中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (10): 72-83.DOI: 10.13304/j.nykjdb.2024.0297
陈秋洁(), 黄玉妹, 冼金燕, 李凯童, 黄杰兰, 石小秀, 王柳萍(
), 涂冬萍(
)
收稿日期:
2024-04-14
接受日期:
2024-06-04
出版日期:
2025-10-15
发布日期:
2025-10-15
通讯作者:
王柳萍,涂冬萍
作者简介:
陈秋洁 E-mail:2358518871@qq.com
基金资助:
Qiujie CHEN(), Yumei HUANG, Jinyan XIAN, Kaitong LI, Jielan HUANG, Xiaoxiu SHI, Liuping WANG(
), Dongping TU(
)
Received:
2024-04-14
Accepted:
2024-06-04
Online:
2025-10-15
Published:
2025-10-15
Contact:
Liuping WANG,Dongping TU
摘要:
YUCCA 基因编码黄素单加氧酶,在植物生长发育过程中起重要调控作用。为探究YUCCA 基因对蛇足石杉生长发育的作用,对蛇足石杉YUCCA 基因家族进行生物信息学及组织特异性表达分析。结果表明,在蛇足石杉全长转录组中共鉴定出 18个 HsYUCCA 基因家族成员,氨基酸长度为150~544 aa,蛋白质相对分子量为16 105.53~59 058.24 Da,等电点在4.36~9.63,其中,有9个为碱性蛋白,有4个为稳定蛋白,有15个为亲水蛋白,有7个具有跨膜结构,分布在细胞核、细胞膜、细胞质、线粒体、叶绿体以及过氧化物酶体中。HsYUCCA4 在孢子、茎、芽胞中的表达量最高,HsYUCCA6在叶中的表达量最高。HsYUCCA 启动子区拥有激素响应、光响应、胁迫响应等35种顺式作用元件,并具有15 种保守基序。HsYUCCA1、HsYUCCA2和HsYUCCA4,HsYUCCA5和HsYUCCA6,HsYUCCA7和HsYUCCA13具有相似的理化性质、亚细胞定位、二级结构、三级结构及保守基序,系统发育表现出一定的同源性,进化过程趋于一致。以上研究结果为解析蛇足石杉 YUCCA 基因在生长发育和繁殖过程中的作用机理提供了理论依据。
中图分类号:
陈秋洁, 黄玉妹, 冼金燕, 李凯童, 黄杰兰, 石小秀, 王柳萍, 涂冬萍. 蛇足石杉YUCCA基因家族的生物信息学及其组织特异表达分析[J]. 中国农业科技导报, 2025, 27(10): 72-83.
Qiujie CHEN, Yumei HUANG, Jinyan XIAN, Kaitong LI, Jielan HUANG, Xiaoxiu SHI, Liuping WANG, Dongping TU. Bioinformatics and Tissue-specific Expression Analysis of YUCCA Gene Family in Huperzia serrata[J]. Journal of Agricultural Science and Technology, 2025, 27(10): 72-83.
网站平台 Website platform | 网址 Website | 功能 Function |
---|---|---|
BLAST | https://blast.ncbi.nlm.nih.gov/Blast.cgi | 序列比对筛选基因 Screening genes by sequence alignment |
ORF Finder | https://www.ncbi.nlm.nih.gov/orffinder | 获得潜在的蛋白质编码片段 Obtain potential protein-coding fragments |
SMART | http://smart.embl-heidelberg.de/ | 结构域预测 Domain prediction |
InterPro | https://www.ebi.ac.uk/interpro/search/sequence/ | 结构域预测 Domain prediction |
Batch CD-Search | https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi | 结构域预测 Domain prediction |
ExPAsy | https://web.expasy.org/protparam/ | 理化性质分析 Analysis of physicochemical property |
Plant-mPLoc | http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ | 亚细胞定位预测 Subcellular localization prediction |
DeepTMHMM | https://dtu.biolib.com/DeepTMHMM | 跨膜预测 Transmembrane prediction |
SignalP-6.0 | https://services.healthtech.dtu.dk/services/SignalP-6.0/ | 信号肽预测 Signal peptide prediction |
Prabi | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html | 二级结构预测 Secondary structure prediction |
Phyre2 | http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index | 三级结构预测 Tertiary structure prediction |
MEME Suite 5.5.5 | https://meme-suite.org/meme/tools/meme | 保守基序预测 Conserved motif prediction |
