Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (5): 34-45.DOI: 10.13304/j.nykjdb.2022.0761
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Daokuan BAI(), Baojian GUO, Yi HONG, Mengna ZHANG, Juan ZHU, Chao LYU, Feifei WANG, Rugen XU(
)
Received:
2022-09-09
Accepted:
2022-12-15
Online:
2023-05-20
Published:
2023-07-13
Contact:
Rugen XU
白道宽(), 郭宝健, 洪益, 张萌娜, 朱娟, 吕超, 王菲菲, 许如根(
)
通讯作者:
许如根
作者简介:
白道宽 E-mail: b19711208b@163.com;
基金资助:
CLC Number:
Daokuan BAI, Baojian GUO, Yi HONG, Mengna ZHANG, Juan ZHU, Chao LYU, Feifei WANG, Rugen XU. Research on Mutagenic Mechanism and Genetic Mechanism of a Yellowing Mutant in Barley[J]. Journal of Agricultural Science and Technology, 2023, 25(5): 34-45.
白道宽, 郭宝健, 洪益, 张萌娜, 朱娟, 吕超, 王菲菲, 许如根. 一个大麦黄化突变体的突变机理及其遗传机制研究[J]. 中国农业科技导报, 2023, 25(5): 34-45.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0761
基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer(5’-3’) | 反向引物 Reverse primer(5’-3’) |
---|---|---|---|
HvCAO | HORVU.MOREX.r3.3HG0324440 | TGGTGCCCATAGATTGTTTC | GCCCTCATTCACTGAACCAAG |
COR | HORVU.MOREX.r3.2HG0191600 | TCTGCCTGCAAACCCCTCCTAG | TGTCCGTGGCATCCTGGACCTT |
PORB | HORVU.MOREX.r3.1HG0047060 | AGGCGTACAAGGACAGCAAGG | GTAGAGCGACGCGAAGGTGA |
PORA | HORVU.MOREX.r3.2HG0209470 | CCGTTCCAGAAGTTCGTCACC | CCTTGTTCCAGCTCCAGTACAC |
YCF3 | HORVU.MOREX.r3.5HG0423760 | GGTCTTTATCCTCGTCGTAT | TGTTCAATTTCTCGTGGAGT |
HvPTOX | HORVU.MOREX.r3.2HG0213170 | CTCTTAATCATGGAAGCGTTGG | TGGCGACAGTGACGAAGTAG |
MSH1 | HORVU.MOREX.r3.2HG0180240 | CCGAAGAAGAGTTCAGCAAT | TTCCATGCGAGGACATCACG |
HvCMF3 | HORVU.MOREX.r3.6HG0559110 | AATGCGAAATGCGAGGAGG | GGTCTTCGGTGCCTTTGTC |
GAPDH | HORVU.MOREX.r3.7HG0703580 | GTGAGGCTGGTGCTGATTACG | TGGTGCAGCTAGCATTTGAGA |
α-tublin | HORVU.MOREX.r3.1HG0082050 | AGTGTCCTGTCCACCCACTC | AGCATGAAGTGGATCCTTGG |
Table 1 Primer of chlorophyll synthesis, photosynthesis related genes used fou quantitative real-time PCR
基因名称 Gene name | 基因ID Gene ID | 正向引物 Forward primer(5’-3’) | 反向引物 Reverse primer(5’-3’) |
---|---|---|---|
HvCAO | HORVU.MOREX.r3.3HG0324440 | TGGTGCCCATAGATTGTTTC | GCCCTCATTCACTGAACCAAG |
COR | HORVU.MOREX.r3.2HG0191600 | TCTGCCTGCAAACCCCTCCTAG | TGTCCGTGGCATCCTGGACCTT |
