








Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (4): 132-146.DOI: 10.13304/j.nykjdb.2022.1068
• ANIMAL AND PLANT HEALTH • Previous Articles Next Articles
Haochun KE(
), Kun LI(
), Ruifeng CHENG(
)
Received:2022-12-07
Accepted:2023-02-13
Online:2023-04-01
Published:2023-06-26
Contact:
Kun LI,Ruifeng CHENG
通讯作者:
李琨,程瑞锋
作者简介:柯昊纯 E-mail:kehaochun@caas.cn
基金资助:CLC Number:
Haochun KE, Kun LI, Ruifeng CHENG. Simulation and Optimization on Ultraviolet LED Nutrient Solution Sterilization Module Based on Response Surface Method[J]. Journal of Agricultural Science and Technology, 2023, 25(4): 132-146.
柯昊纯, 李琨, 程瑞锋. 营养液紫外LED杀菌模组仿真与响应面法优化[J]. 中国农业科技导报, 2023, 25(4): 132-146.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.1068
Fig. 3 Measurement of transmittance for quartz tubeA:UV-LED measurement board; B:UV transmittance measurement device for quartz tube. 1—UV-LED measurement board; 2—Semicircular quartz plate with the same specifications as quartz tube; 3—Measurement probe of ultraviolet spectrometer
| 指标Index | 遮盖前Before covering | 遮盖后After covering | 透过率Transmittance |
|---|---|---|---|
| 辐照度Irradiance/(μW·cm-2) | 123.5 | 115.7 | 0.937 |
| 133.9 | 125.4 | 0.937 | |
| 144.8 | 136.9 | 0.945 | |
| 157.1 | 146.2 | 0.931 | |
| 194.9 | 175.5 | 0.900 |
Table 1 UV irradiance before and after covering the quartz plate and its transmittance
| 指标Index | 遮盖前Before covering | 遮盖后After covering | 透过率Transmittance |
|---|---|---|---|
| 辐照度Irradiance/(μW·cm-2) | 123.5 | 115.7 | 0.937 |
| 133.9 | 125.4 | 0.937 | |
| 144.8 | 136.9 | 0.945 | |
| 157.1 | 146.2 | 0.931 | |
| 194.9 | 175.5 | 0.900 |
Fig. 9 Ultraviolet irradiance distribution of the reference surface and the corresponding position of the light-receiving surface of the spectrometer probe under unilateral lighting
| 因子Factor | 编码Coding | 水平Level | ||||
|---|---|---|---|---|---|---|
| -2 | -1 | 0 | 1 | 2 | ||
| 管道内径Inner diameter of tube/mm | A | 24.00 | 30.50 | 37.00 | 43.50 | 50.00 |
| 管壁厚度Thickness of tube wall/mm | B | 0.00 | 0.75 | 1.50 | 2.25 | 3.00 |
| 管灯距离Tube-lamp distance/mm | C | 0.00 | 1.25 | 2.50 | 3.75 | 5.00 |
| 双向反射分布函数BRDF | D | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 |
Table 2 Parameter factor level and code
| 因子Factor | 编码Coding | 水平Level | ||||
|---|---|---|---|---|---|---|
| -2 | -1 | 0 | 1 | 2 | ||
| 管道内径Inner diameter of tube/mm | A | 24.00 | 30.50 | 37.00 | 43.50 | 50.00 |
| 管壁厚度Thickness of tube wall/mm | B | 0.00 | 0.75 | 1.50 | 2.25 | 3.00 |
| 管灯距离Tube-lamp distance/mm | C | 0.00 | 1.25 | 2.50 | 3.75 | 5.00 |
| 双向反射分布函数BRDF | D | 0.00 | 0.25 | 0.50 | 0.75 | 1.00 |
| 试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
