中国农业科技导报 ›› 2025, Vol. 27 ›› Issue (10): 105-117.DOI: 10.13304/j.nykjdb.2024.0348
• 智慧农业 农机装备 • 上一篇
张宏友1(), 张程2, 钟铭深1, 黄磊1, 张永华1(
), 徐连江3(
)
收稿日期:
2024-04-30
接受日期:
2024-07-02
出版日期:
2025-10-15
发布日期:
2025-10-15
通讯作者:
张永华,徐连江
作者简介:
张宏友 E-mail:1531999539@qq.com
基金资助:
Hongyou ZHANG1(), Cheng ZHANG2, Mingshen ZHONG1, Lei HUANG1, Yonghua ZHANG1(
), Lianjiang XU3(
)
Received:
2024-04-30
Accepted:
2024-07-02
Online:
2025-10-15
Published:
2025-10-15
Contact:
Yonghua ZHANG,Lianjiang XU
摘要:
为提高离散元法对甘蔗收获机械设计与优化的准确性和可靠性,以全熟期甘蔗茎秆为研究对象,结合甘蔗茎秆物理试验和离散元仿真方法,选用EDEM中的Hertz-Mindlin with Bonding模型建立甘蔗茎秆粘结模型,并对仿真模型中的相关参数进行标定。物理试验中甘蔗茎秆最大剪切力均值为574.5 N。以最大剪切力为评价指标设计Plackett-Burman试验、Steepest Ascent试验和Box-Behnken试验确定甘蔗茎秆粘结模型参数,并通过试验来验证仿真模型的可靠性。结果表明,甘蔗茎秆粘结模型法向接触刚度为7.60×108 N·m-1、切向接触刚度为4.35×108 N·m-1、粘结半径为1.883 9 mm。以此参数组合进行验证仿真试验,得到茎秆最大剪切力均值为562.64 N,与物理试验值相对误差为2.06%。以上表明,建立的甘蔗茎秆剪切模型与标定参数结果可用于离散元仿真研究。研究结果对甘蔗收获机设计具有指导意义。
中图分类号:
张宏友, 张程, 钟铭深, 黄磊, 张永华, 徐连江. 甘蔗茎秆离散元仿真粘结模型参数标定[J]. 中国农业科技导报, 2025, 27(10): 105-117.
Hongyou ZHANG, Cheng ZHANG, Mingshen ZHONG, Lei HUANG, Yonghua ZHANG, Lianjiang XU. Parameter Calibration of Sugarcane Stalk Bonding Model Based on Discrete Element Method[J]. Journal of Agricultural Science and Technology, 2025, 27(10): 105-117.
参数 Parameter | 数值 Value | 文献 Reference | |
---|---|---|---|
基本参数 Basic parameter | 甘蔗茎秆泊松比 Sugarcane stalk Poisson’s ratio | 0.35 | [ |
甘蔗茎秆密度 Sugarcane stalk density/(kg·m-3) | 1 040※ | ||
甘蔗茎秆剪切模量 Sugarcane stalk shear modulus/Pa | 1.08×107 | [ | |
45钢泊松比 45 steel Poisson’s ratio | 0.30 | [ | |
45钢密度 45 steel density/(kg·m-3) | 7 850 | [ | |
45钢剪切模量 45 steel shear modulus/Pa | 7.94×1010 | [ | |
甘蔗茎秆与45钢之间的碰撞恢复系数e1 Collision recovery coefficient between sugarcane stalks and 45 steel e1 | 0.452※ | ||
甘蔗茎秆与45钢之间的静摩擦因数μ1 Static friction factor between sugarcane stalk and 45 steel μ1 | 0.350※ | ||
甘蔗茎秆与45钢之间的滚动摩擦因数f1 Rolling friction factor between sugarcane stalk and 45 steel f1 | 0.054※ | ||
甘蔗茎秆之间的碰撞恢复系数e2 Collision recovery coefficient between sugarcane stalks e2 | 0.423※ | ||
甘蔗茎秆之间的静摩擦因数μ2 Static friction factor between sugarcane stalks μ2 | 0.541※ | ||
甘蔗茎秆之间的滚动摩擦因数f2 Rolling friction factor between sugarcane stalks f2 | 0.045※ | ||
粘结参数 Bonding parameter | 法向接触刚度 Normal stiffness per unit area/(N·m-1) | 5×108~9×108 | [ |
切向接触刚度 Shear stiffness per unit area/(N·m-1) | 3×108~6×108 | [ | |
临界法向应力 Critical normal stress/Pa | 3×107~5×107 | [ | |
临界切向应力 Critical shear stress/Pa | 2×107~6×107 | [ | |
粘结半径 Bonded disk radius/mm | 1.80~1.95 | [ |
表1 甘蔗茎秆仿真模型参数
Table 1 Parameters of sugarcane stalk simulation model
参数 Parameter | 数值 Value | 文献 Reference | |
---|---|---|---|
基本参数 Basic parameter | 甘蔗茎秆泊松比 Sugarcane stalk Poisson’s ratio | 0.35 | [ |
甘蔗茎秆密度 Sugarcane stalk density/(kg·m-3) | 1 040※ | ||
甘蔗茎秆剪切模量 Sugarcane stalk shear modulus/Pa | 1.08×107 | [ | |