PORB | HORVU.MOREX.r3.1HG0047060 | AGGCGTACAAGGACAGCAAGG | GTAGAGCGACGCGAAGGTGA |
PORA | HORVU.MOREX.r3.2HG0209470 | CCGTTCCAGAAGTTCGTCACC | CCTTGTTCCAGCTCCAGTACAC |
YCF3 | HORVU.MOREX.r3.5HG0423760 | GGTCTTTATCCTCGTCGTAT | TGTTCAATTTCTCGTGGAGT |
HvPTOX | HORVU.MOREX.r3.2HG0213170 | CTCTTAATCATGGAAGCGTTGG | TGGCGACAGTGACGAAGTAG |
MSH1 | HORVU.MOREX.r3.2HG0180240 | CCGAAGAAGAGTTCAGCAAT | TTCCATGCGAGGACATCACG |
HvCMF3 | HORVU.MOREX.r3.6HG0559110 | AATGCGAAATGCGAGGAGG | GGTCTTCGGTGCCTTTGTC |
GAPDH | HORVU.MOREX.r3.7HG0703580 | GTGAGGCTGGTGCTGATTACG | TGGTGCAGCTAGCATTTGAGA |
α-tublin | HORVU.MOREX.r3.1HG0082050 | AGTGTCCTGTCCACCCACTC | AGCATGAAGTGGATCCTTGG |
Fig. 1 Phenotypes of ‘YNP5’ and G039 under natural conditionA: Plant at seedling period; B: Extracts of photosynthetic pigments in the seedling period; C: Plant at filling period; D: Grain length; E: Grain width
Fig. 2 Contents of chlorophyll pigments in ‘YNP5’ and G039A: Seedling stage; B: Grain filling stage. ** means significantly differences between materials at P<0.01 level
性状 Trait | 扬农啤5号 YNP5 | G039 |
---|---|---|
株高 Plant height/cm | 86.46±5.94 | 72.86±5.42** |
穗下节间长 Internode length below the spike/cm | 30.88±3.36 | 22.38±2.40** |
分蘖数 Number of tillers | 17.82±8.36 | 8.85±3.40** |
穗长 Panicle length/cm | 6.71±0.48 | 5.95±0.66** |
每穗粒数 Grains per panicle | 28.35±2.42 | 25.86±2.23** |
千粒重 1 000-grain weight/g | 41.93±0.34 | 48.04±0.36** |
粒长 Grain length/mm | 6.86±0.03 | 7.62±0.03** |
粒宽 Grain width/mm | 3.05±0.02 | 3.15±0.02** |
Table 2 Agronomic traits of the wild type ‘YNP5’ and mutant G039
性状 Trait | 扬农啤5号 YNP5 | G039 |
---|---|---|
株高 Plant height/cm | 86.46±5.94 | 72.86±5.42** |
穗下节间长 Internode length below the spike/cm | 30.88±3.36 | 22.38±2.40** |
分蘖数 Number of tillers | 17.82±8.36 | 8.85±3.40** |
穗长 Panicle length/cm | 6.71±0.48 | 5.95±0.66** |
每穗粒数 Grains per panicle | 28.35±2.42 | 25.86±2.23** |
千粒重 1 000-grain weight/g | 41.93±0.34 | 48.04±0.36** |
粒长 Grain length/mm | 6.86±0.03 | 7.62±0.03** |
粒宽 Grain width/mm | 3.05±0.02 | 3.15±0.02** |
Fig. 3 SPAD values of the ‘YNP5’ and G039 under different temperature conditionsNote:** means significantly difference between materials at P<0.01 level.