Plantcare | https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ | 顺式作用元件预测 Cis-acting element prediction |
表1 生物信息学分析的主要工具
Table 1 Main tools of bioinformatics analysis
网站平台 Website platform | 网址 Website | 功能 Function |
---|---|---|
BLAST | https://blast.ncbi.nlm.nih.gov/Blast.cgi | 序列比对筛选基因 Screening genes by sequence alignment |
ORF Finder | https://www.ncbi.nlm.nih.gov/orffinder | 获得潜在的蛋白质编码片段 Obtain potential protein-coding fragments |
SMART | http://smart.embl-heidelberg.de/ | 结构域预测 Domain prediction |
InterPro | https://www.ebi.ac.uk/interpro/search/sequence/ | 结构域预测 Domain prediction |
Batch CD-Search | https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi | 结构域预测 Domain prediction |
ExPAsy | https://web.expasy.org/protparam/ | 理化性质分析 Analysis of physicochemical property |
Plant-mPLoc | http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/ | 亚细胞定位预测 Subcellular localization prediction |
DeepTMHMM | https://dtu.biolib.com/DeepTMHMM | 跨膜预测 Transmembrane prediction |
SignalP-6.0 | https://services.healthtech.dtu.dk/services/SignalP-6.0/ | 信号肽预测 Signal peptide prediction |
Prabi | https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html | 二级结构预测 Secondary structure prediction |
Phyre2 | http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index | 三级结构预测 Tertiary structure prediction |
MEME Suite 5.5.5 | https://meme-suite.org/meme/tools/meme | 保守基序预测 Conserved motif prediction |
Plantcare | https://bioinformatics.psb.ugent.be/webtools/plantcare/html/ | 顺式作用元件预测 Cis-acting element prediction |
蛋白 Protein | 氨基酸数量Number of amino acids/aa | 分子量 Molecular weight/Da | 等电点 pI | 不稳定指数Instability index | 脂溶指数Aliphatic index | 平均亲水性指数 GRAVY |
---|---|---|---|---|---|---|
HsYUCCA1 | 207 | 22 567.66 | 5.97 | 45.77 | 83.04 | -0.338 |
HsYUCCA2 | 207 | 22 567.66 | 5.97 | 45.77 | 83.04 | -0.338 |
HsYUCCA3 | 167 | 17 161.46 | 5.30 | 41.09 | 86.59 | 0.166 |
HsYUCCA4 | 207 | 22 567.66 | 5.97 | 45.77 | 83.04 | -0.338 |
HsYUCCA5 | 410 | 44 864.99 | 8.54 | 45.29 | 77.12 | -0.260 |
HsYUCCA6 | 410 | 44 864.99 | 8.54 | 45.29 | 77.12 | -0.260 |
HsYUCCA7 | 150 | 16 105.53 | 8.83 | 54.93 | 85.93 | -0.198 |
HsYUCCA8 | 247 | 27 058.52 | 4.58 | 40.04 | 92.83 | -0.039 |
HsYUCCA9 | 244 | 28 655.83 | 7.56 | 28.72 | 88.65 | -0.505 |
HsYUCCA10 | 212 | 24 521.68 | 5.60 | 42.25 | 63.02 | -0.804 |
HsYUCCA11 | 407 | 46 074.16 | 9.46 | 27.67 | 77.57 | -0.354 |
HsYUCCA12 | 197 | 22 763.87 | 9.63 | 23.84 | 105.33 | 0.226 |
HsYUCCA13 | 150 | 16 105.53 | 8.83 | 54.93 | 85.93 | -0.198 |
HsYUCCA14 | 354 | 28 602.97 | 4.62 | 42.33 | 97.57 | -0.019 |
HsYUCCA15 | 161 | 17 571.91 | 4.36 | 48.24 | 85.59 | -0.081 |