|---|---|---|---|---|---|---|---|
| A | B | C | D | EURR/% | ID | ||
| 1 | -1 | -1 | -1 | -1 | 18.94 | 0.381 2 | |
| 2 | 1 | -1 | -1 | -1 | 24.66 | 0.387 9 | |
| 3 | -1 | 1 | -1 | -1 | 18.60 | 0.303 3 | |
| 4 | 1 | 1 | -1 | -1 | 24.09 | 0.325 7 | |
| 5 | -1 | -1 | 1 | -1 | 15.96 | 0.312 4 | |
| 6 | 1 | -1 | 1 | -1 | 21.30 | 0.314 8 | |
| 7 | -1 | 1 | 1 | -1 | 15.30 | 0.272 6 | |
Table 3 Design scheme and results of simulation experiments
| 试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
|---|---|---|---|---|---|---|---|
| A | B | C | D | EURR/% | ID | ||
| 1 | -1 | -1 | -1 | -1 | 18.94 | 0.381 2 | |
| 2 | 1 | -1 | -1 | -1 | 24.66 | 0.387 9 | |
| 3 | -1 | 1 | -1 | -1 | 18.60 | 0.303 3 | |
| 4 | 1 | 1 | -1 | -1 | 24.09 | 0.325 7 | |
| 5 | -1 | -1 | 1 | -1 | 15.96 | 0.312 4 | |
| 6 | 1 | -1 | 1 | -1 | 21.30 | 0.314 8 | |
| 7 | -1 | 1 | 1 | -1 | 15.30 | 0.272 6 | |
| 试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
|---|---|---|---|---|---|---|---|
| A | B | C | D | EURR/% | ID | ||
| 8 | 1 | 1 | 1 | -1 | 20.58 | 0.280 1 | |
| 9 | -1 | -1 | -1 | 1 | 33.20 | 0.342 9 | |
| 10 | 1 | -1 | -1 | 1 | 37.88 | 0.358 5 | |
| 11 | -1 | 1 | -1 | 1 | 31.36 | 0.279 5 | |
| 12 | 1 | 1 | -1 | 1 | 35.00 | 0.305 8 | |
| 13 | -1 | -1 | 1 | 1 | 27.40 | 0.303 8 | |
| 14 | 1 | -1 | 1 | 1 | 31.31 | 0.307 9 | |
| 15 | -1 | 1 | 1 | 1 | 24.73 | 0.261 8 | |
| 16 | 1 | 1 | 1 | 1 | 29.36 | 0.271 5 | |
| 17 | -2 | 0 | 0 | 0 | 17.43 | 0.274 2 | |
| 18 | 2 | 0 | 0 | 0 | 29.12 | 0.310 6 | |
| 19 | 0 | -2 | 0 | 0 | 28.01 | 0.357 4 | |
| 20 | 0 | 2 | 0 | 0 | 23.18 | 0.263 6 | |
| 21 | 0 | 0 | -2 | 0 | 28.85 | 0.412 3 | |
| 22 | 0 | 0 | 2 | 0 | 19.56 | 0.294 9 | |
| 23 | 0 | 0 | 0 | -2 | 17.94 | 0.314 0 | |
| 24 | 0 | 0 | 0 | 2 | 49.78 | 0.298 9 | |
| 25 | 0 | 0 | 0 | 0 | 24.61 | 0.304 7 | |
Table 3 Design scheme and results of simulation experimentsxu
| 试验序号Number of experiment | 试验设计组合Experiment design combination | 试验结果Experiment result | |||||
|---|---|---|---|---|---|---|---|
| A | B | C | D | EURR/% | ID | ||
| 8 | 1 | 1 | 1 | -1 | 20.58 | 0.280 1 | |
| 9 | -1 | -1 | -1 | 1 | 33.20 | 0.342 9 | |
| 10 | 1 | -1 | -1 | 1 | 37.88 | 0.358 5 | |
| 11 | -1 | 1 | -1 | 1 | 31.36 | 0.279 5 | |
| 12 | 1 | 1 | -1 | 1 | 35.00 | 0.305 8 | |
| 13 | -1 | -1 | 1 | 1 | 27.40 | 0.303 8 | |
| 14 | 1 | -1 | 1 | 1 | 31.31 | 0.307 9 | |
| 15 | -1 | 1 | 1 | 1 | 24.73 | 0.261 8 | |
| 16 | 1 | 1 | 1 | 1 | 29.36 | 0.271 5 | |
| 17 | -2 | 0 | 0 | 0 | 17.43 | 0.274 2 | |
| 18 | 2 | 0 | 0 | 0 | 29.12 | 0.310 6 | |
| 19 | 0 | -2 | 0 | 0 | 28.01 | 0.357 4 | |
| 20 | 0 | 2 | 0 | 0 | 23.18 | 0.263 6 | |
| 21 | 0 | 0 | -2 | 0 | 28.85 | 0.412 3 | |
| 22 | 0 | 0 | 2 | 0 | 19.56 | 0.294 9 | |
