








中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (11): 93-101.DOI: 10.13304/j.nykjdb.2024.0378
师焕婷1(
), 杨龙飞1, 唐华苹2, 王鹏飞1, 康国章1(
), 韩巧霞1(
)
收稿日期:2024-05-13
接受日期:2024-07-13
出版日期:2025-11-15
发布日期:2025-11-17
通讯作者:
康国章,韩巧霞
作者简介:师焕婷 E-mail:Sht991007@stu.henau.edu.cn
基金资助:
Huanting SHI1(
), Longfei YANG1, Huaping TANG2, Pengfei WANG1, Guozhang KANG1(
), Qiaoxia HAN1(
)
Received:2024-05-13
Accepted:2024-07-13
Online:2025-11-15
Published:2025-11-17
Contact:
Guozhang KANG,Qiaoxia HAN
摘要:
为探究外施脯氨酸(proline,Pro)对干旱胁迫条件下小麦苗期植株生长的影响,选用小麦品种百农207为试验材料,以加清水为对照(CK),分别设置20% PEG-6000溶液模拟干旱胁迫处理(PEG)、20 mmol·L-1脯氨酸处理(PRO)及施用20% PEG-6000溶液+20 mmol·L-1脯氨酸处理(PFG+PRO),共计4个处理,研究小麦苗期外施脯氨酸调控其抗旱性的生理机制。结果表明,干旱胁迫前,各处理叶片的SPAD值及丙二醛(malondialdehyde,MDA)、可溶性糖(soluble sugar,SS)、Pro含量均无显著差异;干旱胁迫后,与CK相比,PEG处理的SPAD值降低,MDA、SS、Pro含量升高,SOD、POD、P5CS基因的相对表达量增加,苗高、茎叶鲜重、茎叶干重、根干重显著降低,根冠比显著升高;与PEG处理相比,PEG+PRO处理的SPAD及SS、Pro含量显著提高,MDA含量显著降低。PEG+PRO处理在干旱胁迫1 d时,SOD、POD、CAT基因的相对表达量显著高于PEG处理;在干旱胁迫2 d时,LEA与P5CS基因相对表达量显著高于PEG处理。干旱胁迫后,PEG+PRO处理的株高、茎叶干重分别较PEG处理显著增加11.64%、12.96%。综上,小麦苗期外施20 mmol·L-1脯氨酸处理可降低叶片MDA含量,提高叶绿素、SS、Pro含量以及抗逆相关基因SOD、POD、CAT、LEA和P5CS的相对表达量,从而提高小麦抗旱性,为小麦后期正常生长发育奠定基础。
中图分类号:
师焕婷, 杨龙飞, 唐华苹, 王鹏飞, 康国章, 韩巧霞. 小麦苗期外施脯氨酸增强抗旱性的生理机制研究[J]. 中国农业科技导报, 2025, 27(11): 93-101.
Huanting SHI, Longfei YANG, Huaping TANG, Pengfei WANG, Guozhang KANG, Qiaoxia HAN. Study on Physiological Mechanism of Drought Resistance Enhanced by Proline Application at Seedling Stage of Wheat[J]. Journal of Agricultural Science and Technology, 2025, 27(11): 93-101.
