Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (3): 40-47.DOI: 10.13304/j.nykjdb.2021.1037
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Jun XU1(), Ting LI2,3, Minjun HU1, Yugen JIANG1, Huili YAN2, Wenxiu XU2, Yijun YU4(
), Zhenyan HE2(
)
Received:
2021-11-04
Accepted:
2021-12-15
Online:
2022-03-15
Published:
2022-03-14
Contact:
Yijun YU,Zhenyan HE
徐君1(), 李婷2,3, 胡敏骏1, 蒋玉根1, 闫慧莉2, 许文秀2, 虞轶俊4(
), 何振艳2(
)
通讯作者:
虞轶俊,何振艳
作者简介:
徐君 E-mail:15292165@qq.com
基金资助:
CLC Number:
Jun XU, Ting LI, Minjun HU, Yugen JIANG, Huili YAN, Wenxiu XU, Yijun YU, Zhenyan HE. Development and Utilization of KASP Marker LCd-38 for Cadmium Accumulation in Rice Grain[J]. Journal of Agricultural Science and Technology, 2022, 24(3): 40-47.
徐君, 李婷, 胡敏骏, 蒋玉根, 闫慧莉, 许文秀, 虞轶俊, 何振艳. 水稻籽粒镉积累KASP分子标记LCd-38的开发与利用[J]. 中国农业科技导报, 2022, 24(3): 40-47.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.1037
引物 Primer | 序列 Sequence |
---|---|
F1-FAM: Allele-T | 5’-GAAGTGGTAAAAGCACCCACAT-3’ |
F2-HEX: Allele-C | 5’-GAAGTGGTAAAAGCACCCACAC-3’ |
Common- primer-R | 5’-ATTAACTTATGGAATGCTTAC CTACACA-3’ |
Table 1 LCd?38 molecular marker primer sequence
引物 Primer | 序列 Sequence |
---|---|
F1-FAM: Allele-T | 5’-GAAGTGGTAAAAGCACCCACAT-3’ |
F2-HEX: Allele-C | 5’-GAAGTGGTAAAAGCACCCACAC-3’ |
Common- primer-R | 5’-ATTAACTTATGGAATGCTTAC CTACACA-3’ |
基因型 Genotype | 镉含量Cd content/(mg·kg-1) | 品种数 Number of varieties | ||
---|---|---|---|---|
均值Average | 标准差Standard seviation | 中位数Median | ||
TT | 0.143 | 0.048 | 0.141 | 18 |
CC | 0.423 | 0.207 | 0.376 | 47 |
Table 2 Grain Cd content and genotypes of different genotype rice
基因型 Genotype | 镉含量Cd content/(mg·kg-1) | 品种数 Number of varieties | ||
---|---|---|---|---|
均值Average | 标准差Standard seviation | 中位数Median | ||
TT | 0.143 | 0.048 | 0.141 | 18 |
CC | 0.423 | 0.207 | 0.376 | 47 |
基因型 Genotype | 镉含量Cd content/(mg·kg-1) | 品种数 Number of varieties | ||
---|---|---|---|---|
均值Average | 标准差Standard seviation | 中位数Median | ||
TT | 0.134 | 0.062 | 0.108 | 7 |
CT | 0.436 | 0.327 | 0.436 | 2 |
CC | 0.421 | 0.050 | 0.435 | 11 |
Table 3 Grain Cd content and genotypes of different genotype rice verified
基因型 Genotype | 镉含量Cd content/(mg·kg-1) | 品种数 Number of varieties | ||
---|---|---|---|---|
均值Average | 标准差Standard seviation | 中位数Median | ||
TT | 0.134 | 0.062 | 0.108 | 7 |
CT | 0.436 | 0.327 | 0.436 | 2 |
CC | 0.421 | 0.050 | 0.435 | 11 |
Fig. 4 KASP genotyping and grain Cd content of 19 rice varieties in experimental areaNote: * indicates significant differences with CC genotype at P<0.05 level; ** indicates significant differences with CC genotype at P<0.01 level.