45钢泊松比 45 steel Poisson’s ratio | 0.30 | [ | |
45钢密度 45 steel density/(kg·m-3) | 7 850 | [ | |
45钢剪切模量 45 steel shear modulus/Pa | 7.94×1010 | [ | |
甘蔗茎秆与45钢之间的碰撞恢复系数e1 Collision recovery coefficient between sugarcane stalks and 45 steel e1 | 0.452※ | ||
甘蔗茎秆与45钢之间的静摩擦因数μ1 Static friction factor between sugarcane stalk and 45 steel μ1 | 0.350※ | ||
甘蔗茎秆与45钢之间的滚动摩擦因数f1 Rolling friction factor between sugarcane stalk and 45 steel f1 | 0.054※ | ||
甘蔗茎秆之间的碰撞恢复系数e2 Collision recovery coefficient between sugarcane stalks e2 | 0.423※ | ||
甘蔗茎秆之间的静摩擦因数μ2 Static friction factor between sugarcane stalks μ2 | 0.541※ | ||
甘蔗茎秆之间的滚动摩擦因数f2 Rolling friction factor between sugarcane stalks f2 | 0.045※ | ||
粘结参数 Bonding parameter | 法向接触刚度 Normal stiffness per unit area/(N·m-1) | 5×108~9×108 | [ |
切向接触刚度 Shear stiffness per unit area/(N·m-1) | 3×108~6×108 | [ | |
临界法向应力 Critical normal stress/Pa | 3×107~5×107 | [ | |
临界切向应力 Critical shear stress/Pa | 2×107~6×107 | [ | |
粘结半径 Bonded disk radius/mm | 1.80~1.95 | [ |
因素 Factor | 编码 Encoding | |
---|---|---|
-1 | 1 | |
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | 5×108 | 9×108 |
x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | 3×108 | 6×108 |
x3:临界法向应力Critical normal stress/Pa | 3×107 | 5×107 |
x4:临界切向应力Critical shear stress/Pa | 2×107 | 6×107 |
x5:粘结半径Bonded disk radius/mm | 1.80 | 1.95 |
表2 Plackett-Burman试验取值范围
Table 2 Value range for Plackett-Burman test
因素 Factor | 编码 Encoding | |
---|---|---|
-1 | 1 | |
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | 5×108 | 9×108 |
x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | 3×108 | 6×108 |
x3:临界法向应力Critical normal stress/Pa | 3×107 | 5×107 |
x4:临界切向应力Critical shear stress/Pa | 2×107 | 6×107 |
x5:粘结半径Bonded disk radius/mm | 1.80 | 1.95 |
序号 Number | 因素 Factor | F0:最大剪切力 Maximum shear/N | ||||
---|---|---|---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x3:临界法向应力Critical normal stress/Pa | x4:临界切向应力Critical shear stress/Pa | x5:粘结半径Bonded disk radius/mm | ||
1 | 9×108 | 6×108 | 3×107 | 6×107 | 1.95 | 747.7 |
2 | 5×108 | 6×108 | 5×107 | 2×107 | 1.95 | 578.8 |
3 | 5×108 | 3×108 | 5×107 | 2×107 | 1.95 | 640.3 |
4 | 9×108 | 6×108 | 5×107 | 2×107 | 1.80 | 459.9 |
5 | 9×108 | 6×108 | 3×107 | 2×107 | 1.80 | 577.8 |
6 | 9×108 | 3×108 | 3×107 | 2×107 | 1.95 | 1 100.1 |
7 | 5×108 | 3×108 | 3×107 | 2×107 | 1.80 | 360.5 |
8 | 9×108 | 3×108 | 5×107 | 6×107 | 1.80 | 556.3 |
9 | 9×108 | 3×108 | 5×107 | 6×107 | 1.95 | 999.4 |
10 | 5×108 | 6×108 | 3×107 | 6×107 | 1.95 | 614.5 |
11 | 5×108 | 3×108 | 3×107 | 6×107 | 1.80 | 330.4 |
12 | 5×108 | 6×108 | 5×107 | 6×107 | 1.80 | 230.9 |
表3 Plackett-Burman试验方案与结果
Table 3 Plackett-Burman test protocol and results
序号 Number | 因素 Factor | F0:最大剪切力 Maximum shear/N | ||||