基因名称 Gene name | 登录号 Genebank ID | 上游引物 Forward primer (5’-3’) | 下游引物 Reverse primer (5’-3’) |
|---|---|---|---|
| TaSOD | XM_020344830.1 | CATTGTCGATAGCCAGATTCCTTT | AGTCTTCCACCAGCATTTCCAGTA |
| TaPOD | AF387866.1 | GCCACAGCCACAGCCAGATAAC | CCACGAGCACCACCAGAGAAATG |
| TaCAT | D86327.1 | CCACCACAACAACCACTACGA | GTTGATGAATCGCTCTTGCCT |
| TaP5CS | AF022914.1 | CCTGCAGCATGCAATGTTAT | GTCAATCGCTGACTGCACAT |
| TaLEA | AF255053.1 | GATGCCACCAAGGAGAAGTC | TCACTTGTCTCCTCCCATCC |
| Actin | AB181991 | AGCGGTCGAACAACTGGTA | AAACGAAGGATAGCATGAGGA |
表1 实时荧光定量PCR引物信息
Table 1 qRT-PCR primer information
基因名称 Gene name | 登录号 Genebank ID | 上游引物 Forward primer (5’-3’) | 下游引物 Reverse primer (5’-3’) |
|---|---|---|---|
| TaSOD | XM_020344830.1 | CATTGTCGATAGCCAGATTCCTTT | AGTCTTCCACCAGCATTTCCAGTA |
| TaPOD | AF387866.1 | GCCACAGCCACAGCCAGATAAC | CCACGAGCACCACCAGAGAAATG |
| TaCAT | D86327.1 | CCACCACAACAACCACTACGA | GTTGATGAATCGCTCTTGCCT |
| TaP5CS | AF022914.1 | CCTGCAGCATGCAATGTTAT | GTCAATCGCTGACTGCACAT |
| TaLEA | AF255053.1 | GATGCCACCAAGGAGAAGTC | TCACTTGTCTCCTCCCATCC |
| Actin | AB181991 | AGCGGTCGAACAACTGGTA | AAACGAAGGATAGCATGAGGA |
处理 Treatment | 苗高 SH/cm | 最大根长 MRL/cm | 茎叶鲜重 SFW/mg | 茎叶干重 SDW/mg | 根鲜重 RFW/mg | 根干重 RDW/mg | 根冠比 R/S |
|---|---|---|---|---|---|---|---|
| CK | 14.18±0.19 a | 13.52±0.60 a | 120.00±4.00 a | 21.00±1.00 a | 40.00±1.00 a | 11.00±1.00 a | 331.00±12.70 c |
| PEG | 12.32±0.28 b | 11.96±0.44 a | 70.00±6.00 b | 16.00±0.00 c | 34.00±3.00 a | 7.00±0.00 b | 517.00±45.00 a |
| PEG+PRO | 13.75±0.08 a | 12.72±0.19 a | 80.00±2.00 b | 18.00±0.00 b | 37.00±3.00 a | 8.00±1.00 b | 466.00±44.00 ab |
| PRO | 14.25±0.15 a | 13.14±0.29 a | 110.00±8.00 a | 20.00±0.00 a | 43.00±4.00 a | 11.00±1.00 a | 387.00±44.00 bc |
表2 不同处理小麦幼苗的生长指标
Table 2 Growth indexes of wheat seedling under different treatments
处理 Treatment | 苗高 SH/cm | 最大根长 MRL/cm | 茎叶鲜重 SFW/mg | 茎叶干重 SDW/mg | 根鲜重 RFW/mg | 根干重 RDW/mg | 根冠比 R/S |
|---|---|---|---|---|---|---|---|
| CK | 14.18±0.19 a | 13.52±0.60 a | 120.00±4.00 a | 21.00±1.00 a | 40.00±1.00 a | 11.00±1.00 a | 331.00±12.70 c |
| PEG | 12.32±0.28 b | 11.96±0.44 a | 70.00±6.00 b | 16.00±0.00 c | 34.00±3.00 a | 7.00±0.00 b | 517.00±45.00 a |
| PEG+PRO | 13.75±0.08 a | 12.72±0.19 a | 80.00±2.00 b | 18.00±0.00 b | 37.00±3.00 a | 8.00±1.00 b | 466.00±44.00 ab |
| PRO | 14.25±0.15 a | 13.14±0.29 a | 110.00±8.00 a | 20.00±0.00 a | 43.00±4.00 a | 11.00±1.00 a | 387.00±44.00 bc |