| 23 | 0 | 0 | 0 | -2 | 17.94 | 0.314 0 | |
| 24 | 0 | 0 | 0 | 2 | 49.78 | 0.298 9 | |
| 25 | 0 | 0 | 0 | 0 | 24.61 | 0.304 7 | |
| 来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
|---|---|---|---|---|---|
| 模型 Model | 1 461.900 0 | 14 | 104.420 0 | 27.710 0 | <0.000 1 |
| A | 160.530 0 | 1 | 160.530 0 | 42.600 0 | <0.000 1 |
| B | 18.890 0 | 1 | 18.890 0 | 5.010 0 | 0.049 1 |
| C | 132.400 0 | 1 | 132.400 0 | 35.130 0 | 0.000 1 |
| D | 994.470 0 | 1 | 994.470 0 | 263.900 0 | <0.000 1 |
| AB | 0.023 3 | 1 | 0.023 3 | 0.006 2 | 0.938 9 |
| AC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
| AD | 1.540 0 | 1 | 1.540 0 | 0.409 7 | 0.536 5 |
| BC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
| BD | 3.110 0 | 1 | 3.110 0 | 0.824 3 | 0.385 3 |
| CD | 8.250 0 | 1 | 8.250 0 | 2.190 0 | 0.169 7 |
| A2 | 3.080 0 | 1 | 3.080 0 | 0.816 6 | 0.387 4 |
| B2 | 0.038 0 | 1 | 0.038 0 | 0.010 1 | 0.922 0 |
| C2 | 0.946 4 | 1 | 0.946 4 | 0.251 2 | 0.627 1 |
| D2 | 50.970 0 | 1 | 50.970 0 | 13.520 0 | 0.004 3 |
| 残差Residual | 37.680 0 | 10 | 3.770 0 | — | — |
| 总和Cor total | 1 499.580 0 | 24 | — | — | — |
Table 4 Analysis of regression coefficient test of the effective ultraviolet radiation ratio
| 来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
|---|---|---|---|---|---|
| 模型 Model | 1 461.900 0 | 14 | 104.420 0 | 27.710 0 | <0.000 1 |
| A | 160.530 0 | 1 | 160.530 0 | 42.600 0 | <0.000 1 |
| B | 18.890 0 | 1 | 18.890 0 | 5.010 0 | 0.049 1 |
| C | 132.400 0 | 1 | 132.400 0 | 35.130 0 | 0.000 1 |
| D | 994.470 0 | 1 | 994.470 0 | 263.900 0 | <0.000 1 |
| AB | 0.023 3 | 1 | 0.023 3 | 0.006 2 | 0.938 9 |
| AC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
| AD | 1.540 0 | 1 | 1.540 0 | 0.409 7 | 0.536 5 |
| BC | 0.008 6 | 1 | 0.008 6 | 0.002 3 | 0.962 9 |
| BD | 3.110 0 | 1 | 3.110 0 | 0.824 3 | 0.385 3 |
| CD | 8.250 0 | 1 | 8.250 0 | 2.190 0 | 0.169 7 |
| A2 | 3.080 0 | 1 | 3.080 0 | 0.816 6 | 0.387 4 |
| B2 | 0.038 0 | 1 | 0.038 0 | 0.010 1 | 0.922 0 |
| C2 | 0.946 4 | 1 | 0.946 4 | 0.251 2 | 0.627 1 |
| D2 | 50.970 0 | 1 | 50.970 0 | 13.520 0 | 0.004 3 |
| 残差Residual | 37.680 0 | 10 | 3.770 0 | — | — |
| 总和Cor total | 1 499.580 0 | 24 | — | — | — |
| 来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
|---|---|---|---|---|---|
| 模型 Model | 0.037 6 | 14 | 0.002 7 | 45.42 | <0.000 1 |
| A | 0.001 2 | 1 | 0.001 2 | 19.77 | 0.001 2 |
| B | 0.014 8 | 1 | 0.014 8 | 250.84 | <0.000 1 |
| C | 0.014 7 | 1 | 0.014 7 | 249.16 | <0.000 1 |
| D | 0.001 3 | 1 | 0.001 3 | 21.95 | 0.000 9 |
| AB | 8.6E-05 | 1 | 8.6E-05 | 1.45 | 0.255 6 |
| AC | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 2 |
