Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (4): 134-143.DOI: 10.13304/j.nykjdb.2021.0852
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Lu LIU1(), Xiuping TAO2(
), Jianchao SONG2, Bin SHANG1, Wenqian XU1, Hongmin DONG1, Yangyang CAI1
Received:
2021-10-06
Accepted:
2022-01-18
Online:
2022-04-15
Published:
2022-04-19
Contact:
Xiuping TAO
刘璐1(), 陶秀萍2(
), 宋建超2, 尚斌1, 徐文倩1, 董红敏1, 蔡阳扬1
通讯作者:
陶秀萍
作者简介:
刘璐 E-mail:467742708@qq.com;
基金资助:
CLC Number:
Lu LIU, Xiuping TAO, Jianchao SONG, Bin SHANG, Wenqian XU, Hongmin DONG, Yangyang CAI. Bench-scale Study on Operation Effect and Power Generation Performance Treatment of Dairy Farms Wastewater by Microbial Fuel Cell[J]. Journal of Agricultural Science and Technology, 2022, 24(4): 134-143.
刘璐, 陶秀萍, 宋建超, 尚斌, 徐文倩, 董红敏, 蔡阳扬. 微生物燃料电池处理奶牛场污水运行效果与产电性能试验研究[J]. 中国农业科技导报, 2022, 24(4): 134-143.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0852
化学需氧量 Chemical oxygen demand/(mg·L -1 ) | 总磷 Total phosphorus/(mg·L -1 ) | 总氮 Total nitrogen/ (mg·L -1 ) | 氨氮 Ammonia nitrogen/(mg·L -1 ) | 电导率 Conductivity value/ (μS·cm-1) | pH |
---|---|---|---|---|---|
5 115.0±381.6 | 96.0±7.8 | 367.5±11.5 | 208.1±8.6 | 3 641.6±120.1 | 8.0±0.1 |
Table 1 Inlet water quality characteristics of microbial fuel cell
化学需氧量 Chemical oxygen demand/(mg·L -1 ) | 总磷 Total phosphorus/(mg·L -1 ) | 总氮 Total nitrogen/ (mg·L -1 ) | 氨氮 Ammonia nitrogen/(mg·L -1 ) | 电导率 Conductivity value/ (μS·cm-1) | pH |
---|---|---|---|---|---|
5 115.0±381.6 | 96.0±7.8 | 367.5±11.5 | 208.1±8.6 | 3 641.6±120.1 | 8.0±0.1 |
MFC反应器腔室 MFC reactor chamber | COD | TP | TN | NH |
---|---|---|---|---|
双室型MFC Dual-chamber MFC | 77.4±1.8 a | 35.2±15.8 b | 51.8±4.1 b | 65.2±2.1 b |
单室型MFC Single-chamber MFC | 79.3±2.0 a | 70.9±5.2 a | 65.4±1.5 a | 78.9±1.2 a |
Table 2 Average effluent water removal rate of MFC
MFC反应器腔室 MFC reactor chamber | COD | TP | TN | NH |
---|---|---|---|---|
双室型MFC Dual-chamber MFC | 77.4±1.8 a | 35.2±15.8 b | 51.8±4.1 b | 65.2±2.1 b |
单室型MFC Single-chamber MFC | 79.3±2.0 a | 70.9±5.2 a | 65.4±1.5 a | 78.9±1.2 a |
MFC反应器腔室 MFC reactor chamber | 11~14 d | 15~18 d | 19~22 d | 31~34 d | 35~38 d | 平均值 Average value |
---|---|---|---|---|---|---|
双室型MFC Dual-chamber MFC | 11.7 | 8.1 | 11.3 | 32.9 | 10.8 | 14.9±4.5 a |
单室型MFC Single-chamber MFC | 17.0 | 21.6 | 9.9 | 26.9 | 14.1 | 17.9±2.9 a |
Table 3 Profile of Coulomb efficiency during test time
MFC反应器腔室 MFC reactor chamber | 11~14 d | 15~18 d | 19~22 d | 31~34 d | 35~38 d | 平均值 Average value |
---|---|---|---|---|---|---|
双室型MFC Dual-chamber MFC | 11.7 | 8.1 | 11.3 | 32.9 | 10.8 | 14.9±4.5 a |
单室型MFC Single-chamber MFC | 17.0 | 21.6 | 9.9 | 26.9 | 14.1 | 17.9±2.9 a |
1 | 生态环境部,国家统计局,农业农村部. 第二次全国污染源普查公报[EB/OL].(2020-06-08) [2021-12-07]. . |
2 | 李萌.基于比较优势理论的中国奶牛养殖产业布局研究[D].哈尔滨:东北农业大学, 2019. |
LI M. Industrial layout reserch of chinese dairy farming based on comparative advantage theory [D]. Harbin: Northeast Agricultural University, 2019. | |
3 | 宋建超.基于絮凝预处理的膜生物反应器处理奶牛场高浓度污水中试试验研究[D].北京:中国农业科学院, 2021. |
