Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (10): 84-94.DOI: 10.13304/j.nykjdb.2024.0747
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Hailong CHEN(), Jialiang DAI, Jing DENG, Xinxing GAO, Guanxing ZHU, Qingming HE, Nianqing ZHU
Received:
2024-09-10
Accepted:
2025-02-10
Online:
2025-10-15
Published:
2025-10-15
陈海龙(), 戴佳良, 邓晶, 高新星, 朱官兴, 何清明, 朱年青
作者简介:
陈海龙E-mail: xi_zhilang@ 126.com
基金资助:
CLC Number:
Hailong CHEN, Jialiang DAI, Jing DENG, Xinxing GAO, Guanxing ZHU, Qingming HE, Nianqing ZHU. Co-expression of SNF1 and MetK1 Promoted S-adenosine-L-methionine Synthesis in Saccharomyces cerevisiae[J]. Journal of Agricultural Science and Technology, 2025, 27(10): 84-94.
陈海龙, 戴佳良, 邓晶, 高新星, 朱官兴, 何清明, 朱年青. SNF1与MetK1共表达促进酵母S-腺苷-L-甲硫氨酸合成[J]. 中国农业科技导报, 2025, 27(10): 84-94.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2024.0747
基因Gene | 正向引物Forward primer (5’-3’) | 反向引物Reverse primer (5’-3’) |
---|---|---|
HXT1 | TGTGCCATTGGTGGTATCGT | ACCACCGACACCTAAACCAG |
HXK1 | TACTGGTGTCAACGGTGCTT | GTTCGTCGACAGCAACATCG |
HXK2 | CTGCTCCAATGGCCATCAAC | AAGGTTTGTTGGCCTGGTCT |
PFK1 | TGGTCTTGTCGGTTCCATCG | AAGGTTTGTTGGCCTGGTCT |
TDH1 | TTGAGGTTGTTGCTGTCAACG | GCTTGTCGTCATGGGAAACAG |
PGK1 | AGGCTTCTGCCCCAGGTTC | CAGCACGTTGTGGCAAGTC |
PYK | CGACTCAGATGCTGGATTCA | CCGTTTCTCCAGAAAGCATAA |
ALD6 | GAACTTCACCACCTTAGAGCCA | GCAGCGGGTTTCAAGATACA |
ACS1 | GCTGCAAAGGATAAGGATGG | GCCTCAATTTCAGCGGTAGA |
SER33 | CTCGTCGTGTAAGCATT | ACTTGTGGAACTCTACTT |
SER1 | ACAACTCAGCCTATAATACAA | CCAATGCCTCATATAATATCTT |
SER2 | CCTATCGTAGACGGACAG | CACCATACAACTTGCTTCA |
MET17 | AAATGGATTGGTGGTCATGG | GAAAGAGGCAAATGGGTTCA |
MET6 | TGGAAGCTGCCGGTATCAAG | GCAACTCTGAAAGCTTCGGC |
SAM2 | TGAATCCGTCGGTGAAGGTC | AGCTGTTTCACAGGCAACCT |
ACT1 | ACGCTCCTCGTGCTGTCTTC | GTTCTTCTGGGGCAACTCTCA |
Table 1 Primers used in RT-qPCR
基因Gene | 正向引物Forward primer (5’-3’) | 反向引物Reverse primer (5’-3’) |
---|---|---|
HXT1 | TGTGCCATTGGTGGTATCGT | ACCACCGACACCTAAACCAG |
HXK1 | TACTGGTGTCAACGGTGCTT | GTTCGTCGACAGCAACATCG |
HXK2 | CTGCTCCAATGGCCATCAAC | AAGGTTTGTTGGCCTGGTCT |
PFK1 | TGGTCTTGTCGGTTCCATCG | AAGGTTTGTTGGCCTGGTCT |
TDH1 | TTGAGGTTGTTGCTGTCAACG | GCTTGTCGTCATGGGAAACAG |
PGK1 | AGGCTTCTGCCCCAGGTTC | CAGCACGTTGTGGCAAGTC |
PYK | CGACTCAGATGCTGGATTCA | CCGTTTCTCCAGAAAGCATAA |
ALD6 | GAACTTCACCACCTTAGAGCCA | GCAGCGGGTTTCAAGATACA |
ACS1 | GCTGCAAAGGATAAGGATGG | GCCTCAATTTCAGCGGTAGA |
SER33 | CTCGTCGTGTAAGCATT | ACTTGTGGAACTCTACTT |
SER1 | ACAACTCAGCCTATAATACAA | CCAATGCCTCATATAATATCTT |
SER2 | CCTATCGTAGACGGACAG | CACCATACAACTTGCTTCA |
MET17 | AAATGGATTGGTGGTCATGG | GAAAGAGGCAAATGGGTTCA |
MET6 | TGGAAGCTGCCGGTATCAAG | GCAACTCTGAAAGCTTCGGC |
SAM2 | TGAATCCGTCGGTGAAGGTC | AGCTGTTTCACAGGCAACCT |
ACT1 | ACGCTCCTCGTGCTGTCTTC | GTTCTTCTGGGGCAACTCTCA |
Fig. 2 SAM production of different strains in yeast cellA: 5% glucose; B: 10% glucose. Different lowercase letters indicate significant difference between different strains at P<0.05 level
Fig. 3 Effects of SNF1 and MetK1 overexpression on growth and the glucose utilization of yeastA~B: Growth curves in 5% and 10% glucose, respectively; C~D: Glucose consumptions in 5% and 10% glucose, respectively
指标Index | 菌株Strain | |||
---|---|---|---|---|