Fig. 5 Chlorophyll content of the ‘YNP5’ and G039 under different temperature conditionsNote: ** means significantly difference between materials at P<0.01 level
Fig. 6 Photosynthetic indices of ‘YNP 5’ and G039 under different temperature conditionsA~E: Net photosynthetic rate, transpiration rate, stomatal conductance, water use efficiency and intercellular CO2 concentration are sequentially shown. * and ** mean significantly differences between materials at P<0.05 and P<0.01 levels,respectively
杂交组合 Cross combination | 植株数量 Number of plants | χ2 | P值(0.05) P value(0.05) | ||
---|---|---|---|---|---|
F2群体 F2 population | 野生表型 Wild type phenotype | 突变表型 Mutant phenotype | |||
G039/扬农啤5号 | 388 | 297 | 91 | 0.49 | 3.84 |
G039/扬农啤7号 | 332 | 252 | 80 | 0.14 | 3.84 |
Table 3 Genetic analysis of the mutant trait
杂交组合 Cross combination | 植株数量 Number of plants | χ2 | P值(0.05) P value(0.05) | ||
---|---|---|---|---|---|
F2群体 F2 population | 野生表型 Wild type phenotype | 突变表型 Mutant phenotype | |||
G039/扬农啤5号 | 388 | 297 | 91 | 0.49 | 3.84 |
G039/扬农啤7号 | 332 | 252 | 80 | 0.14 | 3.84 |
Fig. 8 Expression levels in genes involved in chlorophyll synthesis of YNP 5 and G039 under different temperature conditionsNote: ** means significant at P<0.01 level.
1 | 李强强,赵玥,李璠,等.作物源库关系及其生理调控途径的研究进展[J].江苏农业科学,2020,48(9):50-56. |
LI Q Q, ZHAO Y, LI F, et al.. Research progress of source-sink relationship and its underlying regulation mechanisms [J]. Jiangsu Agric. Sci., 2020, 48(9): 50-56. | |
2 | GAO F, ZHANG H J, ZHANG W J, et al.. Engineering of the cytosolic form of phosphoglucose isomerase into chloroplasts improves plant photosynthesis and biomass [J]. New Phytol., 2021, 231(1) : 315-325. |
3 | 李佳佳,于旭东,蔡泽坪,等.高等植物叶绿素生物合成研究进展[J].分子植物育种,2019,17(18):6013-6019. |
LI J J, YU X D, CAI Z P, et al.. An overview of chlorophyll biosynthesis in higher plants [J]. Mol. Plant Breed., 2019, 17(18): 6013-6019. | |
4 | 李素贞,杨文竹,陈茹梅.水稻黄绿叶突变体研究进展[J].生物技术通报,2018,34(11):15-21. |
LI S Z, YANG W Z, CHEN R M. An overview on yellow green leaf mutants in rice [J]. Biotechnol. Bull., 2018, 34(11): 15-21. | |
5 | 李军,朱梦珂,田激旋,等.水稻高温白化复绿突变体tcd52的遗传分析和分子定位[J].上海师范大学学报(自然科学版),2022,51(2):243-250. |
LI J, ZHU M K, TIAN J X, et al.. Genetic analysis and molecular mapping of high-temperature albino regreen mutant tcd52 in rice [J]. J. Shanghai Normal Univ. (Nat. Sci.), 2022, 51(2): 243-250. | |
6 | 莫祎,孙志忠,丁佳,等.水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J].作物学报,2019,45(7):1050-1058. |
MO Y, SUN Z Z, DING J, et al.. Genetic analysis and fine mapping of white stripe leaf mutant wsl1 in rice [J]. Acta Agron. Sin., 2019, 45(7): 1050-1058. | |
7 | 鄢小青,陈能刚,李欢,等.水稻白条纹转绿突变体wsl887的鉴定和基因定位[J].核农学报, 2021, 35(11) : 2451-2462. |
YAN X Q, CHEN N G, LI H, et al.. Phenotypic identification and gene mapping of green revertible white-stripes mutant wsl887 in rice (Oryza sativa L.) [J]. J. Nucl. Agric. Sci., 2021, 35(11): 2451-2462. | |
8 | 郭均瑶,刘斌美,杨惠杰,等.水稻叶脉黄化突变体yml的遗传分析及基因定位[J].作物学报, 2022, 48(12): 3120-3129. |
GUO J Y, LIU B M, YANG H J, et al.. Genetic analysis and gene mapping of the yellow midrib leaf mutant (yml) in rice(Oryza sativa L.) [J]. Acta Agron. Sin., 2022, 48(12): 3120-3129. | |