HsYUCCA16 | 330 | 37 721.64 | 9.01 | 44.11 | 80.12 | -0.488 |
HsYUCCA17 | 544 | 59 058.24 | 4.82 | 40.04 | 98.47 | 0.011 |
HsYUCCA18 | 150 | 17 856.82 | 9.22 | 38.15 | 104.73 | -0.191 |
表2 HsYUCCA蛋白的理化性质
Table 2 Physicochemical characteristics ofHsYUCCA proteins
蛋白 Protein | 氨基酸数量Number of amino acids/aa | 分子量 Molecular weight/Da | 等电点 pI | 不稳定指数Instability index | 脂溶指数Aliphatic index | 平均亲水性指数 GRAVY |
---|---|---|---|---|---|---|
HsYUCCA1 | 207 | 22 567.66 | 5.97 | 45.77 | 83.04 | -0.338 |
HsYUCCA2 | 207 | 22 567.66 | 5.97 | 45.77 | 83.04 | -0.338 |
HsYUCCA3 | 167 | 17 161.46 | 5.30 | 41.09 | 86.59 | 0.166 |
HsYUCCA4 | 207 | 22 567.66 | 5.97 | 45.77 | 83.04 | -0.338 |
HsYUCCA5 | 410 | 44 864.99 | 8.54 | 45.29 | 77.12 | -0.260 |
HsYUCCA6 | 410 | 44 864.99 | 8.54 | 45.29 | 77.12 | -0.260 |
HsYUCCA7 | 150 | 16 105.53 | 8.83 | 54.93 | 85.93 | -0.198 |
HsYUCCA8 | 247 | 27 058.52 | 4.58 | 40.04 | 92.83 | -0.039 |
HsYUCCA9 | 244 | 28 655.83 | 7.56 | 28.72 | 88.65 | -0.505 |
HsYUCCA10 | 212 | 24 521.68 | 5.60 | 42.25 | 63.02 | -0.804 |
HsYUCCA11 | 407 | 46 074.16 | 9.46 | 27.67 | 77.57 | -0.354 |
HsYUCCA12 | 197 | 22 763.87 | 9.63 | 23.84 | 105.33 | 0.226 |
HsYUCCA13 | 150 | 16 105.53 | 8.83 | 54.93 | 85.93 | -0.198 |
HsYUCCA14 | 354 | 28 602.97 | 4.62 | 42.33 | 97.57 | -0.019 |
HsYUCCA15 | 161 | 17 571.91 | 4.36 | 48.24 | 85.59 | -0.081 |
HsYUCCA16 | 330 | 37 721.64 | 9.01 | 44.11 | 80.12 | -0.488 |
HsYUCCA17 | 544 | 59 058.24 | 4.82 | 40.04 | 98.47 | 0.011 |
HsYUCCA18 | 150 | 17 856.82 | 9.22 | 38.15 | 104.73 | -0.191 |
蛋白 Protein | 亚细胞定位 Subcellular localization | 信号肽 Signal peptide | 跨膜Transmembrane |
---|---|---|---|
HsYUCCA1 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA2 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA3 | 叶绿体 Chloroplast | 无No | 1 |
HsYUCCA4 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA5 | 叶绿体,细胞质 Chloroplast, cytoplasm | 无No | 0 |
HsYUCCA6 | 叶绿体,细胞质 Chloroplast, cytoplasm | 无No | 0 |
HsYUCCA7 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA8 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA9 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA10 | 细胞质,过氧化物酶体 Cytoplasm, peroxisome | 无No | 0 |
HsYUCCA11 | 叶绿体,细胞质 Chloroplast, cytoplasm | 无No | 0 |
HsYUCCA12 | 细胞膜 Cell membrane | 无No | 2 |
HsYUCCA13 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA14 | 叶绿体,细胞核 Chloroplast, nucleus | 无No | 0 |
HsYUCCA15 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA16 | 叶绿体 Chloroplast | 无No | 0 |
HsYUCCA17 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA18 | 细胞核 Nucleus | 无No | 0 |
表3 HsYUCCA蛋白的亚细胞定位及信号肽预测