2842 | YPMetK1 | YPSNF1 | YPSNF1-MetK1 | |
SAM 含量 SAM content/(g·L-1) | 0.54±0.01 d | 0.90±0.13 c | 1.14±0.02 b | 1.90±0.01 a |
细胞干重 DCW/(g·L-1) | 7.45±0.12 b | 7.38±0.17 b | 8.38±0.08 a | 8.27±0.11 a |
SAM对细胞干重得率 Yield of SAM on DCW/(mg·g-1) | 72.48 d | 121.95 c | 136.04 b | 229.75 a |
SAM对葡萄糖得率 Yield of SAM on glucose/(mg·g-1) | 5.40 d | 9.00 c | 11.40 b | 19.00 a |
Table 2 Effects of overexpression of SNF1 and MetK1 on glucose utilization and SAM yeild
指标Index | 菌株Strain | |||
---|---|---|---|---|
2842 | YPMetK1 | YPSNF1 | YPSNF1-MetK1 | |
SAM 含量 SAM content/(g·L-1) | 0.54±0.01 d | 0.90±0.13 c | 1.14±0.02 b | 1.90±0.01 a |
细胞干重 DCW/(g·L-1) | 7.45±0.12 b | 7.38±0.17 b | 8.38±0.08 a | 8.27±0.11 a |
SAM对细胞干重得率 Yield of SAM on DCW/(mg·g-1) | 72.48 d | 121.95 c | 136.04 b | 229.75 a |
SAM对葡萄糖得率 Yield of SAM on glucose/(mg·g-1) | 5.40 d | 9.00 c | 11.40 b | 19.00 a |
Fig. 4 Effects of SNF1 and MetK1 overexpression on glycolytic metabolism of yeastA~B: Levels of glycolytic intermediates in 5% and 10% glucose, respectively; C~D: Expression levels of genes related to glycolytic pathways in 5% and 10% glucose, respectively; different lowercase letters indicate significant differences between different strains at P<0.05 level
Fig. 5 Effects of SNF1 and MetK1 overexpression on precursor amino acid metabolism of yeastA~B: Precursor amino acids accumulations of strains in 5% and 10% glucose, respectively; C~D: Relative expression levels of genes related to amino acid metabolism of strains in 5% and 10% glucose, respectively; different lowercase letters indicate significant differences between different strains at P<0.05 level
Fig. 6 Effects of SNF1 and MetK1 overexpression on ethanol metabolism of yeastA~B: Ethanol accumulation in 5% and 10% glucose, respectively; C~D: ADH2 activities in 5% and 10% glucose, respectively
[1] | 陈海龙,蒋丽华,陈帅,等. Adk1过表达和柠檬酸钠补料促进酵母S-腺苷甲硫氨酸的合成[J].中国农业科技导报, 2020,22(10): 69-76. |
CHEN H L, JIANG L H, CHEN S, et al.. Adk1 overexpression and sodium citrate feeding enhanced S-adenosylmethionine synthesis in yeast [J]. J. Agric. Sci. Technol., 2020, 22(10): 69-76. | |
[2] | CEDERBAUM ARTHUR I. Hepatoprotective effects of S-adenosyl-L-methionine against alcohol-and cytochrome P450 2E1-induced liver injury [J]. World J. Gastroenterol., 2010, 16(11): 1366-1376. |
[3] | CHEN H, WANG Z, CAI H, et al.. Progress in the microbial production of S-adenosyl-L-methionine [J/OL]. World J. Microbiol. Biotechnol., 2016, 32(9): 153 [2024-08-10]. . |
[4] | LAN P, LI W, WEN T N, et al.. iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis [J]. Plant Physiol., 2011, 155(2): 821-834. |
[5] | MAYNE M B, COLEMAN J R, BLUMWALD E. Differential expression during drought conditioning of a root-specific S-adenosylmethionine synthetase from jack pine (Pinus banksiana Lamb.) seedlings [J]. Plant Cell Environ., 1996, 19(8): 958-966. |
[6] | GONG B, WANG X, WEI M, et al.. Overexpression of S-adenosy-l-methionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks [J]. Plant Cell Tissue Organ Culture, 2016, 124(2): 377-391. |
[7] | FUJIMOTO T, TOMITAKA Y, ABE H, et al.. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants (Solanum lycopersicum) after foliar treatment with methyl jasmonate [J]. J. Plant Physiol., 2011, 168(10): 1084-1097. |