---|---|---|---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x3:临界法向应力Critical normal stress/Pa | x4:临界切向应力Critical shear stress/Pa | x5:粘结半径Bonded disk radius/mm | ||
1 | 9×108 | 6×108 | 3×107 | 6×107 | 1.95 | 747.7 |
2 | 5×108 | 6×108 | 5×107 | 2×107 | 1.95 | 578.8 |
3 | 5×108 | 3×108 | 5×107 | 2×107 | 1.95 | 640.3 |
4 | 9×108 | 6×108 | 5×107 | 2×107 | 1.80 | 459.9 |
5 | 9×108 | 6×108 | 3×107 | 2×107 | 1.80 | 577.8 |
6 | 9×108 | 3×108 | 3×107 | 2×107 | 1.95 | 1 100.1 |
7 | 5×108 | 3×108 | 3×107 | 2×107 | 1.80 | 360.5 |
8 | 9×108 | 3×108 | 5×107 | 6×107 | 1.80 | 556.3 |
9 | 9×108 | 3×108 | 5×107 | 6×107 | 1.95 | 999.4 |
10 | 5×108 | 6×108 | 3×107 | 6×107 | 1.95 | 614.5 |
11 | 5×108 | 3×108 | 3×107 | 6×107 | 1.80 | 330.4 |
12 | 5×108 | 6×108 | 5×107 | 6×107 | 1.80 | 230.9 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 6.884×105 | 5 | 1.377×105 | 24.56 | 0.000 6** |
x1:法向接触刚度Normal stiffness per unit area | 2.368×105 | 1 | 2.368×105 | 42.24 | 0.000 6** |
x2:切向接触刚度Shear stiffness per unit area | 5.036×104 | 1 | 5.036×104 | 8.98 | 0.024 1* |
x3:临界法向应力Critical normal stress | 0.587×104 | 1 | 0.587×104 | 1.05 | 0.345 7 |
x4:临界切向应力Critical shear stress | 0.473×104 | 1 | 0.473×104 | 0.84 | 0.393 9 |
x5:粘结半径Bonded disk radius | 3.906×105 | 1 | 3.906×105 | 69.67 | 0.000 2** |
残差 Residual error | 3.364×104 | 6 | 0.561×104 | ||
总和 Total | 7.220×105 | 11 |
表4 Plackett-Burman试验方差分析
Table 4 Analysis of variance of Plackett-Burman test
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型Model | 6.884×105 | 5 | 1.377×105 | 24.56 | 0.000 6** |
x1:法向接触刚度Normal stiffness per unit area | 2.368×105 | 1 | 2.368×105 | 42.24 | 0.000 6** |
x2:切向接触刚度Shear stiffness per unit area | 5.036×104 | 1 | 5.036×104 | 8.98 | 0.024 1* |
x3:临界法向应力Critical normal stress | 0.587×104 | 1 | 0.587×104 | 1.05 | 0.345 7 |
x4:临界切向应力Critical shear stress | 0.473×104 | 1 | 0.473×104 | 0.84 | 0.393 9 |
x5:粘结半径Bonded disk radius | 3.906×105 | 1 | 3.906×105 | 69.67 | 0.000 2** |
残差 Residual error | 3.364×104 | 6 | 0.561×104 | ||
总和 Total | 7.220×105 | 11 |
序号 Number | 因素 Factor | F0:最大剪切力 Maximum shear/N | σ:相对误差 Relative error/% | ||
---|---|---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x5:粘结半径Bonded disk radius/mm | |||
1 | 5×108 | 3.00×108 | 1.800 0 | 371.0 | 35.42 |
2 | 6×108 | 3.75×108 | 1.837 5 | 520.7 | 9.36 |
3 | 7×108 | 4.50×108 | 1.875 0 | 568.6 | 1.03 |
4 | 8×108 | 5.25×108 | 1.912 5 | 648.5 | 12.88 |
5 | 9×108 | 6.00×108 | 1.950 0 | 718.1 | 25.00 |
表5 Steepest Ascent试验结果
Table 5 Steepest ascent test results
序号 Number | 因素 Factor | F0:最大剪切力 Maximum shear/N | σ:相对误差 Relative error/% | ||
---|---|---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x5:粘结半径Bonded disk radius/mm | |||
1 | 5×108 | 3.00×108 | 1.800 0 | 371.0 | 35.42 |
2 | 6×108 | 3.75×108 | 1.837 5 | 520.7 | 9.36 |
3 | 7×108 | 4.50×108 | 1.875 0 | 568.6 | 1.03 |