图2 不同处理小麦幼苗的SPAD值和MDA含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 2 SPAD value and MDA content in wheat seedling under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图3 不同处理下小麦植株的SS和Pro含量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 3 Contents of SS and Pro in wheat seedling under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
图4 不同处理下小麦幼苗抗逆相关基因SOD、POD、CAT、LEA和P5CS的相对表达量注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 4 Relative expression levels of SOD, POD, CAT, LEA and P5CS in wheat seedling under different treatmentsNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
| [1] | 袁浩,王继唯,李赟虹,等.氮肥基追比对小麦产量、土壤水氮分布及利用的影响[J].水土保持学报, 2020, 34(5): 299-307. |
| YUAN H, WANG J W, LI Y H, et al.. Effects of the ratio of base-topdressing nitrogen on wheat yield, distribution and utilization of water and nitrogen in soil [J]. J. Soil Water Conserv., 2020, 34(5): 299-307. | |
| [2] | YUAN B B, WANG S D, GUO L H. Drought vulnerability assessment of winter wheat using an improved entropy-comprehensive fuzzy evaluation method: a case study of Henan province in China [J/OL]. Atmosphere, 2023, 14(5):779 [2024-04-15]. . |
| [3] | DUAN H Y, ZHU Y Q, LI J Y, et al.. Effects of drought stress on growth and development of wheat seedlings [J]. Int. J. Agric. Biol., 2017, 19(5): 1119-1124. |
| [4] | 张军,魏国,彭彦珉,等. 8份强筋小麦品种抗旱性评价[J].麦类作物学报, 2024, 44(4): 442-452. |
| ZHANG J, WEI G, PENG Y M, et al.. Drought resistance evaluation of eight strong gluten wheat varieties [J]. J. Triticeae Crops, 2024, 44(4): 442-452. | |
| [5] | 陈天青,王伟,杨康林,等.小麦萌发期耐旱性材料的筛选与评价[J].种子,2014,33(10):81-84. |
| CHEN T Q, WANG W, YANG K L, et al.. The analysis and screening of drought tolerance materials of wheat at germination stage [J]. Seed, 2014, 33(10):81-84. | |
| [6] | 王凯悦,陈芳泉,黄五星.植物干旱胁迫响应机制研究进展[J].中国农业科技导报,2019,21(2):19-25. |
| WANG K Y, CHEN F Q, HUANG W X.Research advance on drought stress response mechanism in plants [J]. J. Agric. Sci. Technol., 2019, 21(2):19-25. | |
| [7] | 李静静,任永哲,白露,等. PEG-6000模拟干旱胁迫下不同基因型 小麦品种萌发期抗旱性的综合鉴定[J].河南农业大学学报,2020,54(3):368-377. |
| LI J J, REN Y Z, BAI L, et al.. Comprehensive identification and evaluation of drought tolerance of different genotypic wheat varieties at germination stage by PEG-6000 simulated drought stress [J]. J. Henan Agric. Univ., 2020, 54(3):368-377. | |
| [8] | 武仙山,昌小平,景蕊莲.小麦灌浆期抗旱性鉴定指标的综合评价[J].麦类作物学报,2008,28(4):626-632. |
| WU X S, CHANG X P, JING R L.Screening indexes for drought resistance of wheat at grain-filling stage [J]. J. Triticeae Crops, 2008, 28(4):626-632. | |