SONG J C. Pilot study on membrane bioreactor treating high-strength dairy farm wastewater based on flocculation pretreatment [D]. Beijing: Chinese Academy of Agricultural Sciences, 2021. | |
4 | 杨培媛,尚斌,温富勇,等.奶牛场高浓度污水的絮凝预处理效果研究[J].中国农业科技导报,2018,20(5):132-139. |
YANG P Y, SHANG B, WEN F Y, et al.. Influences of flocculation on wastewater with high concentration pollutants from dairy cattle farm [J]. J. Agr. Sci. Tech., 2018, 20(5): 132-139. | |
5 | 宋建超,尚斌,温富勇,等.奶牛场高浓度污水絮凝处理中试效果研究[J].畜牧与兽医,2021,53(4):48-53. |
SONG J C, SHANG B, WEN F Y, et al.. A pilot study of pretreating highstrength wastewater from a dairy farm by flocculation [J]. Anim. Husb. Vet. Med., 2021, 53(4): 48-53. | |
6 | 郭江鹏,周化斌,姜小伟,等.连续回分式活性污泥处理工艺在奶牛养殖废水治理中的应用[J].家畜生态学报, 2020,41(4):69-73. |
GUO J P, ZHOU H B, JIANG X W, et al.. Application of continuous recycling activated sludge treatment technology in dairy cattle farm [J]. Acta Ecol. Anim. Dom., 2020, 41(4): 69-73. | |
7 | 王兆凯,许光宇,纪荣平.EGSB预处理奶牛养殖废水的效能研究[J].水处理技术,2020,46(5):121-125, 128. |
WANG Z K, XU G Y, JI R P. Application of membrane-based salt separation and concentration in chloro-alkali wastewater treatment [J]. Tech. Water Treat., 2020, 46(5): 121-125, 128. | |
8 | 杨培媛.膜生物反应器处理奶牛场污水效果研究[D].北京:中国农业科学院,2019. |
YANG P Y. The performance of membrane bioreactor treating wastewater from dairy farm [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
9 | 卢健.奶牛场排泄物产生、收集、堆积及处理过程中氮、磷变化研究[D].南京:南京农业大学,2013. |
LU J. Changes in nitrogen and phosphorus of dairy cow excreta during generation, collection, stacking and treatment process [D]. Nanjing: Nanjing Agricultural University, 2003. | |
10 | 龚诣,吴洁,苏衍菁,等.规模化奶牛场废水处理技术研究进展[J].中国奶牛,2018(8):64-67. |
GONG Y, WU J, SU Y J, et al.. Research progress of dairy farm wastewater treatment technology [J]. China Dairy Cattle, 2018(8): 64-67. | |
11 | 税勇,川岸朋树,宋小燕,等.两种膜生物反应器处理养猪沼液的比较研究[J].环境科学,2015,36(9):3319-3328. |
SHUI Y, KAWAGISHI T, SONG X Y, et al.. A comparative study on two membrane bioreactors for the treatment of digested piggery wastewater [J]. Environ. Sci., 2015, 36(9): 3319-3328. | |
12 | KUMAR S S, KUMAR V, MALYAN S K, et al.. Microbial fuel cells (MFCs) for bioelectrochemical treatment of different wastewater streams [J/OL]. Fuel, 2019, 254: 115526 [2021-12-07]. . |
13 | KUMAR G, BAKONYI P, KOBAYASHI T, et al.. Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen [J]. Renew Sustain Energy Rev., 2016, 57: 879-891. |
14 | YE Y Y, NGO H H, GUO W S, et al.. Effect of organic loading rate on the recovery of nutrients and energy in a dual -chamber microbial fuel cell [J]. Bioresour. Technol., 2019, 281: 367-373[2021-12-07]. . |
15 | TAMÁS R, LÁSZLÓ K, PÉTER B, et al.. Municipal waste liquor treatment via bioelectrochemical and fermentation (H2+CH4) processes: assessment of various technological sequences [J]. Chemosphere, 2017(171): 692-701. |
16 | FIRDOUS S, JIN W, SHAHID N, et al.. The performance of microbial fuel cells treating vegetable oil industrial wastewater [J/OL]. Environ. Tech. Innov., 2018, 10:143-151[2021-12-07]. . |
