








中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (7): 32-38.DOI: 10.13304/j.nykjdb.2021.0583
收稿日期:2021-07-15
接受日期:2022-03-27
出版日期:2022-07-15
发布日期:2022-08-15
通讯作者:
马峙英
作者简介:孙正文 E-mail: nxszhw@hebau.edu.cn;
基金资助:
Zhengwen SUN(
), Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA(
)
Received:2021-07-15
Accepted:2022-03-27
Online:2022-07-15
Published:2022-08-15
Contact:
Zhiying MA
摘要:
棉花是世界上重要的天然纤维作物,也是我国重要的经济作物和纺织工业原料。生物技术育种是品种改良和种质创新的手段,具有广泛的应用前景。棉花基因组测序的完成有助于挖掘棉花重要性状基因,将分子育种技术与常规育种技术相结合,促进棉花育种的发展,选育出更具广阔市场前景的优良品种。总结了棉花种质鉴定、标记开发及基因发掘等研究进展,以期为相关技术创新、分子设计育种等提供参考,推动棉花生物技术育种的发展。
中图分类号:
孙正文, 谷淇深, 张艳, 王省芬, 马峙英. 棉花基因发掘与分子育种研究进展[J]. 中国农业科技导报, 2022, 24(7): 32-38.
Zhengwen SUN, Qishen GU, Yan ZHANG, Xingfen WANG, Zhiying MA. Research Progress on Cotton Gene Discovery and Molecular Breeding[J]. Journal of Agricultural Science and Technology, 2022, 24(7): 32-38.
| QTL | 染色体Chromosome | 分子 标记 Marker | 表型变异 解释率 Phenotypic variation explained/% | 物理区间 Physical interval /Mb |
|---|---|---|---|---|
| qFL-D02-1 | Dt02 | bin4537 | 5.21~14.65 | 2.84~3.83 |
| qFL-D02-4 | Dt02 | bin4669 | 4.37~10.34 | 21.34~30.84 |
| qFL-D05-1 | Dt05 | bin5200 | 2.47~6.98 | 4.62~6.64 |
| qFS-D02-1 | Dt02 | bin4537 | 3.85~6.70 | 2.95~3.83 |
| qFS-D05-2 | Dt05 | bin5165 | 3.53~4.15 | 1.63~2.24 |
| qFS-D11-1 | Dt11 | bin6330 | 4.66~12.08 | 62.03~64.45 |
| qFS-D13-1 | Dt13 | bin6606 | 3.26~5.95 | 0.00~2.15 |
| qFM-A05-1 | At05 | bin1333 | 3.58~5.58 | 9.54~10.55 |
| qFM-D05-1 | Dt05 | bin5275 | 3.02~4.77 | 12.21~21.52 |
| qFU-D02-3 | Dt02 | bin4537 | 5.72~7.46 | 2.71~3.83 |
| qFU-D02-6 | Dt02 | bin4697 | 3.07~4.60 | 27.63~39.98 |
| qFU-D11-1 | Dt11 | bin6322 | 2.59~5.59 | 61.94~63.14 |
| qFE-A05-1 | At05 | bin1337 | 3.83~15.83 | 9.95~10.57 |
| qFE-A11-2 | At11 | bin3388 | 2.29~3.40 | 67.16~81.20 |
| qFE-D02-1 | Dt02 | bin4513 | 2.45~5.43 | 0.04~0.94 |
| qFE-D13-1 | Dt13 | bin6606 | 2.44%~4.23% | 0.05~1.10 |
表1 与稳定QTL紧密连锁的标记信息[6]
Table 1 Marker information closely linked to stable QTL[6]
| QTL | 染色体Chromosome | 分子 标记 Marker | 表型变异 解释率 Phenotypic variation explained/% | 物理区间 Physical interval /Mb |
|---|---|---|---|---|
| qFL-D02-1 | Dt02 | bin4537 | 5.21~14.65 | 2.84~3.83 |
| qFL-D02-4 | Dt02 | bin4669 | 4.37~10.34 | 21.34~30.84 |
| qFL-D05-1 | Dt05 | bin5200 | 2.47~6.98 | 4.62~6.64 |
| qFS-D02-1 | Dt02 | bin4537 | 3.85~6.70 | 2.95~3.83 |
| qFS-D05-2 | Dt05 | bin5165 | 3.53~4.15 | 1.63~2.24 |
| qFS-D11-1 | Dt11 | bin6330 | 4.66~12.08 | 62.03~64.45 |
| qFS-D13-1 | Dt13 | bin6606 | 3.26~5.95 | 0.00~2.15 |
| qFM-A05-1 | At05 | bin1333 | 3.58~5.58 | 9.54~10.55 |
| qFM-D05-1 | Dt05 | bin5275 | 3.02~4.77 | 12.21~21.52 |