基因型 Genotype | 镉含量Cd content/(mg·kg-1) | 品种数 Number of varieties | ||
---|---|---|---|---|
均值Average | 标准差Standard seviation | 中位数Median | ||
TT | 0.048 | 0.019 | 0.050 | 5 |
CT | 0.258 | 0.254 | 0.176 | 9 |
CC | 0.672 | 0.336 | 0.817 | 5 |
Table 4 Grain Cd content and genotypes of different genotype rice in experimental area
基因型 Genotype | 镉含量Cd content/(mg·kg-1) | 品种数 Number of varieties | ||
---|---|---|---|---|
均值Average | 标准差Standard seviation | 中位数Median | ||
TT | 0.048 | 0.019 | 0.050 | 5 |
CT | 0.258 | 0.254 | 0.176 | 9 |
CC | 0.672 | 0.336 | 0.817 | 5 |
1 | LI H, LUO N, LI Y W, et al.. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures [J]. Environ. Pollut., 2017, 224: 622-630. |
2 | SONG Y, WANG Y B N, MAO W F, et al.. Dietary cadmium exposure assessment among the Chinese population [J/OL]. PLoS ONE, 2017, 12(5): e0177978 [2021-09-08]. . |
3 | CHEN H P, ZHANG W W, YANG X P, et al.. Effective methods to reduce cadmium accumulation in rice grain [J]. Chemosphere, 2018, 207: 699-707. |
4 | 李婷,胡敏骏,徐君,等.镉低积累水稻品种选育研究进展 [J].中国农业科技导报, 2021, 23(11): 36-46. |
LI T, HU M J, XU J, et al.. Researches in screening and breeding of rice varieties with low-cadmium accumulation[J]. J. Agric. Sci. Technol., 2021, 23(11): 36-46. | |
5 | COBB J N, BISWAS P S, PLATTEN J D. Back to the future: revisiting MAS as a tool for modern plant breeding [J]. Theor. Appl. Genet., 2019, 132(3): 647-667. |
6 | 王天抗,李懿星,宋书锋,等.水稻籽粒镉低积累资源挖掘及其新材料创制[J].杂交水稻, 2021, 36(1): 68-74. |
7 | TAKAHASHI R, ITO M, KATOU K, et al.. Breeding and characterization of the rice (Oryza sativa L.) line "Akita 110" for cadmium phytoremediation [J]. Soil Sci. Plant Nutr., 2016, 62(4): 373-378. |
8 | 黄湘桂,降好宇,张菊萍,等.分子标记辅助选择改良水稻两用核不育系创5S稻瘟病抗性和镉积累特性研究[J].杂交水稻, 2019, 34(4): 51-56. |
9 | YAN H L, XU W X, XIE J Y, et al.. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies [J]. Nat. Commun., 2019, 10(1): 2562-2574. |
10 | PAN X W, LI Y C, LIU W Q, et al.. QTL mapping and candidate gene analysis of cadmium accumulation in polished rice by genome-wide association study [J]. Sci. Rep., 2020, 10(1): 11791-11802. |
11 | ZHAO J L, WU Y, ZHANG S H, et al.. Genome-wide association study and candidate gene analysis of rice cadmium accumulation in grain in a diverse rice collection [J]. Rice, 2018, 11(1): 61-76. |
12 | BISWAS K, KAPOOR A, BISWAS R. Authentication of herbal medicinal plant-Boerhavia diffusa L. using PCR-RFLP [J]. Curr. Trends Biotechnol. Pharmacy, 2013, 7(3): 716-724. |
13 | WILLIAMS J G K, KUBELIK A R, LIVAK K J, et al.. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers [J]. Nucl. Acids Res., 1990, 18(22): 6531-6535. |
14 | 王明湖,张孝天,吴国林,等.SSR标记在宁波地区水稻品种DNA指纹图谱构建及纯度鉴定中的应用[J].中国稻米, 2019, 25(6): 50-54. |
15 | 赵万春,董剑,高翔,等.簇毛麦IV染色体臂的EST-STS标记的开发与应用[J].麦类作物学报, 2012, 32(3): 393-397. |
ZHAO W C, DONG J, GAO X, et al.. Development and application of EST-STS markers for IV chromosome arms of Haynaldia villosa [J]. J. Triticeae Crops, 2012, 32(3): 393-397. | |
16 | HUANG X, ZHAO Y, WEI X, et al.. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm [J]. Nat. Genet., 2011, 44(1): 32-39. |
17 | ZHANG M, WEI Z, YUAN X, et al.. Genetic variation dissection of rice blast resistance using an Indica population[J]. Rice Sci., 2020, 27(4): 255-258. |
18 | 王富强,樊秀彩,张颖,等.SNP分子标记在作物品种鉴定中的应用和展望[J].植物遗传资源学报, 2020, 21(5): 1308-1320. |