17 | JAGDEEP K N, AMIT, UTTAM K G. An innovative mixotrophic approach of distillery spent wash with sewage wastewater for biodegradation and bioelectricity generation using microbial fuel cell [J]. J. Water Process Eng., 2018, 23: 306-313. |
18 | 陈翔,胡春光,沈建国,等.不同电子受体对牛粪微生物燃料电池性能的影响研究[J].水处理技术,2020,46(3):76-79. |
CHEN X, HU C G, SHEN J G, et al.. Effect of different electron acceptors on the electricity generation performance of dairymanure fermentation [J]. Tech. Water Treat., 2020, 46(3): 76-79. | |
19 | PARK Y, PARK S, NGUYEN V K, et al.. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater [J/OL]. Chem. Eng. J., 2017, 316: 673-679[2021-12-07]. . |
20 | HWANG J H, KIM K Y, RESURRECCION E P, et al.. Surfactant addition to enhance bioavailability of bilge water in single chamber microbial fuel cells (MFCs)[J]. J. Hazard. Mater., 2019, 368: 732-738. |
21 | 李小虎,朱能武,李冲,等.以养殖废水为底料的微生物燃料电池产电性能与水质净化效果[J].环境工程学报,2012,6(7):2189-2194. |
LI X H, ZHU N W, LI C, et al.. Electricity generation and treatment of swine wastewater using microbial fuel cells [J]. Chin J. Environ. Eng., 2012, 6(7):2189-2194. | |
22 | KENGO I, TOSHIHIRO I, YOSHIHIRO K, et al.. Electricity generation from cattle manure slurry by cassette-electrode microbial fuel cells [J]. J. Biosci. Bioeng., 2013, 116(5): 610-615. |
23 | 曹琳,雍晓雨,周俊,等.以沼液为原料的微生物燃料电池产电降解特性[J].化工学报,2014,65(5):1900-1905. |
CAO L, YONG X Y, ZHOU J, et al.. Electrical and degradation characteristics of microbial fuel cell using biogas slurry as substrate [J]. CEISC J., 2014, 65(5): 1900-1905. | |
24 | PENG L, RUI D, YONG J, et al.. One-year operation of 1000-L modularized microbial fuel cell for municipal wastewater treatment [J/OL]. Water, 2018, 141:1-8[2021-12-07]. . |
25 | XAVIER A W, IRENE M J, JOHN G, et al.. Pee power urinalⅡurinal scale-up with microbial fuel cell scale-down for improved lighting [J]. J. Power Sources, 2018, 392: 150-158. |
26 | TAMILARASAN K, BANU J R, JAYASHREE C, et al.. Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater [J]. J. Environ. Chem. Eng., 2017, 5(1): 1021-1026. |
27 | LÁSZLÓ K, TAMÁS R, NÁNDOR N, et al.. Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization [J]. J. Cleaner Prod., 2016, 112: 4406-4412. |
28 | 丘通强,马双念,毛星晨,等.奶牛养殖废水处理技术现状及进展[J].广东化工, 2021,48(10):137-139. |
QIU T Q, MA S N, MAO X C, et al.. Status and progress of wastewater treatment technology for dairy farming wastewater [J]. Guangdong Chem. Ind., 2021, 48(10): 137-139. | |
29 | 叶晔捷,宋天顺,徐源,等.微生物燃料电池产电的影响因素[J].过程工程学报,2009,9(3):526-530. |
YE Y J, SONG T S, XU Y, et al.. Investigation on influential factors in electricity generation of microbial fuel cell [J]. China. J. Process Eng., 2009, 9(3): 526-530. | |
30 | 廖源.单室无膜空气阴极微生物燃料电池处理垃圾渗滤液的影响因素研究[D].安徽淮南:安徽理工大学,2019. |
LIAO Y. Study on the factors influencing the treatment of landfill leachate by single-chamber air-cathode microbial fuel cells [D]. Anhui Huainan: Anhui University of Science and Technology, 2019. | |
31 | LOGAN B E.微生物燃料电池[M].冯玉杰,王鑫,译.北京:化学工业出版社, 2009,13-103. |