| AD | 1.74E-05 | 1 | 1.74E-05 | 0.29 | 0.599 1 |
| BC | 0.000 7 | 1 | 0.000 7 | 11.28 | 0.007 3 |
| BD | 2.53E-05 | 1 | 2.53E-05 | 0.43 | 0.528 2 |
| CD | 0.000 4 | 1 | 0.000 4 | 6.18 | 0.032 2 |
| A2 | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 7 |
| B2 | 1.16E-05 | 1 | 1.16E-05 | 0.20 | 0.667 9 |
| C2 | 0.001 6 | 1 | 0.001 6 | 26.53 | 0.000 4 |
| D2 | 1.23E-11 | 1 | 1.23E-11 | 2.07E-07 | 0.999 6 |
| 残差Residual | 0.000 6 | 10 | 5.91E-05 | — | — |
| 总和Cor total | 0.038 2 | 24 | — | — | — |
Table 5 Analysis of regression coefficient test of the irradiance dispersion
| 来源Source | 和方差Sum of squares | 自由度Degree of freedom | 均方Mean square | F值F value | P值P value |
|---|---|---|---|---|---|
| 模型 Model | 0.037 6 | 14 | 0.002 7 | 45.42 | <0.000 1 |
| A | 0.001 2 | 1 | 0.001 2 | 19.77 | 0.001 2 |
| B | 0.014 8 | 1 | 0.014 8 | 250.84 | <0.000 1 |
| C | 0.014 7 | 1 | 0.014 7 | 249.16 | <0.000 1 |
| D | 0.001 3 | 1 | 0.001 3 | 21.95 | 0.000 9 |
| AB | 8.6E-05 | 1 | 8.6E-05 | 1.45 | 0.255 6 |
| AC | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 2 |
| AD | 1.74E-05 | 1 | 1.74E-05 | 0.29 | 0.599 1 |
| BC | 0.000 7 | 1 | 0.000 7 | 11.28 | 0.007 3 |
| BD | 2.53E-05 | 1 | 2.53E-05 | 0.43 | 0.528 2 |
| CD | 0.000 4 | 1 | 0.000 4 | 6.18 | 0.032 2 |
| A2 | 0.000 1 | 1 | 0.000 1 | 2.36 | 0.155 7 |
| B2 | 1.16E-05 | 1 | 1.16E-05 | 0.20 | 0.667 9 |
| C2 | 0.001 6 | 1 | 0.001 6 | 26.53 | 0.000 4 |
| D2 | 1.23E-11 | 1 | 1.23E-11 | 2.07E-07 | 0.999 6 |
| 残差Residual | 0.000 6 | 10 | 5.91E-05 | — | — |
| 总和Cor total | 0.038 2 | 24 | — | — | — |
| 拟合统计指标Fit statistic index | 有效紫外辐照比例EURR | 辐照离散度ID |
|---|---|---|
| 标准差Standard deviation | 1.730 0 | 0.008 5 |
| 均值Mean | 25.930 0 | 0.313 6 |
| 变异系数Coefficient of variation/% | 6.680 0 | 2.710 0 |
| 决定系数R2 | 0.962 0 | 0.967 8 |
| 调整后决定系数Adjusted R2 | 0.952 0 | 0.954 5 |
| 预测拟合度Predicted R2 | 0.885 6 | 0.919 5 |
| 精度值Adequate precision | 37.878 5 | 31.003 3 |
Table 6 Fitting statistics of the quadratic regression equation of effective ultraviolet radiation ratio and irradiance dispersion after refitting
| 拟合统计指标Fit statistic index | 有效紫外辐照比例EURR | 辐照离散度ID |
|---|---|---|
| 标准差Standard deviation | 1.730 0 | 0.008 5 |
| 均值Mean | 25.930 0 | 0.313 6 |
| 变异系数Coefficient of variation/% | 6.680 0 | 2.710 0 |
| 决定系数R2 | 0.962 0 | 0.967 8 |
| 调整后决定系数Adjusted R2 | 0.952 0 | 0.954 5 |
| 预测拟合度Predicted R2 | 0.885 6 | 0.919 5 |
| 精度值Adequate precision | 37.878 5 | 31.003 3 |
Fig. 11 Effect of single factors on effective ultraviolet radiation ratio and irradiance dispersionNote:A—Inner diameter of tube;B—Thickness of tube wall;C—Tube-lamp distance;D—Bidirectional reflectance distribution function.
