Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (6): 82-89.DOI: 10.13304/j.nykjdb.2021.0139
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Yuhong WU1,2(), Rongjun GUO2(
), Guizhen MA1(
), Shidong LI2
Received:
2021-02-10
Accepted:
2021-04-15
Online:
2022-06-15
Published:
2022-06-21
Contact:
Rongjun GUO,Guizhen MA
吴玉洪1,2(), 郭荣君2(
), 马桂珍1(
), 李世东2
通讯作者:
郭荣君,马桂珍
作者简介:
吴玉洪 E-mail:1750435224@qq.com
基金资助:
CLC Number:
Yuhong WU, Rongjun GUO, Guizhen MA, Shidong LI. Characteristics of the Growth of Rhodococcuspyridinivorans Rp3 and Ability to Degrade Skatole[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 82-89.
吴玉洪, 郭荣君, 马桂珍, 李世东. 嗜吡啶红球菌Rp3生长及降解粪臭素特性研究[J]. 中国农业科技导报, 2022, 24(6): 82-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0139
Fig.1 Growth of strain Rp3 cultured in broth with skatole as sole carbonNote:The different lowercase letters indicate significant difference between different treatments at P<0.05 level.
实验编号 Experiment number | A:蔗糖 Sucrose | B:牛肉膏 Beef extract | C:酵母浸粉 Yeast extract powder | 活菌数对数值 Logarithm of cultivable bacteria/ (lg CFU·mL-1) |
---|---|---|---|---|
1 | A3 | B2 | C1 | 9.55±0.02 d |
2 | A2 | B2 | C3 | 9.79±0.01 a |
3 | A1 | B2 | C2 | 9.69±0.01 b |
4 | A2 | B1 | C2 | 9.65±0.02 bc |
5 | A2 | B3 | C1 | 9.62±0.02 c |
6 | A3 | B1 | C3 | 9.81±0.02 a |
7 | A3 | B3 | C2 | 9.77±0.02 a |
8 | A1 | B3 | C3 | 9.81±0.02 a |
9 | A1 | B1 | C1 | 9.50±0.04 d |
K1 | 29.00 | 28.96 | 28.67 | — |
K2 | 29.06 | 29.03 | 29.11 | — |
K3 | 29.13 | 29.20 | 29.41 | — |
k1 | 9.67 | 9.65 | 9.56 | — |
k2 | 9.69 | 9.68 | 9.70 | — |
k3 | 9.71 | 9.73 | 9.80 | — |
极差Ri | 0.04 | 0.08 | 0.24 | — |
主次顺序 Primary and secondary order | C>B>A | |||
最优组合 Excellent combination | A3B3C3 |
Table 1 Statistical results of orthogonal test for the optimization of the medium components
实验编号 Experiment number | A:蔗糖 Sucrose | B:牛肉膏 Beef extract | C:酵母浸粉 Yeast extract powder | 活菌数对数值 Logarithm of cultivable bacteria/ (lg CFU·mL-1) |
---|---|---|---|---|
1 | A3 | B2 | C1 | 9.55±0.02 d |
2 | A2 | B2 | C3 | 9.79±0.01 a |
3 | A1 | B2 | C2 | 9.69±0.01 b |
4 | A2 | B1 | C2 | 9.65±0.02 bc |
5 | A2 | B3 | C1 | 9.62±0.02 c |
6 | A3 | B1 | C3 | 9.81±0.02 a |
7 | A3 | B3 | C2 | 9.77±0.02 a |
8 | A1 | B3 | C3 | 9.81±0.02 a |
9 | A1 | B1 | C1 | 9.50±0.04 d |
K1 | 29.00 | 28.96 | 28.67 | — |
K2 | 29.06 | 29.03 | 29.11 | — |
K3 | 29.13 | 29.20 | 29.41 | — |
k1 | 9.67 | 9.65 | 9.56 | — |
k2 | 9.69 | 9.68 | 9.70 | — |
k3 | 9.71 | 9.73 | 9.80 | — |
极差Ri | 0.04 | 0.08 | 0.24 | — |
主次顺序 Primary and secondary order | C>B>A | |||
最优组合 Excellent combination | A3B3C3 |
Fig.3 Metal ions for strain Rp3 growth and skatole degradationNote: Different lowercase letters indicate significant difference among different treatments at P<0.05 level.
Fig.4 Optical temperature for strain Rp3 growth and skatole degradationNote: Different lowercase letters indicate significant difference among different treatments at P<0.05 level.