Table 3 Subcellular localization and signal peptide prediction of HsYUCCAs proteins
蛋白 Protein | 亚细胞定位 Subcellular localization | 信号肽 Signal peptide | 跨膜Transmembrane |
---|---|---|---|
HsYUCCA1 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA2 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA3 | 叶绿体 Chloroplast | 无No | 1 |
HsYUCCA4 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA5 | 叶绿体,细胞质 Chloroplast, cytoplasm | 无No | 0 |
HsYUCCA6 | 叶绿体,细胞质 Chloroplast, cytoplasm | 无No | 0 |
HsYUCCA7 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA8 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA9 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA10 | 细胞质,过氧化物酶体 Cytoplasm, peroxisome | 无No | 0 |
HsYUCCA11 | 叶绿体,细胞质 Chloroplast, cytoplasm | 无No | 0 |
HsYUCCA12 | 细胞膜 Cell membrane | 无No | 2 |
HsYUCCA13 | 线粒体 Mitochondrion | 无No | 1 |
HsYUCCA14 | 叶绿体,细胞核 Chloroplast, nucleus | 无No | 0 |
HsYUCCA15 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA16 | 叶绿体 Chloroplast | 无No | 0 |
HsYUCCA17 | 细胞核 Nucleus | 无No | 0 |
HsYUCCA18 | 细胞核 Nucleus | 无No | 0 |
蛋白 Protein | 建模氨基酸残基数量(比例) Modeling amino acids residues number (proportion/%) | 模型 Model | 序列同源性 Sequence homology/% | 类型 Type |
---|---|---|---|---|
HsYUCCA1 | 139(67) | c4eqfA | 99.7 | 转运蛋白 Transport protein |
HsYUCCA2 | 139(67) | c4eqfA | 99.7 | 转运蛋白 Transport protein |
HsYUCCA3 | 99(59) | c6l9sA | 99.8 | 金属结合蛋白 Metal binding protein |
HsYUCCA4 | 139(67) | c4eqfA | 99.7 | 转运蛋白 Transport protein |
HsYUCCA5 | 284(69) | c8ewuB | 100.0 | 生物合成蛋白,氧化还原酶Biosynthetic protein, oxidoreductase |
HsYUCCA6 | 284(69) | c8ewuB | 100.0 | 生物合成蛋白,氧化还原酶Biosynthetic protein, oxidoreductase |
HsYUCCA7 | 144(96) | c4uzyA | 99.7 | 运动蛋白 Motor protein |
HsYUCCA8 | 92(37) | c3q5xA | 4.2 | 细胞周期 Cell cycle |
HsYUCCA9 | 237(97) | c4bzbB | 100.0 | 水解酶 Hydrolase |
HsYUCCA10 | 199(94) | c5j7xA | 100.0 | 氧化还原酶 Oxidoreductase |
HsYUCCA11 | 330(81) | c5mq6A | 100.0 | 氧化还原酶 Oxidoreductase |
HsYUCCA12 | 69(35) | c6ttjC | 8.1 | 水解酶 Hydrolase |
HsYUCCA13 | 144(96) | c4uzyA | 99.7 | 运动蛋白 Motor protein |
HsYUCCA14 | 260(73) | c6wc3A | 96.0 | 转运蛋白 Transport protein |
HsYUCCA15 | 128(79) | c5h11A | 91.6 | 胞吐 Exocytosis |
HsYUCCA16 | 317(96) | c3uclA | 100.0 | 氧化还原酶 Oxidoreductase |
HsYUCCA17 | 494(90) | c5h11A | 98.1 | 胞吐 Exocytosis |
HsYUCCA18 | 117(78) | c4bzbB | 100.0 | 水解酶 Hydrolase |
表4 HsYUCCA蛋白的三级结构预测
Table 4 Tertiary structure prediction of HsYUCCAs proteins
蛋白 Protein | 建模氨基酸残基数量(比例) Modeling amino acids residues number (proportion/%) | 模型 Model | 序列同源性 Sequence homology/% | 类型 Type |
---|---|---|---|---|
HsYUCCA1 | 139(67) | c4eqfA | 99.7 | 转运蛋白 Transport protein |