| [9] | 冉文星,王冀川,王璞.小麦水分高效利用研究进展[J].中国农业科技导报,2016,18(1):103-111. |
| RAN W X, WANG J C, WANG P.Research progress on high efficient water utilization of wheat [J]. J. Agric. Sci. Technol., 2016, 18(1):103-111. | |
| [10] | SHAH K, KUMAR R G, VERMA S, et al.. Effect of cadmium on lipid peroxidation,superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings [J]. Plant Sci., 2001, 161(6):1135-1144. |
| [11] | 全先庆,张渝洁,单雷,等.高等植物脯氨酸代谢研究进展[J].生物技术通报,2007(1):14-18. |
| QUAN X Q, ZHANG Y J, SHAN L, et al.. Advances in proline metabolism researches of higher plants [J]. Biotechnol. Bull., 2007(1):14-18. | |
| [12] | 颜志明,孙锦,郭世荣.外源脯氨酸对盐胁迫下甜瓜幼苗硝酸还原的影响[J].植物科学学报,2011,29(1):118-123. |
| YAN Z M, SUN J, GUO S R. Effects of exogenous proline on nitrate reduction in melon seedlings under salt stress [J]. Plant Sci. J., 2011, 29(1):118-123. | |
| [13] | 张烈,沈秀瑛,孙彩霞.脯氨酸对玉米抗旱性影响的研究[J].华北农学报,1999,14(1):38-41. |
| ZHANG L, SHEN X Y, SUN C X.Studies on effects of proline on drought resistance in maize [J]. Acta Agric.Boreali-Sin., 1999, 14(1):38-41. | |
| [14] | 马鹏图,苏世平,李毅,等.外源脯氨酸对自然干旱下白刺叶片渗透调节与抗氧化酶活性的影响[J].甘肃农业大学学报,2020,55(4):121-127, 136. |
| MA P T, SU S P, LI Y, et al.. Effects of exogenous proline on osmotic adjustment and antioxidant enzymes in the leaves of Nitraria tangutorum under natural drought stress [J]. J. Gansu Agric. Univ., 2020, 55(4):121-127, 136. | |
| [15] | 刘书仁,郭世荣,程玉静,等.外源脯氨酸对高温胁迫下黄瓜幼苗叶片AsA-GSH循环和光合荧光特性的影响[J].西北植物学报,2010,30(2):309-316. |
| LIU S R, GUO S R, CHENG Y J, et al.. Effects of exogenous proline on the ascorbat-glutahione cycle and photosynthetic fluorescence characteristics in leaves of cucumber seedlings under high temperature stress [J]. Acta Bot. Bor-Occid. Sin., 2010, 30(2):309-316. | |
| [16] | 左师宇.脯氨酸提高玉米耐低温胁迫的生理机理研究[D].哈尔滨:东北农业大学, 2022. |
| ZUO S Y. Physiological mechanism of proline improving maize tolerance to low temperature stress [D]. Harbin: Northeast Agricultural University, 2022. | |
| [17] | 胡文成.水杨酸、脯氨酸、γ-氨基丁酸对盐胁迫下水稻抗氧化系统的调控效应[D].哈尔滨:东北农业大学,2017. |
| HU W C. Regulation effect of combined application of SA, proline and GABA on the antioxidant system of rice under salt stress [D]. Harbin: Northeast Agricultural University, 2017. | |
| [18] | 高彦强.外源脯氨酸对芹菜盐胁迫的缓解效应[D].兰州:甘肃农业大学, 2023. |
| GAO Y Q. Mitigating effect of exogenous proline on salt stress in celery [D]. Lanzhou: Gansu Agricultural University, 2023. | |
| [19] | 雍晓宇,张奥深,韩巧霞,等.外源施用脯氨酸缓解拔节期冬小麦冻害效应分析[J/OL].分子植物育种,2024:1-9 [2024-04-15].. |