序号 Number | 管道内径 Inner diameter of tube/mm | 管壁厚度Thickness of tube wall/mm | 管灯距离Tube-lamp distance/mm | 双向反射分布函数 BRDF | 有效紫外辐照比例 EURR/% | 辐照离散度ID | 复合合意度 Composite desirability |
|---|---|---|---|---|---|---|---|
| 1 | 50.00 | 3.000 | 0.556 | 1 | 52.955 9 | 0.284 957 | 0.058 412 8 |
| 2 | 50.00 | 3.000 | 0.009 | 1 | 53.982 4 | 0.305 335 | 0.057 210 2 |
| 3 | 49.42 | 2.268 | 0.000 | 1 | 54.633 0 | 0.341 957 | 0.046 972 4 |
| 4 | 50.00 | 2.951 | 3.828 | 1 | 46.865 1 | 0.263 957 | 0.038 111 3 |
| 5 | 50.00 | 0.043 | 3.988 | 1 | 50.003 4 | 0.333 833 | 0.035 034 1 |
| 6 | 39.83 | 3.000 | 2.557 | 1 | 45.147 4 | 0.240 142 | 0.035 022 2 |
| 7 | 24.09 | 3.000 | 0.000 | 1 | 43.690 6 | 0.277 902 | 0.026 365 7 |
| 8 | 27.54 | 0.000 | 4.026 | 1 | 41.046 3 | 0.310 753 | 0.016 768 1 |
| 9 | 27.95 | 2.882 | 3.944 | 1 | 37.956 7 | 0.244 203 | 0.014 896 7 |
Table 7 Optimized parameter combinations and prediction results of response surface method
序号 Number | 管道内径 Inner diameter of tube/mm | 管壁厚度Thickness of tube wall/mm | 管灯距离Tube-lamp distance/mm | 双向反射分布函数 BRDF | 有效紫外辐照比例 EURR/% | 辐照离散度ID | 复合合意度 Composite desirability |
|---|---|---|---|---|---|---|---|
| 1 | 50.00 | 3.000 | 0.556 | 1 | 52.955 9 | 0.284 957 | 0.058 412 8 |
| 2 | 50.00 | 3.000 | 0.009 | 1 | 53.982 4 | 0.305 335 | 0.057 210 2 |
| 3 | 49.42 | 2.268 | 0.000 | 1 | 54.633 0 | 0.341 957 | 0.046 972 4 |
| 4 | 50.00 | 2.951 | 3.828 | 1 | 46.865 1 | 0.263 957 | 0.038 111 3 |
| 5 | 50.00 | 0.043 | 3.988 | 1 | 50.003 4 | 0.333 833 | 0.035 034 1 |
| 6 | 39.83 | 3.000 | 2.557 | 1 | 45.147 4 | 0.240 142 | 0.035 022 2 |
| 7 | 24.09 | 3.000 | 0.000 | 1 | 43.690 6 | 0.277 902 | 0.026 365 7 |
| 8 | 27.54 | 0.000 | 4.026 | 1 | 41.046 3 | 0.310 753 | 0.016 768 1 |
| 9 | 27.95 | 2.882 | 3.944 | 1 | 37.956 7 | 0.244 203 | 0.014 896 7 |
| 1 | 杨其长.植物工厂系统与实践[M].北京:化学工业出版社,2012:2-3. |
| 2 | 刘家源,张玉彬,刘文科.采前红蓝光连续光照光强对水培生菜生长、品质及AsA代谢的影响[J].中国农业科技导报,2022,24(5):76-84. |
| LIU J Y, ZHANG Y B, LIU W K. Effects of pre-harvest red and blue continuous light intensity on growth, quality and AsA metabolism of hydroponics lettuce [J]. J. Agric. Sci. Technol., 2022, 24(5):76-84. | |
| 3 | 张玉彬,刘文科,杨其长,等.采前不同比例LED红蓝光连续光照对生菜光合特性及产量和品质的影响[J].中国农业科技导报,2021,23(10):66-73. |
| ZHANG Y B, LIU W K, YANG Q C, et al.. Effects of different ratios of LED red and blue continuous light on the photosynthetic characteristics, yield and quality of lettuce before harvest [J]. J. Agric. Sci. Technol., 2021, 23(10):66-73. | |
| 4 | ZHANG W L, LIU W K, YANG Q C. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes [J]. J. Plant Nutr., 2013, 36(3):481-490. |
| 5 | BIAN Z H, CHENG R F, WANG Y, et al.. Effect of green light on nitrate reduction and edible quality of hydroponically grown lettuce (Lactuca sativa L.) under short-term continuous light from red and blue light-emitting diodes [J]. Environ. Exp. Bot., 2018, 153:63-71. |