HsYUCCA2 | 139(67) | c4eqfA | 99.7 | 转运蛋白 Transport protein |
HsYUCCA3 | 99(59) | c6l9sA | 99.8 | 金属结合蛋白 Metal binding protein |
HsYUCCA4 | 139(67) | c4eqfA | 99.7 | 转运蛋白 Transport protein |
HsYUCCA5 | 284(69) | c8ewuB | 100.0 | 生物合成蛋白,氧化还原酶Biosynthetic protein, oxidoreductase |
HsYUCCA6 | 284(69) | c8ewuB | 100.0 | 生物合成蛋白,氧化还原酶Biosynthetic protein, oxidoreductase |
HsYUCCA7 | 144(96) | c4uzyA | 99.7 | 运动蛋白 Motor protein |
HsYUCCA8 | 92(37) | c3q5xA | 4.2 | 细胞周期 Cell cycle |
HsYUCCA9 | 237(97) | c4bzbB | 100.0 | 水解酶 Hydrolase |
HsYUCCA10 | 199(94) | c5j7xA | 100.0 | 氧化还原酶 Oxidoreductase |
HsYUCCA11 | 330(81) | c5mq6A | 100.0 | 氧化还原酶 Oxidoreductase |
HsYUCCA12 | 69(35) | c6ttjC | 8.1 | 水解酶 Hydrolase |
HsYUCCA13 | 144(96) | c4uzyA | 99.7 | 运动蛋白 Motor protein |
HsYUCCA14 | 260(73) | c6wc3A | 96.0 | 转运蛋白 Transport protein |
HsYUCCA15 | 128(79) | c5h11A | 91.6 | 胞吐 Exocytosis |
HsYUCCA16 | 317(96) | c3uclA | 100.0 | 氧化还原酶 Oxidoreductase |
HsYUCCA17 | 494(90) | c5h11A | 98.1 | 胞吐 Exocytosis |
HsYUCCA18 | 117(78) | c4bzbB | 100.0 | 水解酶 Hydrolase |
图5 HsYUCCA基因家族的顺式作用元件热图注:HRE—激素响应元件;LRE—光响应元件;SRE—胁迫响应元件;TSE—组织特异性元件;ORE—其他响应元件。
Fig. 5 Cis-acting elements heat map of HsYUCCA genefamilyNote:HRE—Hormone responsive elements; LRE—Light responsive elements; SRE—Stress responsive elements; TSE—Tissue specific elements; ORE—Other responsive elements.
[1] | SAKATA T, YAGIHASHI N, HIGASHITANI A. Tissue-specific auxin signaling in response to temperature fluctuation [J]. Plant Signal. Behav., 2010, 5(11): 1510-1512. |
[2] | WON C, SHEN X, MASHIGUCHI K,et al.. Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis [J]. Proc. Natl. Acad. Sci. USA, 2011, 108(45): 18518-18523. |
[3] | MASHIGUCHI K, TANAKA K, SAKAI T, et al.. The main auxin biosynthesis pathway in Arabidopsis [J]. Proc. Natl. Acad.Sci. USA, 2011, 108(45): 18512-18517. |
[4] | DI D W, WU L, ZHANG L, et al.. Functional roles of Arabidopsis CKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin [J/OL]. Sci. Rep., 2016, 6: 36866 [2024-03-10]. . |
[5] | ZHAO Y, CHRISTENSEN S K, FANKHAUSER C, et al.. A role for flavin monooxygenase-like enzymes in auxin biosynthesis [J]. Viruses, 2001, 291(5502): 306-309. |
[6] | ROSS J J, TIVENDALE N D, REID J B, et al.. Reassessing the role of YUCCAs in auxin biosynthesis [J]. Plant Signal. Behav.,2011, 6(3): 437-439. |
[7] | OVERVOORDE P, FUKAKI H, BEECKMAN T. Auxin control of root development [J/OL]. Cold Spring Harb. Perspect. Biol.,2010, 2(6): a001537 [2024-03-10]. . |
[8] | CAO X, YANG H, SHANG C, et al.. The roles of auxin biosynthesis YUCCA gene family in plants [J/OL]. Int. J. Mol.Sci., 2019, 20(24): E6343 [2024-03-10]. . |