32 | KIM J R, DEC J, BRUNS M A, et al.. Removal of odors from Swine wastewater by using microbial fuel cells [J]. Appl. Environ. Microbiol., 2008, 74(8): 2540-2543. |
33 | 冯雅丽,毕耜超,李浩然,等.单室无膜空气阴极微生物燃料电池处理沼液的研究[J].高校化学工程学报,2013,27(5):889-895. |
FENG Y L, BI S C, LI H R, et al.. Treatment of biogas slurry using membrane-less air cathode single-chamber microbial fuel cells [J]. J. Chem. Eng. Chinese Univ., 2013, 27(5): 889-895. | |
34 | 王芳,张德俐,陈梅,等.沼液微生物燃料电池的产电及有机物降解特性研究[J].农业工程学报,2019,35(9):206-213. |
WANG F, ZHANG D L, CHEN M, et al.. Power generation and organic degradation performance of microbial fuel cell with biogas slurry [J]. Trans. Chin Sci. Agr. Eng., 2019, 35(9): 206-213. | |
35 | KIM B H, CHANG I S, GADD G M. Challenges in microbial fuel cell developmentand operation[J/OL]. Appl. Microbiol. Biotechnol., 2007, 76(3): 485-494 [2021-12-07]. . |
36 | 吴义诚,王泽杰,刘利丹,等.利用光微生物燃料电池实现养猪废水资源化利用研究[J].环境科学学报,2015,35(2):456-460. |
WU Y C, WANG Z J, LIU L D, et al..Resource recovery of swine wastewater using photo microbial fuel cells [J]. Acta Sci. Circ., 2015, 35(2): 456-460. | |
37 | 顾冬燕,贾红华,伍元东,等.利用微生物燃料电池同步降解沼液和三苯基氯化锡[J].化工学报,2016,67(5):2056-2063. |
GU D Y, JIA H H, WU Y D, et al.. Synchronously degradation of biogas slurry and triphenyltin chloride in microbial fuel cell [J]. CIESC J., 2016, 67(5): 2056-2063. | |
38 | DU Z, LI H, GU T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy [J/OL]. Biotechnol. Adv., 2007, 25(5): 464-482 [2021-12-07]. . |
39 | SARATALE R G, SARATALE G D, PUGAZHENDHI A, et al.. Microbiome involved in microbial electrochemical systems (MESs): a review[J]. Chemosphere, 2017, 177: 176-188. |
40 | 董恒.基于活性炭的低成本,高性能微生物燃料电池空气阴极研究[D].天津:南开大学, 2013. |
DONG H. Study on low cost and high performance air cathode basing on activated carbon in microbial fuel cells [D]. Tianjin: Nankai University, 2013. | |
41 | 杨利伟,龙朋成,李德溢,等.小球藻生物阴极MFC处理养猪废水及产电性能[J].中国给水排水,2019,35(11):1-8. |
YANG L W, LONG P C, LI D Y, et al.. Electricity generation performance and treatment of swine wastewater by chlorella biocathode microbial fuel cell [J]. China Water Wastewater, 2019, 35(11): 1-8. | |
42 | XIA T, ZHANG X L, WANG H M, et al.. Power generation and microbial community analysis in microbial fuel cells: a promising system to treat organic acid fermentation wastewater [J/OL]. Bioresour. Tech., 2019, 284: 72-79[2021-12-07]. . |
[1] | Huaqiang TAN, Liping LI, Manman TIE, Jiaqin YANG, Xiaoyun ZHENG, Shaokun PAN, Youwan TANG. Mining and Analysis of Genes Related to Anthocyanin Degradation in Purple Pepper [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 79-91. |
[2] | Linghui YANG, Zhiwei DING, Li GONG, Xuejun LI, Yunping DONG, Zhenjiang LYU. Progress in Extraction, Synthetic Metabolic Pathways, and Bioactivity Research of Coffea Alkaloid Main Compounds [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 132-143. |
[3] | Ran ZHANG, Yong GAO, Yumei LIANG, Xiaohong DANG, Miaomiao GAO, Hongyi LIU, Xueqin GAO. Effects of Two Aerial Plants on Soil Particle Composition and Organic Matter in Crust Soil [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 172-181. |