培养时间 Incubation time/h | 处理 Treatment | Rp3菌株生长量 Growth of strain Rp3(OD600) | 粪臭素含量 Skatole content/(mg·L-1) | 降解率 Degradation rate/% |
---|---|---|---|---|
24 | Rp3-0 | 0.37±0.015 | 14.8±1.0 | 82.9±0.3 a |
CK-0 | — | 86.3±7.1 | — | |
Rp3-5 | 0.37±0.014 | 13.4±0.5 | 84.0±0.6 a | |
CK-5 | — | 83.7±0.9 | — | |
Rp3-10 | 0.36±0.014 | 13.7±0.4 | 83.2±1.3 a | |
CK-10 | — | 82.1±7.1 | — | |
48 | Rp3-0 | 0.78±0.017 | 0 | 100.0 a |
CK-0 | — | 78.0±2.3 | — | |
Rp3-5 | 0.80±0.012 | 0 | 100.0 a | |
CK-5 | — | 78.7±0.92 | — | |
Rp3-10 | 0.80±0.018 | 0 | 100.0 a | |
CK-10 | — | 78.7±0.5 | — |
Table 2 Comparison of the growth and skatole degrading ability between the initial and subculture strain Rp3
培养时间 Incubation time/h | 处理 Treatment | Rp3菌株生长量 Growth of strain Rp3(OD600) | 粪臭素含量 Skatole content/(mg·L-1) | 降解率 Degradation rate/% |
---|---|---|---|---|
24 | Rp3-0 | 0.37±0.015 | 14.8±1.0 | 82.9±0.3 a |
CK-0 | — | 86.3±7.1 | — | |
Rp3-5 | 0.37±0.014 | 13.4±0.5 | 84.0±0.6 a | |
CK-5 | — | 83.7±0.9 | — | |
Rp3-10 | 0.36±0.014 | 13.7±0.4 | 83.2±1.3 a | |
CK-10 | — | 82.1±7.1 | — | |
48 | Rp3-0 | 0.78±0.017 | 0 | 100.0 a |
CK-0 | — | 78.0±2.3 | — | |
Rp3-5 | 0.80±0.012 | 0 | 100.0 a | |
CK-5 | — | 78.7±0.92 | — | |
Rp3-10 | 0.80±0.018 | 0 | 100.0 a | |
CK-10 | — | 78.7±0.5 | — |
1 | BEIER R C, ANDERSON R C, KRUEGER N A, et al.. Effect of nitroethane and nitroethanol on the production of indole and 3-methylindole (skatole) from bacteria in swine feces by gas chromatography [J]. J. Environ. Sci. Health B, 2009, 44(6): 613-620. |
2 | TRABUE S, SCOGGIN K, MCCONNELL L, et al.. Identifying and tracking key odorants from cattle feedlots [J]. Atmos. Environ., 2011, 45(25): 4243-4251. |
3 | COOK K L, ROTHROCK M J, LOVANH N, et al.. Spatial and temporal changes in the microbial community in an anaerobic swine waste treatment lagoon [J]. Anaerobe, 2010, 16(2): 74-82. |
4 | ZHANG W, WEI C, YAN B, et al.. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants [J]. Environ. Sci. Poll. Res., 2013, 20: 6418-6432. |
5 | JENSEN M T, COX R P, JENSEN B B. 3-methylindole (skatole) and indole production by mixed populations of pig fecal bacteria [J]. Appl. Environ. Microbiol., 1995, 61(8): 3180-3184. |
6 | YOKOYAMA M T, CARLSON J R. Microbial metabolites of tryptophanin the intestinal tract with special reference to skatole [J]. Am. J. Clin. Nutr., 1979, 32(1): 173-178. |
7 | BARTON G, PATRICIA A. Meat and fat quality in boars, castrates and gilts [J]. Livest. Prod. Sci., 1987, 16(2): 187-196. |
8 | 辛娜,刁其玉,张乃锋.粪臭素对动物的作用机理及其减少排放的有效方法[J].中国饲料,2011(8): 7-9, 12. |
XIN N, DIAO Q Y, ZHANG N F. The function mechanism of skatole on animal and the effective ways to reduce its emission [J]. China Feed, 2011(8): 7-9, 12. | |
9 | LI P, TONG L, LIU K, et al.. Biodegradation of 3-methylindole by Pseudomonas putida lpc 24 under oxygen limited conditions [J]. Fresenius Environ. Bull., 2010, 19(2): 238-242. |
10 | MENG X, HE Z F, Li H J, et al.. Removal of 3-methylindole by lactic acid bacteria in vitro [J]. Exp. Ther. Med., 2013, 6(4): 983-988. |
11 | TESSO T A. 吲哚降解菌及其除臭功能研究[D].北京:中国农业科学院,2019. |
TESSO T A. Isolation and identification of indole-degrading microbe and its deodorization function for manure [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
12 | 吴玉洪,张世昌,田茜,等.堆肥臭味物质——粪臭素高效降解菌Rp3的分离和鉴定[J].农业资源与环境学报,2021,38(4): 576-584. |
WU Y H, ZHANG S C, TIAN Q, et al.. Isolation and identification of a high-efficiency bacterium strain Rp3 to degrade skatole-an odor chemical in compost [J]. J. Agric. Res. Environ., 2021, 38(4): 576-584. | |