[9] | GÉLINAS-MARION A, ELÉOUËT M P, COOK S D, et al..Plant development in the garden pea as revealed by mutations in the Crd/PsYUC1 gene [J/OL].Genes, 2023, 14(12): 2115 [2024-03-10]. . |
[10] | ZHANG Y H, YIN H, ZHAO X M, et al.. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L.mediated by auxin signaling [J]. Carbohydr. Polym.,2014, 113: 446-454. |
[11] | 钟海英, 罗义, 龚钰华, 等. RNAi法分析香菇YUCCA8基因的功能[J]. 食用菌学报, 2021, 28(3): 11-18. |
ZHONG H Y, LUO Y, GONG Y H, et al.. Functional analysis of Indole-3-pyruvate monooxygenase gene YUCCA8 involved in heat resistance of Lentinula edodes by RNAi [J]. Acta Edulis Fungi, 2021, 28(3): 11-18. | |
[12] | 王晶.菘蓝IiYUCCA6基因的克隆及其功能研究[D]. 西安: 陕西师范大学, 2018. |
WANG J. Cloning and functional analysis of IiYUCCA6 gene in Isatis indigotica [D]. Xi'an: Shaanxi Normal University, 2018. | |
[13] | 蒋日红, 张宪春. 广西石松科植物新记录及更正[J]. 广西林业科学, 2022, 51(3): 452-454. |
JIANG R H, ZHANG X C.New records and corrections of Lycopodiaceae from Guangxi [J]. Guangxi For. Sci., 2022, 51(3): 452-454. | |
[14] | 李籽杉, 安周捷, 王婧, 等. 蛇足石杉主要活性成分及其生物合成研究进展[J]. 中草药, 2022, 53(11): 3505-3517. |
LI Z S, AN Z J, WANG J, et al.. Active compounds and their biosynthesis of Huperzia serrate [J]. Chin.Tradit.Herb.Drugs,2022, 53(11): 3505-3517. | |
[15] | 黄玉妹, 谢采连, 周玲梅, 等. 千层塔基原及药效文献研究[J]. 亚太传统医药, 2023, 19(3): 183-189. |
HUANG Y M, XIE C L, ZHOU L M, et al.. Literature research on the original and efficacy of Huperzia serrate (Thunb.) Trev. [J]. Asia-Pacific Tradit. Med., 2023, 19(3): 183-189. | |
[16] | 王飞. 石杉碱甲片治疗阿尔茨海默症的疗效和安全性[J]. 中国老年保健医学, 2017, 15(6): 67-68. |
[17] | 张健, 李全, 周妍妍. 中药调控Nrf2通路防治阿尔茨海默病的研究进展[J]. 中国实验方剂学杂志, 2024, 30(9): 219-227. |
ZHANG J, LI Q, ZHOU Y Y. Research progress of traditional chinese medicine regulating Nrf2 pathway in the prevention and treatment of Alzheimer's disease [J]. Chin. J. Exp. Tradit. Med. Form., 2024, 30(9): 219-227. | |
[18] | BREIJYEH Z, KARAMAN R. Comprehensive review on Alzheimer's disease:causes and treatment [J/OL].Molecules (Basel Switz.), 2020, 25(24): E5789 [2024-03-10]. . |
[19] | 黄玉妹, 滕建北, 涂冬萍, 等. 蛇足石杉COBRA基因家族的分子生物信息学及表达分析[J]. 广西植物, 2024, 44(6):1105-1117. |
HUANG Y M, TENG J B, TU D P, et al.. Molecular bioinformatics and expression analysis of the COBRA gene family in Huperzia serrata [J]. Guihaia, 2024, 44(6): 1105-1117. | |
[20] | 李海波, 史济东, 张恺, 等.基于全长转录组的蛇足石杉ARF基因家族鉴定分析[J].广西植物, 2024, 44(6): 1091-1104. |
LI H B, SHI J D, ZHANG K, et al.. Identification and analysis of the ARF gene family based on full-length transcriptome in Huperzia serrata [J]. Guihaia, 2024, 44(6): 1091-1104. | |