[8] | OWITI J, GROSSMANN J, GEHRIG P, et al.. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration [J]. Plant J., 2011, 67(1): 145-156. |
[9] | 刘鑫, 李晓彤, 荆鑫, 等. S-腺苷甲硫氨酸对黄瓜断根扦插苗生长及生理代谢的影响[J].园艺学报, 2018, 45(8): 1513-1522. |
LIU X, LI X T, JING X, et al.. Effect of S-adenosylmethionine on growth and physiological metabolism of cucumber cutting seedlings [J]. Acta Hortic. Sin., 2018, 45(8): 1513-1522. | |
[10] | DAI Z, HUANG M, CHEN Y, et al.. Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative [J/OL]. Nat. Commun., 2018, 9(1): 3059 [2024-08-10]. . |
[11] | GAMBACORTA F V, DIETRICH J J, YAN Q, et al.. Rewiring yeast metabolism to synthesize products beyond ethanol [J]. Curr. Opin. Chem. Biol., 2020, 59: 182-192. |
[12] | LIN J P, TIAN J, YOU J F, et al.. An effective strategy for the co-production of S-adenosyl-l-methionine and glutathione by fed-batch fermentation [J]. Biochem. Eng. J., 2004, 21(1): 19-25. |
[13] | HEDBACKER K, CARLSON M. SNF1/AMPK pathways in yeast [J]. Front. Biosci., 2008, 13: 2408-2420. |
[14] | COCCETTI P, NICASTRO R, TRIPODI F. Conventional and emerging roles of the energy sensor Snf1/AMPK in Saccharomyces cerevisiae [J]. Microb. Cell, 2018, 5(11): 482-494. |
[15] | E-SCHOI, B-SPARK, LEE S-W, et al.. Increased production of S-adenosyl-L-methionine using recombinant Saccharomyces cerevisiae sake K6 [J]. Korean J. Chem. Eng., 2009, 26(1): 156-159. |
[16] | HE J, DENG J, ZHENG Y, et al.. A synergistic effect on the production of S-adenosyl-L-methionine in Pichia pastoris by knocking in of S-adenosyl-L-methionine synthase and knocking out of cystathionine-beta synthase [J]. J. Biotechnol., 2006, 126(4): 519-527. |
[17] | 周长林,杨明华,李登奎,等.一种高产腺苷蛋氨酸的菌种及其筛选方法: CN101481660B[P]. 2011-02-09. |
[18] | CAO X T, YANG M H, DOU J, et al.. Strain improvement for enhanced production of S-adenosyl-L-methionine in Saccharomyces cerevisiae based on ethionine-resistance and SAM synthetase activity [J]. Ann. Microbiol., 2012, 62: 1395-1402. |
[19] | CHEN H, YANG Y, WANG Z, et al.. Elevated intracellular acetyl-CoA availability by acs2 overexpression and mls1 deletion combined with metK1 introduction enhanced SAM accumulation in Saccharomyces cerevisiae [J]. Biochem. Eng. J., 2016, 107: 26-34. |
[20] | ZHU A, ROMERO R, PETTY H R. An enzymatic colorimetric assay for glucose-6-phosphate [J]. Anal. Biochem., 2011, 419(2): 266-270. |
[21] | DU Z J, WU W T. The repaid determination method of fructose-1,6-bisphosphate [J]. Chin. J. Biochem., 1993, 2: 59-62. |
[22] | SAAVEDRA E, RAMOS-CASILLAS L E, MARÍN-HERNÁNDEZ A, et al.. Glycolysis in Ustilago maydis [J]. FEMS Yeast Res., 2008, 8(8): 1313-1323. |
[23] | CHEN H, ZHU N, WANG Y, et al.. Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-L-methionine production in Saccharomyces cerevisiae [J/OL]. AMB Express, 2021, 11(1): 20 [2024-08-10]. . |
[24] | HAGISHITA T, YOSHIDA T, IZUMI Y, et al.. Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43 [J]. Biosci. Biotechnol. Biochem., 1996, 60(10): 1604-1607. |
[25] | ZHANG Y, XU H, LI S. A clean process for separating L-aspartic acid [J]. Chin. J. Bioprocess Eng., 2007, 5(4): 65-69. |