| YONG X Y, ZHANG A S, HAN Q X, et al.. Effect of exogenous proline application on alleviating freezing injury of winter wheat at jointing stage [J/OL]. Mol. Plant Breed., 2024:1-9 [2024-04-15]. . | |
| [20] | 魏良迪,李宁,杨进文,等.山西省主推小麦品种芽期及苗期的抗旱性评价[J].生态学杂志,2022,41(5):873-879. |
| WEI L D, LI N, YANG J W, et al.. Drought resistance of major wheat varieties in Shanxi province at germination and seedling stages [J]. Chin. J. Ecol., 2022, 41(5):873-879. | |
| [21] | 高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006: 210-211. |
| [22] | SHI H, WANG B, YANG P, et al.. Differences in sugar accumulation and mobilization between sequential and non-sequential senescence wheat cultivars under natural and drought conditions [J/OL]. PLoS One, 2016, 11(11):e0166155 [2024-04-15]. . |
| [23] | 张以顺,黄霞,陈云凤.植物生理学实验教程[M].北京:高等教育出版社,2009:1-180. |
| [24] | 张奥深,雍晓宇,韩巧霞,等.外施2,4-表油菜素内酯缓解冬小麦拔节期冻害胁迫效应[J].华北农学报,2022,37(2):78-83. |
| ZHANG A S, YONG X Y, HAN Q X, et al.. Alleviating effect of external application of 2,4-epbrassinolide on freezing stress in winter wheat at jointing stage [J]. Acta Agric. Boreali-Sin., 2022, 37(2):78-83. | |
| [25] | SALLAM A, ALQUDAH A M, DAWOOD M F A, et al.. Drought stress tolerance in wheat and barley:advances in physiology,breeding and genetics research [J/OL]. Int. J. Mol. Sci., 2019, 20(13):3137 [2024-04-15]. . |
| [26] | LIANG X, ZHANG L, NATARAJAN S K, et al.. Proline mechanisms of stress survival [J]. Antioxid. Redox Signal., 2013, 19(9):998-1011. |
| [27] | 梁新华,许兴,徐兆桢,等.干旱对春小麦旗叶叶绿素a荧光动力学特征及产量间关系的影响[J].干旱地区农业研究,2001,19(3):72-77. |
| LIANG X H, XU X, XU Z Z, et al.. Study on the relation between the effects of water stress on the flag leaf chlorophyll a fluorescence induction kinetics and the yields of spring wheat genotypes in late growth season [J]. Agric. Res. Arid Areas, 2001, 19(3):72-77. | |
| [28] | 苏世平,李毅,刘小娥,等.外源脯氨酸对缓解红砂干旱胁迫的机理研究[J].草业学报, 2022, 31(6): 127-138. |
| SU S P, LI Y, LIU X E, et al.. A study of the mechanism of drought stress alleviation by exogenous proline applied to Reaumuria soongorica [J]. Acta Pratac. Sin., 2022, 31(6): 127-138. | |
| [29] | 杨志莹,张海良,王胜,等.盐胁迫下丁香叶绿素含量与SPAD值相关性分析[J].山东农业科学,2021,53(9):8-12. |
| YANG Z Y, ZHANG H L, WANG S, et al.. Correlation analysis between chlorophyll content and SPAD value of Syringa under salt stress [J]. Shandong Agric. Sci., 2021, 53(9):8-12. | |
| [30] | 尚永胜,孙思维,杨文瑾,等.平欧杂交榛叶片叶绿素含量与SPAD值相关性研究[J].林业科技, 2021, 46(4): 15-17. |