| qFU-D02-3 | Dt02 | bin4537 | 5.72~7.46 | 2.71~3.83 |
| qFU-D02-6 | Dt02 | bin4697 | 3.07~4.60 | 27.63~39.98 |
| qFU-D11-1 | Dt11 | bin6322 | 2.59~5.59 | 61.94~63.14 |
| qFE-A05-1 | At05 | bin1337 | 3.83~15.83 | 9.95~10.57 |
| qFE-A11-2 | At11 | bin3388 | 2.29~3.40 | 67.16~81.20 |
| qFE-D02-1 | Dt02 | bin4513 | 2.45~5.43 | 0.04~0.94 |
| qFE-D13-1 | Dt13 | bin6606 | 2.44%~4.23% | 0.05~1.10 |
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
|---|---|---|---|
| 转录因子 | GhbHLH18 | Dt04 | [ |
| GhKNL1 | Dt08 | [ | |
| 激素 Hormone | AKR2A | — | [ |
| GhVTC1 | Dt10 | [ | |
| 激素信号途径 | Gh_D02G0025 | Dt02 | [ |
| Ghir_A03G020290 | At03 | [ | |
| 骨架蛋白 | GhXLIM6 | Dt02 | [ |
| GhKCBP | At02 | [ | |
| TUA2 | Dt02 | [ | |
| Gh_A10G1256 | At10 | [ | |
| Ghir_D02G002580 | Dt02 | [ | |
| 脂肪代谢 Fat metabolism | KCS1 | — | [ |
| GhKCS13/CER6 | At01 | [ | |
| 细胞壁成分 Cell wall component | GhCesA2 | At08/Dt08 | [ |
| GhCesA4/8 | At04/Dt08 | [ | |
| Ghir_D02G011110 | Dt02 | [ | |
| 细胞代谢 Cell metabolism | Gh_D07G1799 | Dt02 | [ |
| Gh_D13G1792 | Dt13 | [ | |
| KRP家族蛋白 KRP family protein | Gh_D11G1929 | Dt11 | [ |
| 脂质信号转导 Lipids signal transduction | Ghir_D02G010340 | Dt02 | [ |
表2 纤维发育相关候选基因鉴定
Table 2 Identification of candidate genes related to fiber development
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
|---|---|---|---|
| 转录因子 | GhbHLH18 | Dt04 | [ |
| GhKNL1 | Dt08 | [ | |
| 激素 Hormone | AKR2A | — | [ |
| GhVTC1 | Dt10 | [ | |
| 激素信号途径 | Gh_D02G0025 | Dt02 | [ |
| Ghir_A03G020290 | At03 | [ | |
| 骨架蛋白 | GhXLIM6 | Dt02 | [ |
| GhKCBP | At02 | [ | |
| TUA2 | Dt02 | [ | |
| Gh_A10G1256 | At10 | [ | |
| Ghir_D02G002580 | Dt02 | [ | |
| 脂肪代谢 Fat metabolism | KCS1 | — | [ |
| GhKCS13/CER6 | At01 | [ | |
| 细胞壁成分 Cell wall component | GhCesA2 | At08/Dt08 | [ |
| GhCesA4/8 | At04/Dt08 | [ | |
| Ghir_D02G011110 | Dt02 | [ | |
| 细胞代谢 Cell metabolism | Gh_D07G1799 | Dt02 | [ |
| Gh_D13G1792 | Dt13 | [ | |
| KRP家族蛋白 KRP family protein | Gh_D11G1929 | Dt11 | [ |
| 脂质信号转导 Lipids signal transduction | Ghir_D02G010340 | Dt02 | [ |
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
|---|---|---|---|
| 信号转导 Signal | GaGSTF9 | At03 | [ |
| MOS2 | At05 | [ | |
| GbEDS1 | At12 | [ | |
| 蛋白激酶 Protein kinase | GbSTK | At10 | [ |
| 亲环素基因 Cyclophilin | GhCYP-3 | At01 | [ |
| 细胞壁蛋白 Cell wall protein | GbHyPRP1 | Dt06 | [ |
| G蛋白 G protein | GhGPA | Dt05 | [ |
| R基因 R gene | CG03 | At10 | [ |
| GhDSC1 | At10 | [ | |
| GhGLR4.8 | Dt03 | [ | |
| GbVe | Dt09 | [ | |
| GbRVd | Dt11 | [ | |
| 次级代谢产物 | GhSNAT1/GhCOMT | Dt02/ Dt12 | [ |
| 类受体激酶 Receptor-like kinases,RLKs | GhLecRKs-V.9 | Dt11 | [ |