[26] | KATRUSIAK A E, PATERSON P G, KAMENCIC H, et al.. Pre-column derivatization high-performance liquid chromatographic method for determination of cysteine, cysteinyl-glycine, homocysteine and glutathione in plasma and cell extracts [J]. J. Chromatogr. B Biomed. Sci. Appl., 2001, 758(2): 207-212. |
[27] | 徐国强,陈修来,吴满珍.调控辅因子水平减少酿酒酵母积累副产物乙醇[J].食品与发酵工业, 2014, 40(10): 6-10. |
XU G Q, CHEN X L, WU M Z. Reducing ethanol formation in Saccharomyces cerevisiae by regulating the level of cofactors [J]. Food Ferment. Ind., 2014, 40(10): 6-10. | |
[28] | JOHANSSON M, SJÖSTRÖM J E. Enhanced production of glycerol in an alcohol dehydrogenase (ADH I) deficient mutant of Saccharomyces cerevisiae [J]. Biotechnol. Lett., 1984, 6(1): 49-54. |
[29] | MAURICIO J C, MORENO J J, ORTEGA J M. In vitro specific activities of alcohol and aldehyde dehydrogenases from two flor yeasts during controlled wine aging [J]. J. Agric. Food Chem., 1997, 45(5): 1967-1971. |
[30] | MENG L, LIU H L, LIN X, et al.. Enhanced multi-stress tolerance and glucose utilization of Saccharomyces cerevisiae by overexpression of the SNF1 gene and varied beta isoform of Snf1 dominates in stresses [J/OL]. Microb. Cell Fact., 2020, 19(1): 134 [2024-08-10]. . |
[31] | YUAN J S, REED A, CHEN F, et al.. Statistical analysis of real-time PCR data [J/OL]. BMC Bioinformatics, 2006, 7: 85 [2024-08-10]. . |
[32] | LI Y, ZHANG Y, YE D, et al.. Impact of serine and serine synthesis genes on H2S release in Saccharomyces cerevisiae during wine fermentation [J/OL]. Food Microbiol., 2022, 103: 103961 [2024-08-10]. . |
[33] | OUD B, C-LFLORES, GANCEDO C, et al.. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae [J/OL]. Microb. Cell Fact., 2012, 11: 131 [2024-08-10]. . |
[34] | IDA Y, FURUSAWA C, HIRASAWA T, et al.. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae [J]. J. Biosci. Bioeng., 2012, 113(2): 192-195. |
[35] | VAN MARIS A J A, GEERTMAN J A, VERMEULEN A, et al.. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast [J]. Appl. Environ. Microbiol., 2004, 70(1): 159-166. |
[36] | 白逢彦.走出中国:酿酒酵母的起源、驯养与演化[J].微生物学报, 2023, 63(5): 1748-1770. |
BAI F Y. Out of China: origin, domestication and evolution of Saccharomyces cerevisiae [J]. Acta Microbiol. Sin., 2023, 63(5): 1748-1770. | |
[37] | HONG S P, LEIPER F C, WOODS A, et al.. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases [J]. Proc. Natl. Acad. Sci. USA, 2003, 100(15): 8839-8843. |
[38] | LIN X, ZHANG C Y, BAI X W, et al.. Effects of GLC7 and REG1 deletion on maltose metabolism and leavening ability of baker’s yeast in lean dough [J]. J. Biotechnol., 2015, 209: 1-6. |
[39] | SCHÜLLER H J. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae [J]. Curr. Genet., 2003, 43(3): 139-160. |
[40] | VORONKOVA V, KACHEROVSKY N, TACHIBANA C, et al.. Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae [J]. Genetics, 2006, 172(4): 2123-2138. |
[1] | Yijun WANG, Huoqing HUANG, Xiaoyun SU. Construction of Bifunctional Saccharomyces cerevisiae with Ability to Detoxify Mycotoxins [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 226-233. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||