4 | 8×108 | 5.25×108 | 1.912 5 | 648.5 | 12.88 |
5 | 9×108 | 6.00×108 | 1.950 0 | 718.1 | 25.00 |
编码 Encoding | 因素 Factor | ||
---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x5:粘结半径Bonded disk radius/mm | |
-1 | 6×108 | 3.75×108 | 1.837 5 |
0 | 7×108 | 4.50×108 | 1.875 0 |
1 | 8×108 | 5.25×108 | 1.912 5 |
表6 粘结参数Box-Behnken试验因素编码
Table 6 Bonding parameters Box-Behnken test factor code
编码 Encoding | 因素 Factor | ||
---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x5:粘结半径Bonded disk radius/mm | |
-1 | 6×108 | 3.75×108 | 1.837 5 |
0 | 7×108 | 4.50×108 | 1.875 0 |
1 | 8×108 | 5.25×108 | 1.912 5 |
序号 Number | 因素 Factor | F0:最大剪切力 Maximum shear/N | σ:相对误差 Relative error/% | ||
---|---|---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x5:粘结半径Bonded disk radius/mm | |||
1 | 7×108 | 4.50×108 | 1.875 | 546.9 | 4.80 |
2 | 7×108 | 4.50×108 | 1.875 | 560.8 | 2.38 |
3 | 6×108 | 3.75×108 | 1.875 | 638.6 | 11.16 |
4 | 7×108 | 4.50×108 | 1.875 | 549.5 | 4.35 |
5 | 8×108 | 4.50×108 | 1.838 | 503.8 | 12.31 |
6 | 8×108 | 3.75×108 | 1.875 | 586.7 | 2.12 |
7 | 7×108 | 4.50×108 | 1.875 | 549.3 | 4.39 |
8 | 7×108 | 5.25×108 | 1.838 | 528.4 | 8.02 |
9 | 6×108 | 5.25×108 | 1.875 | 534.0 | 7.05 |
10 | 7×108 | 3.75×108 | 1.838 | 550.3 | 4.21 |
11 | 7×108 | 5.25×108 | 1.913 | 605.7 | 5.43 |
12 | 7×108 | 4.50×108 | 1.875 | 564.5 | 1.74 |
13 | 8×108 | 4.50×108 | 1.913 | 621.3 | 8.15 |
14 | 6×108 | 4.50×108 | 1.838 | 534.9 | 6.89 |
15 | 8×108 | 5.25×108 | 1.875 | 625.8 | 8.93 |
16 | 6×108 | 4.50×108 | 1.913 | 575.0 | 0.09 |
17 | 7×108 | 3.75×108 | 1.913 | 653.9 | 13.82 |
表7 粘结参数Box-Behnken试验方案与结果
Table 7 Bonding parameters Box-Behnken test scheme and results
序号 Number | 因素 Factor | F0:最大剪切力 Maximum shear/N | σ:相对误差 Relative error/% | ||
---|---|---|---|---|---|
x1:法向接触刚度Normal stiffness per unit area/(N·m-1) | x2:切向接触刚度Shear stiffness per unit area/(N·m-1) | x5:粘结半径Bonded disk radius/mm | |||
1 | 7×108 | 4.50×108 | 1.875 | 546.9 | 4.80 |
2 | 7×108 | 4.50×108 | 1.875 | 560.8 | 2.38 |
3 | 6×108 | 3.75×108 | 1.875 | 638.6 | 11.16 |
4 | 7×108 | 4.50×108 | 1.875 | 549.5 | 4.35 |
5 | 8×108 | 4.50×108 | 1.838 | 503.8 | 12.31 |
6 | 8×108 | 3.75×108 | 1.875 | 586.7 | 2.12 |
7 | 7×108 | 4.50×108 | 1.875 | 549.3 | 4.39 |
8 | 7×108 | 5.25×108 | 1.838 | 528.4 | 8.02 |
9 | 6×108 | 5.25×108 | 1.875 | 534.0 | 7.05 |
10 | 7×108 | 3.75×108 | 1.838 | 550.3 | 4.21 |
11 | 7×108 | 5.25×108 | 1.913 | 605.7 | 5.43 |
12 | 7×108 | 4.50×108 | 1.875 | 564.5 | 1.74 |
13 | 8×108 | 4.50×108 | 1.913 | 621.3 | 8.15 |
14 | 6×108 | 4.50×108 | 1.838 | 534.9 | 6.89 |
15 | 8×108 | 5.25×108 | 1.875 | 625.8 | 8.93 |
16 | 6×108 | 4.50×108 | 1.913 | 575.0 | 0.09 |
17 | 7×108 | 3.75×108 | 1.913 | 653.9 | 13.82 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 29 108.10 | 9 | 3 234.23 | 57.20 | < 0.000 1** |