| 木质素合成 Lignin synthesis | GhLAC15 | At05 | [ |
| GhnsLTPs | At10 | [ | |
| 活性氧相关 Reactive oxygen species related | GhPAO | At08 | [ |
| 硬脂酰-ACP-去饱和酶家族 Stearoyl-ACP-desaturase family | GhSSI2s | At10/ Dt10 | [ |
| 谷胱甘肽硫转移酶 Glutathione S-transferase | Gh_A09G1508 | At09 | [ |
| Gh_A09G1509 | At09 | [ | |
| Gh_A09G1510 | At09 | [ | |
| 植物病程相关蛋白 Plant pathogenesis-related proteins | GhNCS | Dt11 | [ |
表3 棉花抗黄萎病相关基因鉴定
Table 3 Identification of cotton Verticillium Wilt resistance related genes
基因功能 Gene function | 基因名称 Gene name | 染色体 Chromosome | 参考文献 Reference |
|---|---|---|---|
| 信号转导 Signal | GaGSTF9 | At03 | [ |
| MOS2 | At05 | [ | |
| GbEDS1 | At12 | [ | |
| 蛋白激酶 Protein kinase | GbSTK | At10 | [ |
| 亲环素基因 Cyclophilin | GhCYP-3 | At01 | [ |
| 细胞壁蛋白 Cell wall protein | GbHyPRP1 | Dt06 | [ |
| G蛋白 G protein | GhGPA | Dt05 | [ |
| R基因 R gene | CG03 | At10 | [ |
| GhDSC1 | At10 | [ | |
| GhGLR4.8 | Dt03 | [ | |
| GbVe | Dt09 | [ | |
| GbRVd | Dt11 | [ | |
| 次级代谢产物 | GhSNAT1/GhCOMT | Dt02/ Dt12 | [ |
| 类受体激酶 Receptor-like kinases,RLKs | GhLecRKs-V.9 | Dt11 | [ |
| 木质素合成 Lignin synthesis | GhLAC15 | At05 | [ |
| GhnsLTPs | At10 | [ | |
| 活性氧相关 Reactive oxygen species related | GhPAO | At08 | [ |
| 硬脂酰-ACP-去饱和酶家族 Stearoyl-ACP-desaturase family | GhSSI2s | At10/ Dt10 | [ |
| 谷胱甘肽硫转移酶 Glutathione S-transferase | Gh_A09G1508 | At09 | [ |
| Gh_A09G1509 | At09 | [ | |
| Gh_A09G1510 | At09 | [ | |
| 植物病程相关蛋白 Plant pathogenesis-related proteins | GhNCS | Dt11 | [ |
| 1 | SUN Z W, WANG X F, LIU Z W, et al.. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. [J]. Plant Biotechnol. J., 2017, 15(8): 982-996. |
| 2 | MA Z Y, HE S P, WANG X F, et al.. Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield [J]. Nat. Genet., 2018, 50(6):803-813. |
| 3 | SUN Z W, WANG X F, LIU Z W, et al.. Evaluation of the genetic diversity of fibre quality traits in upland cotton (Gossypium hirsutum L.) inferred from phenotypic variations [J]. J. Cotton Res., 2019, 2(4):183-190. |
| 4 | MA Z Y, ZHANG Y, WU L Q, et al.. High-quality genome assembly and resequencing of modern cotton cultivars provide resources for crop improvement [J]. Nat. Genet., 2021, 53(9):1385-1391. |
| 5 | SUN Z W, WANG X F, LIU Z W, et al.. A genome-wide association study uncovers novel genomic regions and candidate genes of yield-related traits in upland cotton [J]. Theor. Appl. Genet., 2018, 131(11):2413-2425. |
| 6 | GU Q S, KE H F, LIU Z W, et al.. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton [J]. Theor. Appl. Genet., 2020, 133(12):3395-3408. |
| 7 | GAO Z, SUN W, WANG J, et al.. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers [J]. Plant Sci., 2019, 286:7-16. |