| 6 | LEI B, BIAN Z H, YANG Q C, et al.. The positive function of selenium supplementation on reducing nitrate accumulation in hydroponic lettuce (Lactuca sativa L.) [J]. J. Integr. Agric., 2018, 17(4):837-846. |
| 7 | 刘文科,杨其长.现代设施园艺的最高形式——植物工厂[J].科技导报,2013,31(33):1. |
| 8 | STRAYER R F. Dynamics of microorganism populations in recirculating nutrient solutions [J]. Adv. Space Res., 1994, 14(11):357-366. |
| 9 | HONG C X, MOORMAN G W. Plant pathogens in irrigation water: challenges and opportunities [J]. Crit. Rev. Plant Sci., 2005, 24(3):189-208. |
| 10 | 李倩.番茄潮汐式育苗营养液细菌和真菌群落结构动态分析[D].北京:中国农业科学院,2019. |
| LI Q. Analysis of bacterial and fungal community structure in the recirculating nutrient solution of tomato plug seedlings under ebb-and-flow irrigation [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
| 11 | ATMATJIDOU V P, FYNN R P, HOITINK H A J. Dissemination and transmission of Xanthomonas campestris pv. begoniae in an ebb and flow irrigation system [J]. Plant Dis., 1991, 75(12):1261-1265. |
| 12 | GRIESBACH E, LATTAUSCHKE E. Übertragung von Clavibacter michiganensis subsp. michiganensis in Tomaten-Hydroponikkulturen und Möglichkeiten zur Bekämpfung des Erregers [J]. Nachrichtenbl. Dtsch. Pflanzenschutzdienstes (Braunschweig, Ger.), 1991, 43(4):69-73. |
| 13 | KŮDELA V, KREJZAR V, PÁNKOVÁ I. Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture [J]. Plant Prot. Sci., 2011, 46(1):1-11. |
| 14 | FUJIWARA K, AOYAMA C, TAKANO M, et al.. Suppression of Ralstonia solanacearum bacterial wilt disease by an organic hydroponic system [J]. J. Gen. Plant Pathol., 2012, 78(3):217-220. |
| 15 | ACHER A, HEUER B, RUBINSKAYA E, et al.. Use of ultraviolet-disinfected nutrient solutions in greenhouses [J]. J. Hortic. Sci., 1997, 72(1):117-123. |
| 16 | ZHANG W, TU J C. Effect of ultraviolet disinfection of hydroponic solutions on Pythium root rot and non-target bacteria [J]. Eur. J. Plant Pathol., 2000, 106(5):415-421. |
| 17 | 宋卫堂,王成,侯文龙.紫外线-臭氧组合式营养液消毒机的设计及灭菌性能试验[J].农业工程学报,2011,27(2):360-365. |
| SONG W T, WANG C, HOU W L. Development and test of nutrient solution disinfection machine by combining UV with ozone [J]. Trans. Chin. Soc. Agric. Eng., 2011, 27(2):360-365. | |
| 18 | 王伟琳,何芬,丁小明,等.营养液循环灌溉紫外线消毒机设计研究[J].农机化研究,2018,40(9):69-73, 80. |
| WANG W L, HE F, DING X M, et al.. Design of ultraviolet disinfection machine for circulating irrigation of nutrient solution [J]. J. Agric. Mech. Res., 2018, 40(9):69-73, 80. | |
| 19 | 李东星,田真,王浚峰,等.植物工厂营养液循环再利用装备的研究应用[J].农业工程,2011,1(1):46-51. |
| LI D X, TIAN Z, WANG J F, et al.. Research and application on a nutrient recycle equipment [J]. Agric. Eng., 2011, 1(1):46-51. | |
| 20 | WANG X, FANG W, ZHAO Z. Design of UVA ultraviolet disinfection system for nutrient solution residual liquid and development of microbial online monitoring system [J]. Sustainability, 2023, 15(1):173-182. |
| 21 | TSUNEDOMI A, MIYAWAKI K, MASAMURA A, et al.. UVA‐LED device to disinfect hydroponic nutrient solution [J]. Tokushima J. Exp. Med., 2018, 65(3.4):171-176. |