x1 | 379.50 | 1 | 379.50 | 6.71 | 0.035 9* |
x2 | 2 298.42 | 1 | 2 298.42 | 40.65 | 0.000 4** |
x5 | 14 322.78 | 1 | 14 322.78 | 253.30 | < 0.000 1** |
x1x2 | 5 162.42 | 1 | 5 162.42 | 91.30 | < 0.000 1** |
x1x5 | 1 497.69 | 1 | 1 497.69 | 26.49 | 0.001 3** |
x2x5 | 172.92 | 1 | 172.92 | 3.06 | 0.123 8 |
x | 277.96 | 1 | 277.96 | 4.92 | 0.062 1 |
x | 4 853.06 | 1 | 4 853.06 | 85.83 | < 0.000 1** |
x | 53.81 | 1 | 53.81 | 0.95 | 0.361 8 |
残差 Residual error | 395.81 | 7 | 56.54 | ||
失拟项 Lack of fit | 146.77 | 3 | 48.92 | 0.79 | 0.561 1 |
纯误差 Pure error | 249.04 | 4 | 62.26 | ||
总和 Total | 29 503.90 | 16 |
表8 粘结参数Box-Behnken方差分析
Table 8 Box-Behnken analysis of variance for bonding parameters
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 29 108.10 | 9 | 3 234.23 | 57.20 | < 0.000 1** |
x1 | 379.50 | 1 | 379.50 | 6.71 | 0.035 9* |
x2 | 2 298.42 | 1 | 2 298.42 | 40.65 | 0.000 4** |
x5 | 14 322.78 | 1 | 14 322.78 | 253.30 | < 0.000 1** |
x1x2 | 5 162.42 | 1 | 5 162.42 | 91.30 | < 0.000 1** |
x1x5 | 1 497.69 | 1 | 1 497.69 | 26.49 | 0.001 3** |
x2x5 | 172.92 | 1 | 172.92 | 3.06 | 0.123 8 |
x | 277.96 | 1 | 277.96 | 4.92 | 0.062 1 |
x | 4 853.06 | 1 | 4 853.06 | 85.83 | < 0.000 1** |
x | 53.81 | 1 | 53.81 | 0.95 | 0.361 8 |
残差 Residual error | 395.81 | 7 | 56.54 | ||
失拟项 Lack of fit | 146.77 | 3 | 48.92 | 0.79 | 0.561 1 |
纯误差 Pure error | 249.04 | 4 | 62.26 | ||
总和 Total | 29 503.90 | 16 |
参数 Parameter | 数值 Numerical value |
---|---|
法向接触刚度 Normal stiffness per unit area/(N·m-1) | 7.60×108 |
切向接触刚度 Shear stiffness per unit area/(N·m-1) | 4.35×108 |
临界法向应力 Critical normal stress/Pa | 4×107 |
临界切向应力 Critical shear stress/Pa | 4×107 |
粘结半径 Bonded disk radius/mm | 1.883 9 |
表9 标定粘结参数
Table 9 Calibration bonding parameters
参数 Parameter | 数值 Numerical value |
---|---|
法向接触刚度 Normal stiffness per unit area/(N·m-1) | 7.60×108 |
切向接触刚度 Shear stiffness per unit area/(N·m-1) | 4.35×108 |
临界法向应力 Critical normal stress/Pa | 4×107 |
临界切向应力 Critical shear stress/Pa | 4×107 |
粘结半径 Bonded disk radius/mm | 1.883 9 |
[1] | 贾笛迩,高欣欣,刘高源,等.云南省丘陵山地甘蔗全程机械化发展的研究进展[J].热带农业科学,2022,42(2):115-120. |
JIA D E, GAO X X, LIU G Y, et al.. Research progress in the development of sugarcane mechanization in the hilly and mountainous regions of Yunnan province [J]. Chin. J. Trop. Agric., 2022, 42(2): 115-120. | |
[2] | 吴传云,王建合,杨瑶,等.我国经济作物产业发展现状与机械化趋势分析[J].中国农机化学报,2024,45(1):1-13. |
WU C Y, WANG J H, YANG Y,et al..Analysis of the development status and mechanization trends of economic crop industry in China [J]. J. Chin. Agric. Mech., 2024, 45(1): 1-13. | |
[3] | 赵莹.我国甘蔗收获机械化推广应用现状与发展建议[J].中国农机化学报,2016,37(9):236-244, 269. |
ZHAO Y. Extending situation and development proposal on sugarcane harvesting mechanization in China [J]. J. Chin. Agric. Mech., 2016, 37(9): 236-244, 269. | |
