis of Antioxidant Activity of Polysaccharides from Perilla Leaves [J]. Journal of Agricultural Science and Technology, 2025, 27(10): 170-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||