9 | 李秦,杜何为.玉米叶色突变体研究进展[J].南方农业,2019,13(28):14-21, 7. |
LI Q, DU H W. Advances in research on maize leaf color mutants [J]. South Chin. Agric., 2019, 13(28): 14-21, 7. | |
10 | REINBOTHE S, REINBOTHE C, HOLTORF H, et al.. Two NADPH: protochlorophyllide oxidoreductases in barley: evidence for the selective disappearance of PORA during the light-induced greening of etiolated seedlings [J]. Plant Cell, 1995,7(11):1933-1940. |
11 | BUHR F, LAHROUSSI A, SPRINGER A, et al.. NADPH: protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins [J]. Plant Mol. Biol., 2017, 94(1-2):45-59. |
12 | XU D D, SUN D, DIAO Y L, et al.. Fast mapping of a chlorophyll b synthesis-deficiency gene in barley (Hordeum vulgare L.) via bulked-segregant analysis with reduced-representation sequencing [J]. Crop J., 2019, 7(1): 58-64. |
13 | MAHDI R, STUART D, HANSSON M, et al.. Heterologous expression of the barley (Hordeum vulgare L.) Xantha-f, -g and -h genes that encode magnesium chelatase subunits [J]. Protein J., 2020, 39(5):554-562. |
14 | LI M J, HENSEL G, MASCHER M, et al.. Leaf variegation and impaired chloroplast development caused by a truncated CCT domain gene in albostrians barley [J]. Plant Cell, 2019, 31(7) : 1430-1445. |
15 | LI M J, HENSEL G, MELZER M, et al.. Mutation of the ALBOSTRIANS ohnologous gene HvCMF3 impairs chloroplast development and thylakoid architecture in barley [J]. Front. Plant Sci., 2021, 12: 732608-732630. |
16 | LI M J, GUO G G, PIDON H, et al.. ATP-dependent Clp protease subunit C1, HvClpC1, is a strong candidate gene for barley variegation mutant luteostrians as revealed by genetic mapping and genomic re-sequencing [J/OL]. Front. Plant Sci., 2021,12:664085 [2022-11-16]. . |
17 | LANDAU A M, LOKSTEIN H, SCHELLER H V, et al.. A cytoplasmically inherited barley mutant is defective in photosystem Ⅰ assembly due to a temperature-sensitive defect in ycf3 splicing [J]. Plant Physiol., 2009, 151(4): 1802-1811. |
18 | LENCINA F, LANDAU A, PRINA A R. The barley chloroplast mutator (cpm) mutant: all roads lead to the Msh1 gene [J]. Int. J. Mol. Sci., 2022, 23(3):1814-1828. |
19 | BOSCO C D, BUSCONI M, GOVONI C, et al.. cor gene expression in barley mutants affected in chloroplast development and photosynthetic electron transport [J]. Plant Physiol., 2003,131(2):793-802. |
20 | QIN D D, DONG J, XU F C, et al.. Characterization and fine mapping of a novel barley stage green-revertible albino gene (HvSGRA) by bulked segregant analysis based on SSR assay and specific length amplified fragment sequencing [J]. BMC Genomics, 2015, 16: 838-851. |
21 | ROTASPERTI L, SANSONI F, MIZZOTTI C, et al.. Barley’s second spring as a model organism for chloroplast research [J]. Plants (Basel), 2020, 9(7): 803-826. |
22 | WANG R, YANG F, ZHANG X Q, et al.. Characterization of a thermo-inducible chlorophyll-deficient mutant in barley [J]. Front. Plant Sci., 2017, 8: 1936-1944. |
23 | 闫伟平,赵洪祥,张丽华,等.半干旱区温度变化对不同密度玉米植株光合作用的影响[J].吉林农业科学,2015,40(5):14-20. |