[21] | YANG Y L, XU T, WANG H G,et al.. Genome-wide identification and expression analysis of the TaYUCCA gene family in wheat [J]. Mol. Biol. Rep., 2021, 48(2): 1269-1279. |
[22] | 刘洪.草莓YUCCA基因家族的分离与基因功能研究[D]. 南京:南京农业大学, 2012. |
LIU H. Molecular characterization and functional analyisis of the YUCCA flavin monooxygenase genes from strawberry (Fragaria L.) [D]. Nanjing: Nanjing Agricultural University, 2012. | |
[23] | 张倩倩, 田守蔚, 张洁, 等. 西瓜YUCCA基因家族鉴定及在果实成熟过程中的表达分析[J].中国蔬菜,2019(3):21-29. |
ZHANG Q Q, TIAN S W, ZHANG J, et al.. Identification of YUCCA gene family and expression analysis during watermelon fruit ripening process [J]. China Veg., 2019(3): 21-29. | |
[24] | 张燕萍, 童妍, 胡美娟, 等. 小兰屿蝴蝶兰YUCCA基因家族鉴定及在花朵中的表达分析[J]. 分子植物育种, 2024,22(13): 4177-4184. |
ZHANG Y P, TONG Y, HU M J, et al.. Identification of YUCCA gene family and analysis of its expression in flowers of Phalaenopsis equestris [J]. Mol. Plant Breeding, 2024, 22(13):4177-4184. | |
[25] | 褚晶, 田晓芹, 陈世华, 等.藜麦黄素单加氧酶基因(CqYUCCA)家族的全基因组鉴定与分析[J]. 烟台大学学报(自然科学与工程版), 2023, 36(1): 20-27. |
CHU J, TIAN X Q, CHEN S H, et al.. Genome-wide identification and analysis of flavin monooxygenase gene (CqYUCCA) family in quinoa (Chenopodium quinoa Willd.) [J].J. Yantai Univ. (Nat. Sci. Eng.), 2023, 36(1): 20-27. | |
[26] | 王仁汉, 宋志美, 屈旭, 等. 普通烟草YUCCA基因家族的生物信息学分析[J]. 江苏农业科学, 2021, 49(3): 61-65. |
[27] | 莫福磊, 束艺, 陈秀玲, 等. 基于全基因组的番茄YUCCA基因家族生物信息学分析[J]. 分子植物育种, 2020, 18(10):3159-3163. |
MO F L, SHU Y, CHEN X L, et al.. Bioinformatics analysis of tomato YUCCA gene family based on whole genome [J]. Mol.Plant Breed., 2020, 18(10): 3159-3163. | |
[28] | 袁美同, 李绍信, 纪丕钰, 等. 梨YUCCA基因家族的鉴定与生物信息学分析[J]. 分子植物育种, 2021, 19(19): 6328-6337. |
YUAN M T, LI S X, JI P Y, et al.. Identification and bioinformatics analysis of YUCCA gene family in Pyrus [J]. Mol.Plant Breed., 2021, 19(19): 6328-6337. | |
[29] | 闫学敏, 吴英华, 史艳, 等. 胡萝卜YUCCA基因家族鉴定及生物信息学分析[J]. 江苏农业科学, 2021, 49(23): 52-57. |
[30] | SONG C H, ZHANG D, ZHENG L W, et al.. Genome-wide identification and expression profiling of the YUCCA gene family in Malus domestica [J/OL]. Sci.Rep., 2020, 10:10866 [2024-03-10]. . |
[31] | 綦洋, 王柬钧, 桑园园, 等. 大白菜YUCCA基因家族的鉴定与生物信息学分析[J]. 江苏农业科学, 2019, 47(3): 49-54. |
[32] | 杨昌华, 胡文胜, 李树华, 等. 石杉碱甲新型衍生物的合成及其对神经细胞活性的影响[J]. 湖南师范大学学报(医学版), 2023, 20(3): 155-157. |
YANG C H, HU W S, LI S H, et al.. Synthesis of novel (-)-huperzine A derivatives and the effects on nerve cell viability [J]. J. Hunan Norm. Univ. (Med. Sci.), 2023, 20(3): 155-157. | |
[33] | 曹朵. 千层塔抗阿尔茨海默氏病的物质基础及其作用机制研究[D]. 西安: 西北大学, 2022. |
CAO D. Study on the effective constituents and mechanism of Huperzia serrata against alzheimer's disease [D]. Xi'an: Northwest University, 2022. | |