| 22 | 杜朋伟.高效紫外发光二极管的理论与实验研究[D].杭州:浙江大学,2022. |
| DU P W. Theoretical and experimental research on high efficiency ultraviolet light emitting diodes [D]. Hangzhou: Zhejiang University, 2022. | |
| 23 | 王勇.AlGaN深紫外LED外量子效率提升方法研究[D].长春:中国科学院大学,2022. |
| WANG Y. Research on improving external quantum efficiency of AlGaN-based deep ultraviolet light emitting diodes [D]. Changchun: University of Chinese Academy of Sciences, 2022. | |
| 24 | 李晋闽,闫建昌,郭亚楠,等.紫外LED研究进展[J].科技导报,2021,39(14):30-41. |
| LI J M, YAN J C, GUO Y N, et al.. Recent progress of ultraviolet light-emitting diodes [J]. Sci. Technol. Rev., 2021, 39(14):30-41. | |
| 25 | KIM B S, YOUM S, KIM Y K. Sterilization of harmful microorganisms in hydroponic cultivation using an ultraviolet LED light source [J]. Sens. Mater., 2020, 32(11):3773-3785. |
| 26 | HESSLING M, GROSS A, HOENES K, et al.. Efficient disinfection of tap and surface water with single high power 285 nm LED and square quartz tube [C]//Photonics. Multidisciplinary Digital Publishing Institute, 2016, 3(1):7. |
| 27 | JENNY R M, JASPER M N, SIMMONS III O D, et al.. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics [J]. Water Res., 2015, 83(10):310-318. |
| 28 | OGUMA K, KITA R, TAKIZAWA S. Effects of arrangement of UV light-emitting diodes on the inactivation efficiency of microorganisms in water [J]. Photochem. Photobiol., 2016, 92(2):314-317. |
| 29 | 吴燕涛.鲜榨苹果汁管式液膜紫外杀菌的CFD模拟[D].海口:华南热带农业大学,2005. |
| WU Y T. Computation fluid dynamics modeling the UV-sterilization of fresh apple juice in fluid film [D]. Haikou: South China University of Tropical Agriculture, 2005. | |
| 30 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 一般工业用铝及铝合金板、带材: [S].北京:中国标准出版社,2006. |
| 31 | 李聪,王咏梅,张仲谋.紫外光谱辐射定标中的漫反射板反射特性研究[J].光谱学与光谱分析,2008,28(4):865-869. |
| LI C, WANG Y M, ZHANG Z M. The study of aluminium diffuser calibration in the UV [J]. Spectrosc. Spect. Anal., 2008, 28(4):865-869. | |
| 32 | 李炳强,曹佃生,林冠宇,等.真空远紫外波段铝基漫反射板BRDF特性研究[J].激光与红外,2020,50(9):1138-1144. |
| LI B Q, CAO D S, LIN G Y, et al.. BRDF characteristics research on aluminum-based diffuser in vacuum and far ultraviolet waveband [J]. Laser Infrared, 2020, 50(9):1138-1144. |
| [1] | Yanfang WANG, Ruixue ZHAO. Bidirectional Empowerment Mechanism of “Data+AI” and Practical Path in Agriculture [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 11-20. |
| [2] | Feng CUI, Jingzhou LIU, Yixin QIAN, Guiying CHEN. Spatiotemporal Evolution and Driving Factors of Marine Fishery Ecological Security in China [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 224-239. |
| [3] | Haitao XU, Hongzhen MA, Wenwen WANG, Wenxiang FAN, Bo XU, Jungang ZHANG, Haibin GUO, Youhua WANG. Research on Dynamic Development and Accumulated Temperature Model of Maize Plant Height and Stem Diameter Based on Effective Accumulated Temperature [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 187-201. |