WANG F Q, FAN X C, ZHANG Y, et al.. Application and prospect of SNP molecular markers in crop variety identification [J]. J. Plant Genet. Resour., 2020, 21(5): 1308-1320. | |
19 | 李瑶,程灿,周继华,等.水稻耐盐性基因SKC1的KASP标记的开发与利用[J/OL].分子植物育种,2021[2021-09-29]. . |
LI Y, CHENG C, ZHOU J H, et al.. Development and utilization of KASP marker for salt tolerance gene SKC1 in rice[J/OL]. Mol. Plant Breed., 2021 [2021-09-29]. . | |
20 | 牛付安,周继华,程灿,等.水稻氮高效基因NRT1.1B的KASP标记开发与利用[J/OL].分子植物育种,2021[2021-09-29]. . |
NIU F A, ZHOU J H, CHENG C, et al.. Development and utilization of KASP marker for nitrogen-use efficiency gene NRT1.1B in rice [J/OL]. Mol. Plant Breed., 2021 [2021-09-29]. . | |
21 | 吴娴,徐海峰,张志斌,等.基于KASP标记的贵州禾群体遗传多样性与结构分析[J].分子植物育种, 2021, 19(4): 1345-1353. |
WU X, XU H F, ZHANG Z B, et al.. Genetic diversity and population structure study of Guizhou He based on KASP marker [J]. Mol. Plant Breed., 2021, 19(4): 1345-1353. | |
22 | 牛付安,周继华,曹黎明,等.水稻低直链淀粉含量基因Wxmq的KASP标记开发与利用[J].分子植物育种, 2019, 17(24): 8125-8131. |
NIU F A, ZHOU J H, CAO L M, et al.. Development and utilization of KASP marker for low amylose content gene, Wxmq, in Rice (Oryza Sativa L.) [J]. Mol. Plant Breed., 2019, 17(24): 8125-8131. | |
23 | LIU W B, ZENG X H, LI S L, et al.. Development and application of two novel functional molecular markers of BADH2 in rice [J]. Electron. J. Biotechnol., 2020, 46: 1-7. |
24 | STEELE K A, QUINTON-TULLOCH M J, AMGAI R B, et al.. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing of indica rice [J]. Mol. Breeding, 2018, 38(4):1-13. |
25 | 陆海燕,周玲,林峰,等.基于高通量测序开发玉米高效KASP分子标记[J].作物学报, 2019, 45(6): 872-878. |
LU H Y, ZHOU L, LIN F, et al.. Development of efficient KASP molecular markers based on high throughput sequencing in maize [J]. Acta Agron. Sin., 2019, 45(6): 872-878. | |
26 | SEMAGN K, BABU R, HEARNE S, et al.. Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement [J]. Mol. Breeding, 2013, 33(1): 1-14. |
27 | 中华人民共和国生态环境部.土壤环境质量 农用地土壤污染风险管控标准: [S].北京:中国标准出版社,2018. |
28 | 林小平,施翔,章兴发,等.我国水稻微核心种质千粒重的差异与评价[J].现代农业科技, 2019, (17): 3-4. |
29 | 杨双娟,王志勇,赵艳艳,等.大白菜抽薹相关基因BrFLC1的KASP标记开发[J].核农学报, 2020, 34(2): 265-272. |
YANG S J, WANG Z Y, ZHAO Y Y, et al.. Development of KASP marker for bolting related gene BrFLC1 in Chinese cabbage(Brassica rapa L. ssp. Pekinensis) [J]. Acta Agric. Nucl. Sin., 2020, 34(2): 265-272. | |
30 | 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局.食品安全国家标准 食品中污染物限量: [S].北京:中国标准出版社,2017. |
31 | 陈惠芳,李艳,吴豪翔,等.富阳市不同类型农田土壤重金属变异特征及风险评价[J].生态与农村环境学报, 2013, 29(2): 164-169. |
CHEN H F, LI Y, WU H X, et al.. Characteristics and risk assessment of heavy metals pollution of farmland soils relative to type of land use [J]. J. Ecol. Rural Environ., 2013, 29(2): 164-169. | |
32 | XIA F, HU B F, SHAO S, et al.. Improvement of spatial modeling of Cr, Pb, Cd, As and Ni in soil based on portable X-ray fluorescence (PXRF) and geostatistics: a case study in east China [J]. Int. J. Environ. Res. Public Health, 2019, 16(2694): 1-15. |
33 | DUAN G L, SHAO G S, TANG Z, et al.. Genotypic and environmental variations in grain cadmium and arsenic concentrations among a panel of high yielding rice cultivars [J]. Rice, 2017, 10(1): 9-23. |
34 | 任韧,龚立科,王姝婷,等.杭州产大米中重金属污染状况调查及暴露风险评估[J].中国卫生检验杂志, 2020, 30(12): 1516-1519, 1528. |
REN R, GONG L K, WANG S T, et al.. Survey of heavy metal contamination and risk assessment of exposure in Hangzhou indigenous rice [J]. Chin. J. Health Lab. Technol., 2020, 30(12): 1516-1519, 1528. |