13 | KOHAD C, ANDO T, NAKAI Y. Isolation and characterization of anaerobic indole and skatole degrading bacteria from com-posting animal wastes [J]. J. Gen. Appl. Microbiol., 1997, 43(5): 249-255. |
14 | 罗海恩.吲哚高效降解菌的筛分及生物降解特性的研究[D].广州:广东工业大学,2015. |
LUO H E. Isolation and biodegradation characteristics study of indole-degrading bacteria [D]. Guangzhou: Guangdong University of Technology, 2015. | |
15 | FUKUOKO K, OZEKI Y, KANALY R A. Aerobic biotransfor-mation of 3-methylindole to ring cleavage products by Cupriavidus sp. strain KK10 [J]. Biodegradation, 2015, 26(5): 359-373. |
16 | 李凤.公猪膻味物质粪臭素的乳酸菌降解研究[D].重庆:西南大学,2011. |
LI F. Degradation of skatole that caused boar taint by lactic acid bacteria [D]. Chongqing: Southwest University, 2011. | |
17 | 易红磊. 喹啉高效降解菌株Alcaligenes sp.WUST-qu的筛选及表征[D].武汉:武汉科技大学,2019. |
YI H L. Isolation and characterization of a novel high effectively quinoline degrading bacterial strain Alcaligenes sp.WUST-qu [D]. Wuhan: Wuhan University of Science and Technology, 2019. | |
18 | 丁丽,曾萍,成璐瑶,等.一株α-苯乙胺的微生物降解菌的优选及其最佳生长条件研究[J].生物技术通报,2021,37(3):65-74. |
DING L, ZENG P, CHENG L Y, et al.. Optimization of a strain of microbe degrading α-phenylethylamine and its optimal growth conditions [J]. Biotechnol. Bull., 2021, 37(3): 65-74. | |
19 | 邱孜博,汪荣,张杨,等.红球菌及其生物降解作用研究进展[J].食品科学,2016,37(7):254-258. |
QIU Z B, WANG R, ZHANG Y, et al.. Recent progress in studies of Rhodococcus and its application in biodegradation [J]. Food Sci., 2016, 37(7): 254-258. | |
20 | 任华峰,姜天翔,成玉,等.一株耐低温石油烃降解菌的分离鉴定及其降解特性[J].生物技术通讯,2019,30(1):68-72. |
REN H F, JIANG T X, CHENG Y, et al.. Isolation and characterization of a low temperature hydrocarbon-degrading bacterial strain [J]. Lett. Biotechnol., 2019, 30(1): 68-72. | |
21 | 夏瑛铭,张朝晖,王亮,等.外加碳源对红球菌IcdP1降解荧蒽的特性研究[J].环境科学与技术,2017,40(9):14-19. |
XIA Y M, ZHANG Z H, WANG L, et al.. Effects of external carbon sources on degradation of fluoranthene by Rhodococcus sp. Icd P1 [J]. Environ. Sci. Technol., 2017, 40(9): 14-19. | |
22 | 邓秀琼.焦化废水氮杂环化合物降解功能菌的分离、降解特性与代谢途径研究[D].广州:华南理工大学,2011. |
DENG X Q. Isolation, degradation characteristics and metabolic pathways of pyridine-degrading strain from activated sludge from a coking wastewater treatment [D]. Guangzhou: South China University of Technology, 2011. | |
23 | DESLANDES B, GARIEPY C, HOUDE A. Review of microbiologi-cal and biochemical effects of skatole on animal production [J]. Livest. Prod. Sci., 2001, 71(2-3): 193-200. |
24 | 孙明明,滕应,骆永明.厌氧微生物降解多环芳烃研究进展[J].微生物学报,2012,52(8): 931-939. |
SUN M M, TENG Y, LUO Y M. Research progress of anaerobic microbial degradation of polycyclic aromatic hydrocarbons [J]. Acta Microbiol. Sin., 2012, 52(8): 931-939. | |
25 | 吴锦华,韦朝海,李平.金属离子及盐度对硝基苯厌氧生物降解过程的影响[J].环境科学研究,2009,22(1):99-102. |
WU J H, WEI C H, LI P. The effect of metal ions and salinity on anaerobic biodegradation of nitrobenzene [J]. Res. Environ. Sci., 2009, 22(1): 99-102. | |
26 | MA Q, QU H, MENG N, et al.. Biodegradation of skatole by Burkholderia sp. IDO3 and its successful bioaugmentation in activated sludge systems [J/OL]. Environ. Res., 2020, 182: 109123[2021-02-01]. |
27 | 郭慧玲,卢洁,张文羿,等.庆大霉素适应性菌株遗传稳定性研究[J].中国食品学报,2020,20(2): 95-102. |
GUO H L, LU H, ZHANG W Y, et al.. Study on genetic stability of gentamicin-adapted strains [J]. J. Chin. Institute Food Sci. Tech., 2020, 20(2): 95-102. |
[1] | Huaqiang TAN, Liping LI, Manman TIE, Jiaqin YANG, Xiaoyun ZHENG, Shaokun PAN, Youwan TANG. Mining and Analysis of Genes Related to Anthocyanin Degradation in Purple Pepper [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 79-91. |
[2] | Haiyan LI, Ting ZHANG, Xinchang LI, Ling ZHANG, Pei WANG, Minhu BAO. Screening and Identification of a Strain of Bacillus velezensis Against Botrytis cinerea [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 110-118. |