[4] | 谢伟,欧阳琛,蒋蘋,等.面向夹持采收的油菜薹夹段茎秆离散元参数标定与优化[J].农业工程学报,2024,40(7):104-116. |
XIE W, OUYANG C, JIANG P, et al.. Calibrating and optimizing the discrete element parameters for clamping section stems during rape shoot harvesting [J]. Trans. Chin. Soc. Agric. Eng., 2024, 40(7): 104-116. | |
[5] | 盛越,田海清,王迪,等.玉米根系离散元模型建立及仿真参数标定研究[J].农机化研究,2023,45(2):164-170. |
SHENG Y, TIAN H Q, WANG D, et al.. Study on establishment of discrete element model of maize root system and calibration of simulation parameters [J]. J. Agric. Mech. Res., 2023, 45(2): 164-170. | |
[6] | 陈涛,衣淑娟,李衣菲,等.苜蓿现蕾期茎秆离散元模型建立与参数标定[J].农业机械学报,2023,54(5):91-100. |
CHEN T, YI S J, LI Y F, et al..Establishment of discrete element model and parameter calibration of alfalfa stem in budding stage [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(5): 91-100. | |
[7] | 廖宜涛,廖庆喜,周宇,等.饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J].农业机械学报,2020,51(6):73-82. |
LIAO Y T, LIAO Q X, ZHOU Y, et al.. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage [J]. Trans. Chin. Soc. Agric. Mach., 2020, 51(6): 73-82. | |
[8] | 张兆国,徐红伟,薛浩田,等.三七茎秆离散元参数标定与试验[J].农业机械学报,2023,54(11):61-70, 91. |
ZHANG Z G, XU H W, XUE H T,et al..Calibration and experiment of discrete element parameters of Panax notoginseng stem [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(11): 61-70, 91. | |
[9] | 马紫涛,赵智豪,全伟,等.基于EDEM的水稻残茬秸秆离散元仿真参数标定[J].中国农业科技导报,2023,25(11):103-113. |
MA Z T, ZHAO Z H, QUAN W,et al..Calibration of discrete element parameter of rice stubble straw based on EDEM [J]. J. Agric. Sci. Technol., 2023, 25(11): 103-113. | |
[10] | LIU W H, SU Q, FANG M, et al.. Parameters calibration of discrete element model for corn straw cutting based on Hertz-Mindlin with bonding [J/OL]. Appl. Sci., 2023,13(2):1156 [2024-03-28]. . |
[11] | SHI Y Y, JIANG Y, WANG X C, et al.. A mechanical model of single wheat straw with failure characteristics based on discrete element method [J].Biosyst. Eng., 2023, 230: 1-15. |
[12] | 郝文录,刘恒新,朱良,等. 农业机械 试验条件测定方法的一般规定: [S].北京:中国标准出版社,2008. |
[13] | 顿国强,王雷,纪欣鑫,等. 金乡紫皮蒜种离散元参数标定与试验验证[J].中国农业科技导报, 2024, 26(8): 131-139. |
DUN G Q, WANG L, JI X X, et al.. Calibration and verification of discrete element parameters of Jinxiang purple garlic seeds [J]. J. Agric. Sci. Technol., 2024, 26(8): 131-139. | |
[14] | 张荣芳, 周纪磊, 刘虎, 等. 玉米颗粒粘结模型离散元仿真参数标定方法研究[J].农业机械学报,2022,53():69-77. |
ZHANG R F, ZHOU J L, LIU H, et al.. Research on parameter calibration method for discrete element simulation of corn particle bonding model [J]. Trans. Chin. Soc. Agric. Mach., 2022, 53(S1): 69-77. | |
[15] | 陈林,余南辉,王立宗,等.米糠和碎米的接触参数测量与离散元仿真标定[J].中国农业科技导报,2024,26(2):127-136. |
CHEN L, YU N H, WANG L Z,et al..Measurement of contact parameters and discrete element simulation calibration of rice bran and broken rice [J]. J. Agric. Sci. Technol., 2024, 26(2): 127-136. | |