[1] | Yanxin HUANG, Xiang WU, Yan CAO, Xuyu YAN, Ling LI. Research Progress on Effect and Mechanism of Exogenous Calcium Induced Plant Response to Cadmium Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 165-171. |
[2] | Min SHI, Zhenyan XU, Jian LUO. Study on Identification of Future Industries Based on Interdisciplinary [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 10-19. |
[3] | Mengzhen HUANG, Hao LI, Huanjun HU, Zipeng LI, Zhongyin SHENG, Yifan LIU, Zhenyan XIA, Aoyun ZHENG. Research on End-to-end Low-light Environment Black Pig Detection Technology Integrating IAT Module [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 113-125. |
[4] | Xin ZHAO, Zilong WU, Chao HAN, Hao ZHANG, Wei SONG, Ziyi LI. Effects of Arbuscular Mycorrhizal Fungi on Growth and Cadmium Enrichment of Setaria viridis Under Cadmium Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 193-202. |
[5] | Chaoxu LEI, Chengqian JIN, Panpan LI, Xiaoyu YANG, Zihao ZHAO, Lulu LYU. Development Status of Threshing Technology and Equipment of Grain Combine Harvester [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 90-102. |
[6] | Zihao WANG, Xue ZHOU, Donghan ZHANG, Hongyi LIANG, Yan WANG, Ziang ZHAO, Qing CHEN. Effect of Water-soluble Fertilizers Containing Humic-acids on Maize Seedlings Growth and Soil Properties [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 209-220. |
[7] | Guobin JIANG. Analysis of Status and Development Trend on the Protection of New Agricultural Plant Varieties in China [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 1-11. |
[8] | Dabing YANG, Liang HU, Xueshu DU, Bingliang WAN, Mingyuan XIA, Huaxiong QI, Jinbo LI. Progress in Creation of Rice Male Sterile Lines by CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 24-34. |
[9] | Qian JIA, Sa YE, Hui ZHANG, Limin CHUAN, Jingjuan ZHAO. Research on Core Technology of Crop Biological Breeding Based on the Perspective of Core Patent Identification [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 35-48. |
[10] | Haoyu DENG, Chengmin LI, Jian CAO, Yulan SONG, Jian LIU. Spatial-temporal Pattern and Distribution Evolution of Grain Production in China [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 1-11. |
[11] | Xiuquan ZHANG, Wanping FENG, Jiawei WANG, Haiyan SONG, Decong ZHENG. Design and Performance of a Kneading Threshing Device for Sorghum [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 112-121. |
[12] | Guoqiang DUN, Xingpeng WU, Xinxin JI, Fuli ZHANG, Wenyi JI, Yongzhen YANG. Simulation and Optimization of Soybean Plot Metering Device with Double Swing Plate [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 82-90. |
[13] | Mingdi CHEN, Guihua HU, Haiwen ZHANG, Wangtian WANG. Bioinformatics and Expression Pattern Analysis of Rice RR Gene Family [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 20-29. |
[14] | Xiaoshuang CHEN, Xingqian XU, Xi ZHAO, Xin QU, Haijun WANG, Guangcan PENG. Study on Resistivity Characteristics and Evaluation Model of Cadmium Contaminated Laterite [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 164-173. |
[15] | Luyao WANG, Bingyou LU, Guangqing FU, Xiaoyan HE, Wanying ZHAO, Lili WANG, Xiaoming DENG. Understanding “Storing Grain in Technology” from the Perspective of Greater Food View [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||