| [4] | Zheng WU, Hongyun YANG, Aizhen SUN, Jie KONG, Shumei HUANG. Diagnosis of Potassium Nutrition in Rice Based on CA_MobileViT Model [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 80-88. |
| [5] | Min SHI, Zhenyan XU, Jian LUO. Study on Identification of Future Industries Based on Interdisciplinary [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 10-19. |
| [6] | Zhongzhong DOU, Yiqi LIU. Simulation Analysis of Arc-jaw Type Potato Precision Seed Discharger [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 110-119. |
| [7] | Jianwei WU, Lin ZHANG, Wengang ZHENG, Xiangyang QIN, Zhonggao WU, Xihong FANG, Yongquan WANG, Tiangang LU, Jian WANG, Xiangshu PIAO, Fang WANG, Qiaoyun YUE, Haihe ZHANG, Jing JI, Xiaoman CONG, Qifeng LI. Research Progress on Key Application Scenario of Intelligent Orchard [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 12-23. |
| [8] | Danyi SHI, Yu QIU, Chengzhen HUANG, Juan WANG. Effect of Acid Modified Biochar on Infiltration Characteristics of Coastal Saline Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 183-192. |
| [9] | Ziqin LI, Jiaqiang WANG, Zhen LI, Deqiu ZOU, Xiaogong ZHANG, Xiaoyu LUO, Weiyang LIU. Estimation of Chlorophyll Density of Cotton Leaves Based on Spectral Index [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 103-111. |
| [10] | Lijun FU, Xiaoyu LIN, Jianhua LIN, Huinan SHEN, Yongzhen WU. Research on Processing Technology and Shelf Life of Red Matsutake Beef Sauce [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 148-158. |
| [11] | Yue HUANG, Yanfen XIE, Xuanquan ZHU, Meng JIA, Ge WANG, Yuxiang BAI, Yu DU, Peng ZHOU, Yuting ZHAO, Hongqiong ZHU, Fan YANG, Zhiwen XIAO, Wenbo WANG, Zhipeng FANG, Jiabao HAN, Na WANG. Risk Assessment and Influencing Factors Analysis of Chlorine Content in Tobacco Leaves in Tobacco Planting Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 206-213. |
| [12] | Xiaoshuang CHEN, Xingqian XU, Xi ZHAO, Xin QU, Haijun WANG, Guangcan PENG. Study on Resistivity Characteristics and Evaluation Model of Cadmium Contaminated Laterite [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 164-173. |
| [13] | Yue PAN, Baoqing WANG, Jijiao WANG, Yong MA, Yalan LI. CO2 Response Model Fitting and Evaluation of Vitis amurensis [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 58-66. |
| [14] | Jiaqiang ZHENG, Huichun ZHANG, Youlin XU, Hongping ZHOU. Research Review on Modeling and Simulation for Pesticide Spraying System [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 76-90. |
| [15] | Wei WANG, Hongyu FU, Jianning LU, Yunkai YUE, Ruifang YANG, Guoxian CUI, Wei SHE. Research on Interpretation of Ramie Lodging Information Based on Unmanned Aerial Vehicles [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 91-97. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010802021197号