[34] | 陈思思, 张梦华, 王锦秀, 等. 药用植物千层塔的基原物种及研究进展[J]. 广西植物, 2021, 41(11): 1794-1809. |
CHEN S S, ZHANG M H, WANG J X, et al.. Original plant and research progress of the medicinal plant Huperzia javanica [J]. Guihaia, 2021, 41(11): 1794-1809. | |
[35] | KIM J I, BAEK D, PARK H C, et al.. Overexpression of Arabidopsis YUCCA6 in potato results in high-auxin developmental phenotypes and enhanced resistance to water deficit [J]. Mol.Plant, 2013, 6(2): 337-349. |
[36] | 徐玲玲, 陈习, 易立, 等. 千层塔形态与石杉碱甲含量的关系研究[J]. 山东农业科学, 2013, 45(9): 36-38. |
XU L L, CHEN X, YI L, et al.. Study on relationship between morphology and huperzine A content of Huperzia serrate [J].Shandong Agric. Sci., 2013, 45(9): 36-38. | |
[37] | YAMAMOTO Y, KAMIYA N, MORINAKA Y, et al.. Auxin biosynthesis by the YUCCA genes in rice [J]. Plant Physiol.,2007, 143(3): 1362-1371. |
[38] | HENTRICH M, BÖTTCHER C, DÜCHTING P, et al.. The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression [J]. Plant J., 2013, 74(4): 626-637. |
[1] | 刘之恩, 何勇, 王志成, 詹逍康, 王廷宝, 刘耀威, 田志宏. 水稻生长调节因子GRF基因家族的鉴定及生物信息学分析[J]. 中国农业科技导报, 2025, 27(8): 18-27. |
[2] | 杨志宁, 陆许可, 范亚朋, 孙玉平, 喻欣, 王亮, 高永健, 古丽加依那什·哈不力, 古丽沙西·拿斯依, 吾木尔·阿不都, 黄慧, 张梦豪, 王立东, 陈筱, 肖磊, 张鑫蕊, 王帅, 陈修贵, 王俊娟, 郭丽雪, 高文伟, 叶武威. 棉花GhDMT7基因对5-氮杂胞嘧啶核苷的响应机制[J]. 中国农业科技导报, 2025, 27(8): 28-35. |
[3] | 刘金仙, 王丽娟, 刘杰, 傅仙玉, 武广珩. 茶树钙调蛋白结合转录激活因子(CAMTA)家族基因鉴定与表达分析[J]. 中国农业科技导报, 2025, 27(3): 71-82. |
[4] | 张盼, 孙海潮, 董文恒, 李永江, 张莹莹, 史丽丽, 赵鋆, 卢道文. 玉米JRL基因家族全基因组鉴定及表达分析[J]. 中国农业科技导报, 2025, 27(10): 32-41. |
[5] | 李贤国, 戴麒, 王泽鹏, 陈兆龙, 闫会转, 李宁. 番茄CCCH类锌指蛋白家族的鉴定及其表达分析[J]. 中国农业科技导报, 2025, 27(1): 80-95. |
[6] | 郭肖蓉, 刘颖, 樊佳珍, 黄涛, 周荣. 猪CREBRF基因生物信息学和表达规律分析[J]. 中国农业科技导报, 2024, 26(9): 44-53. |
[7] | 张福林, 奚瑞, 刘宇翔, 陈兆龙, 余庆辉, 李宁. 番茄BURP结构域基因家族全基因组鉴定及表达分析[J]. 中国农业科技导报, 2024, 26(8): 51-62. |
[8] | 鲍新跃, 陈红敏, 王伟伟, 唐益苗, 房兆峰, 马锦绣, 汪德州, 左静红, 姚占军. 小麦TaCOBL-5基因克隆及表达分析[J]. 中国农业科技导报, 2024, 26(6): 11-21. |
[9] | 陈明迪, 胡桂花, 张海文, 王旺田. 水稻RR基因家族生物信息学及表达模式分析[J]. 中国农业科技导报, 2024, 26(5): 20-29. |
[10] | 吴占清, 陈威, 赵展, 许海良, 李豪远, 彭星星, 陈东旭, 张明月. 玉米GRAS基因家族的全基因组鉴定及生物信息学分析[J]. 中国农业科技导报, 2024, 26(3): 15-25. |
[11] | 刘博, 王旺田, 马骊, 武军艳, 蒲媛媛, 刘丽君, 方彦, 孙万仓, 张岩, 刘睿敏, 曾秀存. 白菜型油菜IPT基因家族鉴定及表达分析[J]. 中国农业科技导报, 2024, 26(2): 56-66. |
[12] | 尼格拉·阿布都外力, 魏修振, 门婧婕, 陈凌娜, 陈永坤, 黄耿青. 薰衣草 JAZ和MYC2-like基因家族生物信息学及表达模式分析[J]. 中国农业科技导报, 2024, 26(11): 79-90. |
[13] | 张振伟, 董相书, 杨婧, 李学俊, 杞美军, 蒋快乐, 杨永林, 王步天, 施学东, 邱俊超, 陈治华, 葛宇. 小粒咖啡叶绿素合成基因CaPOR的全基因组鉴定及表达分析[J]. 中国农业科技导报, 2024, 26(10): 83-97. |
[14] | 邓玉荣, 韩联, 王金龙, 韦兴翰, 王旭东, 赵颖, 魏小红, 李朝周. 藜麦SOD家族基因的鉴定及其对混合盐碱胁迫的响应[J]. 中国农业科技导报, 2024, 26(1): 28-39. |
[15] | 张曼, 王志城, 刘正文, 王国宁, 王省芬, 张艳. 陆地棉BGLU基因家族成员的全基因组鉴定与表达分析[J]. 中国农业科技导报, 2023, 25(2): 48-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||