| 8 | GONG S Y, HUANG G Q, SUN X, et al.. Cotton KNL1, encoding a class Ⅱ KNOX transcription factor, is involved in regulation of fibre development [J]. J. Exp. Bot., 2014, 65:4133-4147. |
| 9 | HU W, CHEN L, QIU X, et al.. AKR2A participates in the regulation of cotton fiber development by modulating biosynthesis of very-long-chain fatty acids [J]. Plant Biotechnol. J., 2019, 18(2):526-539. |
| 10 | SONG W, WANG F, CHEN L, et al.. GhVTC1, the key gene for ascorbate biosynthesis in Gossypium hirsutum, involves in cell elongation under control of ethylene [J/OL]. Cell, 2019, 8(9):1039 [2022-05-25]. . |
| 11 | LI Y, WANG N N, WANG Y, et al.. The cotton XLIM protein (GhXLIM6) is required for fiber development via maintaining dynamic F-actin cytoskeleton and modulating cellulose biosynthesis [J]. Plant J., 2018, 96:1269-1282. |
| 12 | PREUSS M L, DELMER D P, LIU B, et al.. The cotton kinesin-like calmodulin-binding protein associates with cortical microtubules in cotton fibers [J]. Plant Physiol., 2003, 132(1):154-160. |
| 13 | QIN Y, SUN H, HAO P, et al.. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines [J/OL]. BMC Genomics, 2019, 20:633 [2022-05-25]. . |
| 14 | QIN Y M, HU C Y, PANG Y, et al.. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis [J]. Plant Cell, 2007, 19(11): 3692-3704. |
| 15 | KIM H J, Triplett B A, Zhang H B, et al.. Cloning and characterization of homeologous cellulose synthase catalytic subunit 2 genes from allotetraploid cotton (Gossypium hirsutum L.) [J]. Gene, 2012, 494:181-189. |
| 16 | NING Z Y, ZHAO R, CHEN H, et al.. Molecular tagging of a major quantitative trait locus for broad-spectrum resistance to Verticillium wilt in upland cotton cultivar prema [J]. Crop Sci., 2013, 53:2304-2312. |
| 17 | LI T, MA X, LI N, et al.. Genome-wide association study discovered candidate genes of Verticillium wilt resistance in upland cotton (Gossypium hirsutum L.) [J]. Plant Biotechnol. J., 2017, 15(12):1520-1532. |
| 18 | ZHANG Y, CHEN B, SUN Z W, et al.. A large-scale genomic association analysis identifies a fragment in Dt11 chromosome conferring cotton Verticillium wilt resistance [J]. Plant Biotechnol. J., 2021, 19(10): 2126-2138. |
| 19 | GONG Q, YANG Z, CHEN E, et al.. A Phi-class glutathione S-transferase gene for Verticillium wilt resistance in Gossypium arboreum identified in a genome-wide association study [J]. Plant Cell Physiol., 2018, 59:275-289. |
| 20 | LI P T, RASHID M H O, CHEN T T, et al.. Transcriptomic and biochemical analysis of upland cotton (Gossypium hirsutum) and a chromosome segment substitution line from G . hirsutum× G. barbadense in response to Verticillium dahliae infection [J/OL]. BMC Plant Biol., 2019, 19(1):19 [2022-05-25]. . |