YAN W P, ZHAO H X, ZHANG L H, et al.. Effect of temperature changes rates of maize under different density in semiarid area [J]. Jilin Agric. Sci., 2015, 40(5): 14-20. | |
24 | 江华,师生波,许大全.冬季小麦叶片光合作用对温度响应方式的变化[J].植物生理学报,2000,26(1):70-75. |
JIANG H, SHI S B, XU D Q. Change in the pattern of photosynthetic response to temperature in wheat leaves in winter [J]. Plant Physiol. J., 2000, 26(1): 70-75. | |
25 | 杨淑巧,许琦,刘跃鹏,等.冬小麦光合作用和叶绿素荧光特性的研究[J].农学学报,2015,5(3):5-10. |
YANG S Q, XU Q, LIU Y P, et al.. Research on the photosynthesis and chlorophyll fluorspar characteristic of winter wheat [J]. J. Agric., 2015, 5(3): 5-10. | |
26 | 闫蓉,李凤霞,赵维忠,等.气象条件对水稻蒸腾速率的影响[J].宁夏农林科技,2005(2):7-8, 10. |
YAN R, LI F X, ZHAO W Z, et al.. Effect of meteorological conditions on transpiration rate of rice (Oryza sativa L.) [J]. Ningxia J. Agric. For., 2005 (2): 7-8, 10. | |
27 | 董树亭,胡昌浩,周关印.玉米叶片气孔导度、蒸腾和光合特性研究[J].玉米科学,1993,1(2):41-44. |
DONG S T, HU C H, ZHOU G Y. Stomatal conductance, transpiration and photosynthetic characteristics of maize leaves [J]. J. Maize Sci., 1993, 1(2): 41-44. | |
28 | 刘亮,郝立华,李菲,等. CO2浓度和温度对玉米光合性能及水分利用效率的影响[J].农业工程学报,2020,36(5):122-129. |
LIU L, HAO L H, LI F, et al.. Effects of CO2 concentration and temperature on leaf photosynthesis and water use efficiency in maize [J]. Trans. Chin. Soc. Agric. Eng., 2020, 36(5): 122-129. | |
29 | KUSUMI K, HIROTSUKA S, SHIMADA H, et al.. Contribution of chloroplast biogenesis to carbon-nitrogen balance during early leaf development in rice [J]. Plant Res., 2010, 123 (4): 617-622. |
30 | SUGIMOTO H, KUSUMI K, NOGUCHI K, et al.. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria [J]. Plant J., 2007, 52 (3): 512-527. |
31 | HUANG W F, ZHANG Y, SHEN L Q, et al.. Accumulation of the RNA polymerase subunit RpoB depends on RNA editing by OsPPR16 and affects chloroplast development during early leaf development in rice [J]. New Phytol., 2020, 228(4): 1401-1416. |
32 | HEIN P, STÖCKEL J, BENNEWITZ S, et al.. A protein related to prokaryotic UMP kinases is involved in psaA/B transcript accumulation in Arabidopsis [J]. Plant Mol. Biol., 2009, 69 (5) : 517-528. |
33 | YANG S M, OVERLANDER M, FIEDLER J. Genetic analysis of the barley variegation mutant, grandpa1.a [J]. BMC Plant Biol., 2021, 21(1) : 134-144. |
[1] | Haitao XU, Hongzhen MA, Wenwen WANG, Wenxiang FAN, Bo XU, Jungang ZHANG, Haibin GUO, Youhua WANG. Research on Dynamic Development and Accumulated Temperature Model of Maize Plant Height and Stem Diameter Based on Effective Accumulated Temperature [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 187-201. |
[2] | Yanfang ZHU, Qiang CHANG, Yan HAO, Hailong CHEN. Effects of Reflective Film on Fruit Quality and Volatile Components of ‘Shine Muscat’ Grape [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 72-82. |
[3] | Taotao MAO, Xiaoqiang ZHAO, Xiaodong BAI, Bin YU. Effect of Low Temperature Stress on Photosynthetic Performance, Antioxidant Enzyme System and Related Gene Expression in Maize Seedlings [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 49-60. |