[16] | GUAN Z H, MU S L, LI H T, et al.. Flexible DEM model development and parameter calibration for rape stem [J/OL]. Appl. Sci., 2022,12(17):8394 [2024-03-28]. . |
[17] | 涂鸣,曹涛,万志华,等.菱角离散元粘结参数标定与剪切试验[J].华中农业大学学报,2023,42(4):270-278. |
TU M, CAO T, WAN Z H,et al..Calibration and shear experiments of discrete element bonding parameters for water caltrop [J]. J. Huazhong Agric. Univ., 2023, 42(4): 270-278. | |
[18] | 刘俊安.基于离散元方法的深松铲参数优化及松土综合效应研究[D].北京:中国农业大学,2018. |
LIU J A. Parameter optimization and comprehensive effect of subsoiling shovel based on discrete element method [D]. Beijing: China Agricultural University, 2018. | |
[19] | HAN D D, ZHOU Y, NIE J S, et al.. DEM model acquisition of the corn ear with bonded particle model and its simulated parameters calibration [J/OL].Granul. Matter,2024,26(2):54 [2024-03-28]. . |
[20] | 张锋伟,宋学锋,张雪坤,等.玉米秸秆揉丝破碎过程力学特性仿真与试验[J].农业工程学报,2019,35(9):58-65. |
ZHANG F W, SONG X F, ZHANG X K, et al.. Simulation and experiment on mechanical characteristics of kneading and crushing process of corn straw [J]. Trans. Chin. Soc. Agric. Eng., 2019, 35(9): 58-65. | |
[21] | 胡国明.颗粒系统的离散元素法分析仿真:离散元素法的工业应用与EDEM软件简介[M].武汉:武汉理工大学出版社,2010: 95-102. |
[22] | 江涛,吴崇友,汤庆,等.基于ANSYS和EDEM的小麦茎秆切割仿真研究[J].江苏农业科学,2018,46(17):231-234. |
[23] | SCHRAMM M, TEKESTE M Z.Wheat straw direct shear simulation using discrete element method of fibrous bonded model [J]. Biosyst. Eng., 2022, 213: 1-12. |
[24] | 刘庆庭,区颖刚,卿上乐,等.甘蔗茎秆在扭转、压缩、拉伸荷载下的破坏试验[J].农业工程学报,2006,22(6):201-204. |
LIU Q T, OU Y G, QING S L,et al..Failure tests of sugarcane stalks under torsion,compression and tension load [J]. Trans. Chin. Soc. Agric. Eng., 2006, 22(6): 201-204. | |
[25] | 朱容芳,杨望,罗郑楷,等.收获期宿根蔗的基本参数试验研究[J].农机化研究,2023,45(9):116-121. |
ZHU R F, YANG W, LUO Z K, et al.. Experimental study on basic parameters of perennial sugarcane in harvest period [J]. J. Agric. Mech. Res., 2023, 45(9): 116-121. | |
[26] | 任甲辉,武涛,刘庆庭,等.蔗段离散元仿真建模方法与参数标定[J].华南农业大学学报,2022,43(3):124-132. |
REN J H, WU T, LIU Q T, et al.. Discrete element simulation modeling method and parameter calibration of sugarcane segment [J]. J. South China Agric. Univ., 2022, 43(3): 124-132. | |
[27] | 张喜瑞,胡旭航,刘俊孝,等.香蕉秸秆离散元仿真粘结模型参数标定与试验[J].农业机械学报,2023,54(5):121-130. |
ZHANG X R, HU X H, LIU J X,et al..Calibration and verification of bonding parameters of banana straw simulation model based on discrete element method [J]. Trans. Chin. Soc. Agric. Mach., 2023, 54(5): 121-130. | |
[28] | 史瑞杰,戴飞,赵武云,等.胡麻茎秆离散元柔性模型建立与接触参数试验验证[J].农业机械学报,2022,53(10):146-155. |
SHI R J, DAI F, ZHAO W Y, et al.. Establishment of discrete element flexible model and verification of contact parameters of flax stem [J].Trans.Chin.Soc.Agric.Mach.,2022,53(10):146-155. | |
[29] | 周宇.饲料油菜切碎过程离散元仿真模型参数确定及验证[D].武汉:华中农业大学,2019. |