| 21 | LI T G, WANG B L, YIN C M, et al.. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt [J]. Mol. Plant Pathol., 2019, 20(6):857-876. |
| 22 | LIU S M, ZHANG X J, XIAO S H, et al.. A single-nucleotide mutation in a GLUTAMATE RECEPTOR-LIKE gene confers resistance to Fusarium wilt in Gossypium hirsutum [J/OL]. Adv. Sci., 2021, 8(7):2002723 [2022-05-25]. . |
| 23 | LI C, HE Q, ZHANG F, et al.. Melatonin enhances cotton immunity to Verticillium wilt via manipulating lignin and gossypol biosynthesis [J]. Plant J., 2019, 100(4):784-800. |
| 24 | ZHANG Y, WANG X F, RONG W, et al.. Island cotton enhanced disease susceptibility 1 gene encoding a lipase-like protein plays a crucial role in response to Verticillium dahliae by regulating the SA level and H2O2 accumulation [J/OL]. Front. Plant Sci., 2016, 7:1830 [2022-05-25]. . |
| 25 | ZHANG Y, WANG X F, RONG W, et al.. Histochemical analyses reveal that stronger intrinsic defenses in Gossypium barbadense than in G. hirsutum are associated with resistance to Verticillium dahliae [J]. Mol. Plant Microbe Interact., 2017, 30: 984-996. |
| 26 | ZHANG Y, WANG X F, LI Y Y, et al.. Ectopic expression of a novel Ser/Thr protein kinase from cotton (Gossypium barbadense), enhances resistance to Verticillium dahliae infection and oxidative stress in Arabidopsis [J]. Plant Cell Rep., 2013, 32:1703-1713. |
| 27 | YANG J, WANG G, KE H, et al.. Genome-wide identification of cyclophilin genes in Gossypium hirsutum and functional characterization of a CYP with antifungal activity against Verticillium dahliae [J/OL]. BMC Plant Biol., 2019, 19:272 [2022-05-25]. . |
| 28 | YANG J, ZHANG Y, WANG X F, et al.. HyPRP1 performs a role in negatively regulating cotton resistance to V. dahliae via the thickening of cell walls and ROS accumulation [J/OL]. BMC Plant Biol., 2018, 18(1):339 [2022-05-25]. . |
| 29 | CHEN B, ZHANG Y, YANG J, et al.. The G-protein α subunit GhGPA positively regulates Gossypium hirsutum resistance to Verticillium dahliae via induction of SA and JA signaling pathways and ROS accumulation [J/OL]. Crop J., 2021, 9(4):125-135. |
| 30 | ZHANG Y, WANG X F, YANG S, et al.. Cloning and characterization of a Verticillium wilt resistance gene from Gossypium barbadense and functional analysis in Arabidopsis thaliana [J]. Plant Cell Rep., 2011, 30:2085-2096. |
| 31 | YANG J, MA Q, ZHANG Y, et al.. Molecular cloning and functional analysis of GbRVd, a gene in Gossypium barbadense that plays an important role in conferring resistance to Verticillium wilt [J]. Gene, 2015, 575:687-694. |