[4] | Xingsong WANG, Na WANG, Yu DU, Peng ZHOU, Ge WANG, Meng JIA, Zhaoli XU, Yuxiang BAI. Effects of Organic Fertilizer on Organic Matter Composition and Microbial Community Structure of Tobacco-Growing Soil in Yuxi [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 201-212. |
[5] | Shifang WANG, Haiyan SONG. Study on Characteristics of Visible and Near Infrared Reflectance Spectra of Soil Organic Matter [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 183-188. |
[6] | Kunhong JIANG, Zhenying XU, Zhenzhen GUO, Lin BAI, Xiaoxia HAO, Dongmei JIANG, Shixiu QIU. Principles of Microbial Electrochemical Technology and Its Application in the Recycling of Livestock and Poultry Wastes [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 210-222. |
[7] | Weijian ZHANG, Jingyi FENG, Yue LI, Wanying HE, Yanjing CHE, Ziying WANG, Xueyan BAI, Siyu GU. Effect of Endogenous and Exogenous Organic Matter on Phosphorus Adsorption and Availability in Black Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 180-190. |
[8] | Lixia CHEN, Jingze LIU, Lizhu WU, Yinzhu SHEN. Food Security:Current Situation, Problem and Countermeasure [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 7-14. |
[9] | Chunyu LIU, Lina MEN, Yaqin LIAN, Yuhong ZHANG, Zhiwei ZHANG, Wei ZHANG. Expression and Characterization of Enzymes for Polyethylene Degradation in the Gut of Galleria mellonella L. larvae [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 132-139. |
[10] | Yan KUAI, Xinyue SU, Jinfeng WANG, Zhiyong FAN, Jianhua LI, Nan SUN, Jiuquan ZHANG, Minggang XU. Temporal and Spatial Evolution of Soil Organic Matter and Total Nitrogen in Typical Tobacco-planting Areas of Dali [J]. Journal of Agricultural Science and Technology, 2023, 25(12): 177-185. |
[11] | Yuhong WU, Rongjun GUO, Guizhen MA, Shidong LI. Characteristics of the Growth of Rhodococcuspyridinivorans Rp3 and Ability to Degrade Skatole [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 82-89. |
[12] | LI Guowei1, HE Jing1, GUO Kunjie1, JIRIMUTU1,2*. Screening of Cellulose-degrading Bacteria from Bactrian Camel and Their Degradation Effect on Distillers Grains [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 64-75. |
[13] | YANG Mengya1, YAN Feifan1, YAN Meichao1, WANG He1, PIAO Renzhe1, CUI Zongjun2, ZHAO Hongyan1*. Decomposition Characteristics of Corn Stover by Microbial Consortium PLC-8 with Lignocellulose-degradation at Low Temperature [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 73-81. |
[14] |
GUO Han1, ZHANG Xu1*, LU Zhou2, TIAN Ting3, XU Feifei2,LUO Ming2, WU Zhenggui3, SUN Zhenjun5.
Estimation of Organic Matter Content in Southern Paddy Soil Based on Airborne Hyperspectral Images
[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 60-71.
|
[15] | CHENG Jiehong1, CHEN Zhengguang1*, ZHANG Qinghua2. Comparison of Different Wavelength Selection Methods in SOM Content Detection [J]. Journal of Agricultural Science and Technology, 2020, 22(1): 162-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||