ZHOU Y. Parameter determination and verification of discrete element simulation model for fodder rapeseed chopping process [D]. Wuhan: Huazhong Agricultural University, 2019. | |
[30] | 张国忠,陈立明,刘浩蓬,等.荸荠离散元仿真参数标定与试验[J].农业工程学报,2022,38(11):41-50. |
ZHANG G Z, CHEN L M, LIU H P,et al..Calibration and experiments of the discrete element simulation parameters for water chestnut [J].Trans.Chin.Soc.Agric.Eng.,2022,38(11):41-50. | |
[31] | 童世合,邵明玺,曹猛,等.基于DEM的玉米秸秆离散元模型参数标定[J].中国农机化学报,2023,44(2):69-75. |
TONG S H, SHAO M X, CAO M, et al.. Parameter calibration of corn straw discrete element model based on DEM [J]. J. Chin. Agric. Mech., 2023, 44(2): 69-75. | |
[32] | ZHANG T, ZHAO M Q, LIU F, et al.. A discrete element method model of corn stalk and its mechanical characteristic parameters [J]. BioResources, 2020, 15(4): 9337-9350. |
[33] | 廖宜涛,王在腾,廖庆喜,等.果荚初期饲料油菜茎秆离散元接触模型参数标定[J].农业机械学报,2020,51():236-243. |
LIAO Y T, WANG Z T, LIAO Q X, et al.. Calibration of discrete element model parameters of forage rape stalk at early pod stage [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(S1):236-243. | |
[34] | 侯杰,谢方平,王修善,等.水稻茎秆接触物理参数测定与离散元仿真标定[J].江西农业大学学报,2022,44(3):747-758. |
HOU J, XIE F P, WANG X S,et al..Measurement of contact physical parameters of flexible rice straw and discrete element simulation calibration [J]. Acta Agric. Univ. Jiangxiensis, 2022, 44(3): 747-758. | |
[35] | 温翔,杨望,郭无极,等.切段式甘蔗收割机排杂离散元仿真参数标定及验证[J].中国农机化学报,2020,41(1):12-18. |
WEN X, YANG W, GUO W J,et al..Parameter determination and validation of discrete element model of segmented sugarcane harvester for impurity removal [J].J.Chin.Agric.Mech., 2020, 41(1):12-18. | |
[36] | SHI Z, LIU X P, ZHANG Y L, et al.. Bond parameter calibration and crushing process analysis of brown rice kernels [J/OL]. Processes, 2023,11(10):2992 [2024-03-28]. . |
[37] | 李晖,王宝钢,史子昂,等.基于EDEM的膨化饲料离散元参数标定及其破碎机制研究[J].中国饲料,2024(7):126-132. |
LI H, WANG B G, SHI Z A, et al..Calibration of discrete element parameters of extruded feed based on EDEM and study on its crushing mechanism [J]. China Feed., 2024(7): 126-132. | |
[38] | SCHRAMM M, TEKESTE M Z, PLOUFFE C,et al..Estimating bond damping and bond Young's modulus for a flexible wheat straw discrete element method model [J].Biosyst.Eng.,2019,186:349-355. |
[1] | 冯长龙, 黄春光, 宁辰阳, 李树平, 陈科锦. 植树机挖坑机构螺旋式钻头性能特性优化研究[J]. 中国农业科技导报, 2025, 27(2): 89-98. |
[2] | 顿国强, 吴星澎, 纪欣鑫, 张福利, 纪文义, 杨永振. 双摆盘式大豆小区排种器的仿真优化[J]. 中国农业科技导报, 2024, 26(6): 82-90. |
[3] | 黄元昊, 全腊珍, 胡广发, 全伟, 石方刚. 多种材料与不同含水率土壤的离散元接触参数标定[J]. 中国农业科技导报, 2024, 26(3): 98-109. |
[4] | 马紫涛, 赵智豪, 全伟, 石方刚, 高晨, 吴明亮. 基于EDEM的水稻残茬秸秆离散元仿真参数标定[J]. 中国农业科技导报, 2023, 25(11): 103-113. |
[5] | 闫建伟, 魏松, 胡冬军, 刘启合, 张富贵. 白萝卜种子颗粒模型离散元接触参数标定与试验[J]. 中国农业科技导报, 2022, 24(5): 119-128. |
[6] | 全伟, 吴明亮, 官春云, 罗海峰. 油菜钵苗移栽机成穴器外形优化试验研究[J]. 中国农业科技导报, 2021, 23(10): 97-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||