| 32 | ZHANG Y, WU L Z, WANG X F, et al.. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants [J]. Mol. Plant Pathol., 2019, 20(3):309-322. |
| 33 | MO H J, ZHANG Y, WANG X F, et al.. Cotton polyamine oxidase is required for spermine and camalexin signalling in the defence response to Verticillium dahliae [J]. Plant J., 2015, 83(6):962-975. |
| 34 | CHEN B, ZHANG Y, SUN Z W, et al.. Tissue-specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease- and insect-resistance by regulating metabolic flux redirection in cotton [J]. Plant J., 2021, 107(3):831-846. |
| 35 | MO S J, ZHANG Y, WANG X F, et al.. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance [J]. Mol. Plant Pathol., 2021, 22(9):1041-1056. |
| 36 | LI Z K, CHEN B, LI X X, et al.. A newly identified cluster of glutathione S-transferase genes provides Verticillium wilt resistance in cotton [J]. Plant J., 2019, 98, 213-227. |
| [1] | 贾浩, 王洪这, 孙正文, 谷淇深, 张冬梅, 王星懿, 张艳, 卢怀玉, 马峙英, 王省芬. 棉花VOZ基因家族鉴定及GhVOZ1耐盐功能研究[J]. 中国农业科技导报, 2025, 27(9): 58-68. |
| [2] | 陈宜新, 杨秀波, 田士军, 王聪, 白志英, 李存东, 张科. 陆地棉GhCOMT28对干旱胁迫的响应[J]. 中国农业科技导报, 2025, 27(4): 45-56. |
| [3] | 董志多, 付秋萍, 黄建, 祁通, 付彦博, 开赛尔·库尔班. 新疆棉花萌发期的耐盐能力分析[J]. 中国农业科技导报, 2025, 27(4): 57-67. |
| [4] | 彭梓程, 杜洪力, 王铭, 张凤华, 杨海昌. 丛枝菌根真菌调控盐碱胁迫下棉花生长及离子平衡的研究[J]. 中国农业科技导报, 2025, 27(2): 33-41. |
| [5] | 翁慧婷, 刘海洋, 郭惠明, 程红梅, 李君, 张超, 苏晓峰. 棉花抗黄萎病相关基因GhERF020功能的初步分析[J]. 中国农业科技导报, 2024, 26(9): 112-121. |
| [6] | 李紫琴, 王家强, 李贞, 邹德秋, 张小功, 罗霄玉, 柳维扬. 基于光谱指数的棉花叶片叶绿素密度估算研究[J]. 中国农业科技导报, 2024, 26(8): 103-111. |
| [7] | 庞博, 李生梅, 李彦霖, 杨涛, 梁维维, 张茹, 黄雅婕, 任丹, 崔进鑫, 李静, 马晶晶, 高文伟. 192份陆地棉杂交种的遗传多样性分析[J]. 中国农业科技导报, 2024, 26(8): 34-50. |
| [8] | 秦宇坤, 陈俊英, 张丽娟. 赣北棉区棉花干物质积累特征和产量对减氮措施的响应[J]. 中国农业科技导报, 2024, 26(6): 191-199. |
| [9] | 李江博, 高文举, 运晓东, 赵杰银, 耿世伟, 韩春斌, 陈全家, 陈琴. 不同水分胁迫处理对陆地棉核心种质资源的影响[J]. 中国农业科技导报, 2024, 26(3): 26-39. |
| [10] | 李丽花, 孙正文, 柯会锋, 谷淇深, 吴立强, 张艳, 张桂寅, 王省芬. 陆地棉纤维强度KASP-SNP标记的开发及效应评价[J]. 中国农业科技导报, 2024, 26(2): 46-55. |
| [11] | 翟梦华, 孙明辉, 李雪瑞, 徐新龙, 高海洲, 张巨松. 不同株行距配置下缩节胺对棉花株型塑造的影响[J]. 中国农业科技导报, 2024, 26(12): 145-156. |
| [12] | 程珍, 牛建龙, 马玉婷, 柳维扬, 蒋学玮, 梁雪齐, 董红强. 1990—2020年南疆阿拉尔垦区棉花物候期的动态变化[J]. 中国农业科技导报, 2024, 26(10): 206-214. |
| [13] | 郑德有, 左东云, 王巧莲, 吕丽敏, 程海亮, 顾爱星, 宋国立. 氟节胺与杀菌剂复配防治棉花枯萎病的增效药剂筛选[J]. 中国农业科技导报, 2024, 26(1): 119-124. |
| [14] | 王为, 赵强, 穆妮热·阿卜杜艾尼, 阿里木·阿木力null, 李欣欣, 田阳青. 烯效唑复配不同外源物质对棉花化学封顶及产量品质的影响[J]. 中国农业科技导报, 2023, 25(9): 57-68. |
| [15] | 孙正冉, 张翠萍, 张晋丽, 吴昊, 刘秀艳, 王振凯, 杨玉珍, 贺道华. 喷施化学打顶剂对关中棉区棉花植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 167-177. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||