| SHANG Y S, SUN S W, YANG W J, et al.. Study on the correlation between chlorophyll content and SPAD value in Corylus heterophylla×avellana leaf [J]. For. Sci. Technol., 2021, 46(4): 15-17. | |
| [31] | 陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯, 1991 (2): 84-90. |
| CHEN S Y. Injury of membrane lipid peroxidation to plant cells [J]. Plant Physiol. Comm., 1991 (2): 84-90. | |
| [32] | 梁太波,张景玲,田雷,等.干旱胁迫下外源甜菜碱和脯氨酸对烤烟抗氧化代谢的影响[J].烟草科技, 2013 (2): 68-71. |
| LIANG T B, ZHANG J L, TIAN L, et al.. Effects of exogenous glycine betaine and proline on antioxidant metabolism of flue-cured tobacco under drought stress [J]. Tob. Sci. Technol., 2013 (2): 68-71. | |
| [33] | 邢晓琳.外源脯氨酸和水杨酸对盐碱胁迫下紫花苜蓿生理特性及抗氧化酶基因表达的影响[D].沈阳:辽宁大学, 2020. |
| XING X L. Effects of exogenous proline and salicylic acid on physiological characteristics and antioxidant enzyme gene expression of Alfalfa under salt-alkali stress [D]. Shenyang: Liaoning University, 2020. | |
| [34] | LI H, LIU Y, ZHEN B, et al.. Proline spray relieves the adverse effects of drought on wheat flag leaf function [J]. Plants (basel switz.), 2024, 13(7):957-968. |
| [35] | 裴斌,张光灿,张淑勇,等.土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J].生态学报,2013,33(5):1386-1396. |
| PEI B, ZHANG G C, ZHANG S Y, et al.. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn.seedings [J]. Acta Ecol. Sin., 2013, 33(5):1386-1396. | |
| [36] | 胡小文,王彦荣, 武艳培.荒漠草原植物抗旱生理生态学研究进展[J].草业学报,2004,13(3):9-15. |
| HU X W, WANG Y R, WU Y P.Research progress on eco-physiological responses of desert grassland plants to drought conditions [J]. Acta Pratac. Sin., 2004, 13(3):9-15. | |
| [37] | 刘聪,董腊嫒,林建中,等.逆境胁迫下植物体内活性氧代谢及调控机理研究进展[J].生命科学研究,2019,23(3):253-258. |
| LIU C, DONG L A, LIN J Z, et al.. Research advances on regulation mechanism of reactive oxygen species metabolism under stresses [J]. Life Sci. Res., 2019, 23(3):253-258. | |
| [38] | 宋敏,徐文竞,彭向永,等.外源脯氨酸对镉胁迫下小麦幼苗生长的影响[J].应用生态学报,2013,24(1):129-134. |
| SONG M, XU W J, PENG X Y, et al.. Effects of exogenous proline on the growth of wheat seedlings under cadmium stress [J]. Chin. J. Appl. Ecol., 2013, 24(1):129-134. | |
| [39] | 白桦,王玉国.外源脯氨酸对盐胁迫下大豆愈伤组织SOD和POD活性的影响[J].华北农学报,2002,17(3):37-40. |
| BAI H, WANG Y G. Effect of exogenous proline on SOD and POD activity for soybean callus under salt stress [J]. Acta Agric. Boreali-Sin., 2002, 17(3):37-40. | |
| [40] | 柯媛媛,陈翔,倪芊芊,等.低温逆境胁迫下小麦ROS代谢及调控机制研究进展[J].大麦与谷类科学,2021,38(1):1-6, 21. |