[4] | Xiaoqing HOU, Zihao JIANG, Yang FU, Zhongzhen SONG, Zhimin YU. Composition and Structure of Extracellular Polysaccharides from Sphingomonas sp. and Their Promoting Effects on Barley Seedlings [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 201-208. |
[5] | Bei MA, Jie GONG, Yinke DU, Yuwei GAN, Rong CHENG, Bo ZHU, Lixia YI, Jinxiu MA, Shiqing GAO. Identification and Expression Analysis of TaINP1 Gene Related to Pollen Pore Development in Wheat [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 22-35. |
[6] | Xiaodan WU, Li GAO, Tiangeng GONG, Xiangfeng KONG, Yuzhou JIANG, Guixia JIA. Effects of Microbial Fertilizer and Humic Acid Compound Fertilizer on Growth and Photosynthetic Characteristics of Lilium [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 221-229. |
[7] | Yanxia MA, Jingru CHEN, Xiaowei WANG, Yuxin ZHANG, Junfeng ZHANG, Jialin KUAI. Effects of Irrigation Lower Limit and Fertilizer Application Amount on Water Consumption and Photosynthetic Characteristics of Mini Chinese Cabbage Under Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 239-249. |
[8] | Zhiwei LYU, Dongmei LI, Meijuan JIN, Yanhui ZHANG, Yueyue TAO, Xinwei ZHOU, Haihou WANG. Effects of Pyrolysis Temperature and Time on Physicochemical Properties and Adsorption Properties of Biochar [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 211-217. |
[9] | Lanting XIANG, Shuhui SONG, Lijuan LIU, Xiaoling SHE, Jiahua ZHOU, Baogang WANG, Hong CHANG, Chao ZHANG, Daqi FU, Yunxiang WANG. Effect of Different Storage Temperatures on Quality of Jingcai 1 Watermelon [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 137-145. |
[10] | Xiaoyu SHI, Lianqing JIAO, Min YU, Yixin TIAN, Anni JIAO, Yilin LUAN. Multidimensional Evaluation and Optimization of High Temperature Short Time Process of Astragalus membranaceus [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 223-233. |
[11] | Xiaofei XIONG, Wenqian WU, Hongyan HUO, Xin ZHANG, Yan YU, Dong AN, Tong ZHANG, Jianwei WU. Research on Sensor-based Agricultural Greenhouse Data Direct Reporting System and Intelligent Control [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 93-102. |
[12] | Zhongxiang LIU, Wenqi ZHOU, Yongsheng LI, Xiaojuan WANG, Yanzhong YANG, Xiaorong LIAN, Haijun HE, Yuqian ZHOU. Phenotypic Identification and Genetic Analysis of a Dwarf Mutant 20F421 inMaize [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 22-29. |
[13] | Suilin ZHANG, Yang LI, Yan LI, Yunqi ZHANG, Jianxun QI, Zhixia HOU. Research Progress on Harmful Characteristics and Mechanism of Walnut Late Frost [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 18-26. |
[14] | Jianguang ZENG, Taoli LIU, Linjuan SUN, Dingyang YUAN, Yubo HUANG, Chenzhong JIN, Yanning TAN. Analysis of Character and GibberellinSensitivity of Rice Dwarfism and Late-Heading Mutant d534 [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 7-14. |
[15] | Zhongyi LI, Hongqin TANG, Wenbin DONG, Caihui WEI, Tieguang HE. Effects of Co-incorporation of Rice Straw and Chinese Milk Vetch on Photosynthetic Characteristics, Yield and Quality of Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 171-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||