[3] | Linghui YANG, Zhiwei DING, Li GONG, Xuejun LI, Yunping DONG, Zhenjiang LYU. Progress in Extraction, Synthetic Metabolic Pathways, and Bioactivity Research of Coffea Alkaloid Main Compounds [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 132-143. |
[4] | Zhien LIU, Yong HE, Zhicheng WANG, Xiaokang ZHAN, Tingbao WANG, Yaowei LIU, Zhihong TIAN. Identification and Bioinformatics Analysis of Growth Regulating Factor GRF Gene Family in Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 18-27. |
[5] | Juanjuan HUANG, Zhiqiang ZHANG, Juan MAO, Zonghuan MA, Baihong CHEN. Effects of Different Foliar Fertilizers on Growth, Development and Fruit Quality of ‘Pinot Noir’ Grape [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 205-217. |
[6] | Xiaodan WU, Li GAO, Tiangeng GONG, Xiangfeng KONG, Yuzhou JIANG, Guixia JIA. Effects of Microbial Fertilizer and Humic Acid Compound Fertilizer on Growth and Photosynthetic Characteristics of Lilium [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 221-229. |
[7] | Xueqing MA, Aoran JI, Jiaoli ZHENG, Chunxia CAO, Yan GONG, Daye HUANG, Beibei WANG. Research Progress on Growth-promoting Mechanism and Application of Plant Growth-promoting Rhizobacteria [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 13-23. |
[8] | Tingting MA, Yanrong ZHAO, Yuqing WEI, Yuejuan WANG, Xuefei WANG, Erdong ZHANG. Dynamic Characteristics of Stem Growth and Sugar Accumulation of Sweet Sorghum at Late Growth Stage Under Soil Salt Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 42-50. |
[9] | Fei YANG, Zhongke FENG, Yangyang ZHOU, Wensheng CHENG, Zhichao WANG. Construction of A Standardized Height-diameter Equation for the Main Tree Species in China Suitable for the GlobalAllomeTree International Data Platform [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 62-71. |
[10] | Mei WU, Jinzhu ZHANG, Zhenhua WANG, Jian LIU, Yue WEN, Xuanzhi LI. Effects of Water and Air Interaction on Physiological Growth and Yield of Maize Under Mulched Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 189-200. |
[11] | Li MA, Tingting CAO, Youwei FAN, Zhiyu REN, Chun LIU, Suxia YUAN. Effects of Different Rooting Reagents on Rooting of Miniature Potted Rose Cuttings [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 50-60. |
[12] | Yanbo FU, Bingbing LENG, Qingyong BIAN, Zhiduo DONG, Guohong LIU, Haifeng LI, Yunmeng WEN, Wenbo GUO, Wanxu ZHANG. Passivation Effect of Biochar on Soil Cadmium Pollution and Rape Growth [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 183-190. |
[13] | Shouhua PENG, Mingming XU, Jiqiang WEI, Lijun LIANG, Quan YE, Xiaoyuan CHI, Shaofeng ZHANG, Xiangli DONG. Effects of Increase Applying of Biofertilizer Strain FBR1 on Growth Development and Yield of Peanut [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 200-205. |
[14] | Zhimin YANG, Huihao ZHANG, Yuanyuan ZHANG, Hongyan DU, Xiaodong LIU, Yaguang HOU, Yi WANG, Daolong XU, Jingui HUANG, Xiaoning CHENG, Yang SUI, Ruili WANG, Chao YU, Lingling ZHAO, Chunmei CHEN, Ru YA, Li JIA, Mingyue ZHANG, Hongwei WANG, Songyao YAO, Ying ZHAO, Ke SHAO. Identification of Streptomyces rochei HM85 and Its Biocontrol and Growth-promoting Effects on Sugar Beet [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 148-155. |
[15] | Zhaodi YANG, Fenggen GUO, Shiyu WANG, Zhengjie LIU, Wenhong LONG. Effect of Plant Growth Inhibitors on Agronomic Traits and Pre-harvest Sprouting Resistance of Quinoa [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 44-51. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||