| KE Y Y, CHEN X, NI Q Q, et al.. Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress [J]. Barley Cereal Sci., 2021, 38(1):1-6, 21. | |
| [41] | TÓTH B, JUHÁSZ C, LABUSCHAGNE M, et al.. The influence of soil acidity on the physiological responses of two bread wheat cultivars [J/OL]. Plants (basel switz.), 2020, 9(11):1472 [2024-04-15].. |
| [42] | MHAMDI A, QUEVAL G, CHAOUCH S, et al.. Catalase function in plants:a focus on Arabidopsis mutants as stress-mimic models [J]. J. Exp. Bot., 2010, 61(15):4197-4220. |
| [43] | 闵东红,赵月,陈阳,等.小麦胁迫相关基因TaLEAL3的克隆及分子特性分析[J].作物学报,2012,38(10):1847-1855. |
| MIN D H, ZHAO Y, CHEN Y, et al.. Isolation and molecular characterization of stress-related TaLEAL3 gene in wheat [J]. Acta Agron. Sin., 2012, 38(10):1847-1855. | |
| [44] | SU M, LI X F, MA X Y, et al.. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment [J]. Plant Sci., 2011, 181(6): 652-659. |
| [1] | 吕彩霞, 李永福, 信会男, 李娜, 赖宁, 耿庆龙, 陈署晃. 缓释氮肥对滴灌冬小麦产量及土壤硝/铵态氮的影响[J]. 中国农业科技导报, 2025, 27(8): 179-186. |
| [2] | 喻好好, 董相书, 赵颢, 李忠贤, 胡发广, 李亚男, 娄予强, 何飞飞. 干旱胁迫下小粒咖啡SNP位点与可变剪接分析[J]. 中国农业科技导报, 2025, 27(6): 72-82. |
| [3] | 秦岭, 王艳珂, 陈二影, 杨延兵, 黎飞飞, 张梦媛, 管延安. ABA缓解谷子幼苗干旱胁迫生理特性分析[J]. 中国农业科技导报, 2025, 27(4): 36-44. |
| [4] | 陈宜新, 杨秀波, 田士军, 王聪, 白志英, 李存东, 张科. 陆地棉GhCOMT28对干旱胁迫的响应[J]. 中国农业科技导报, 2025, 27(4): 45-56. |
| [5] | 陈慧, 张永强, 陈传信, 徐其江, 聂石辉, 杨卫君, 雷钧杰, 张妍婷. 北疆冬小麦产量形成对滴灌量的响应[J]. 中国农业科技导报, 2025, 27(10): 214-222. |
| [6] | 程梦航, 赵宇, 罗水文, 杜昊阳, 赵若涵, 刘建凤, 丁民伟, 夏雪岩. 氧化石墨烯对干旱胁迫下谷子生长发育及生理生化过程的影响[J]. 中国农业科技导报, 2025, 27(10): 24-31. |
| [7] | 薛振宇, 张康康, 张元元, 闫强强, 姚立蓉, 张宏, 孟亚雄, 司二静, 李葆春, 马小乐, 王化俊, 汪军成. 优质抗旱小麦种质的筛选及功能基因检测[J]. 中国农业科技导报, 2025, 27(1): 35-49. |
| [8] | 桂意云, 李海碧, 梁强, 杨荣仲, 韦金菊, 韦德斌, 李文教, 刘昔辉, 周会. 基于人为控水和自然水分胁迫下的甘蔗茎节生长变化[J]. 中国农业科技导报, 2024, 26(7): 25-36. |
| [9] | 魏茜雅, 林欣琪, 梁腊梅, 秦中维, 李映志. 褪黑素引发对干旱胁迫下辣椒种子萌发和幼苗生长的影响[J]. 中国农业科技导报, 2024, 26(4): 46-57. |
| [10] | 赵刚, 王淑英, 李尚中, 张建军, 党翼, 王磊, 李兴茂, 程万莉, 周刚, 倪胜利, 樊廷录. 黄土旱塬区近40年降水对冬小麦耗水和产量的影响[J]. 中国农业科技导报, 2024, 26(3): 164-173. |
| [11] | 张宏, 李卫国, 张晓东, 卢必慧, 张琤琤, 李伟, 马廷淮. 基于HJ-1星和GF-1号影像融合特征提取冬小麦种植面积[J]. 中国农业科技导报, 2024, 26(2): 109-119. |
| [12] | 田蕊, 张华, 黄玫红, 邵振启, 李喜焕, 张彩英. 大豆抗旱遗传位点及候选基因发掘[J]. 中国农业科技导报, 2023, 25(9): 69-82. |
| [13] | 赵明宇, 贾浩, 石晓宇, 潘义, 黄妤韵, 王凯澄, 褚庆全. 近30年黄淮海农作区冬小麦水足迹分布变化[J]. 中国农业科技导报, 2023, 25(8): 138-147. |
| [14] | 王艳成, 张纪月, 冯帅奇, 梁雪, 张振, 董微巍, 姬文秀. 外源促生菌联合有机肥对干旱胁迫下参地土壤性状及人参抗逆性影响[J]. 中国农业科技导报, 2023, 25(8): 196-202. |
| [15] | 王爽, 侯毅兴, 冯琳骄, 卢倩倩, 周龙. 干旱胁迫对鲜食葡萄叶片解剖结构的影响[J]. 中国农业科技导报, 2023, 25(6): 40-49. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||