中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (1): 24-30.DOI: 10.13304/j.nykjdb.2021.0490
收稿日期:
2021-06-15
接受日期:
2021-08-23
出版日期:
2022-01-15
发布日期:
2022-01-25
通讯作者:
张洪亮
作者简介:
马小倩 E-mail:maxq@cau.edu.cn;
基金资助:
Xiaoqian MA1(), Tao YANG2, Quan ZHANG2, Hongliang ZHANG2(
)
Received:
2021-06-15
Accepted:
2021-08-23
Online:
2022-01-15
Published:
2022-01-25
Contact:
Hongliang ZHANG
摘要:
水稻是我国主要粮食作物之一,提高水稻产量、改善品质一直是水稻育种研究的重要目标。育种技术的改进有利于育种效率的提高,随着科学技术的迅猛发展,水稻育种技术也在逐步完善。对分子标记育种、转基因育种、基因编辑育种和分子设计育种等目前水稻育种中广泛使用的育种技术进行了总结,并进一步展望了不同育种方法的发展前景,以期为水稻种业发展奠定基础。
中图分类号:
马小倩, 杨涛, 张全, 张洪亮. 水稻新型育种技术研究现状与展望[J]. 中国农业科技导报, 2022, 24(1): 24-30.
Xiaoqian MA, Tao YANG, Quan ZHANG, Hongliang ZHANG. Development Status and Prospect of Rice New Breeding Technology[J]. Journal of Agricultural Science and Technology, 2022, 24(1): 24-30.
编辑系统 Editing system | ZFN | TALENs | CRISPR |
---|---|---|---|
识别模式 Pattern of recognition | 蛋白质-DNA Protein-DNA | 蛋白质-DNA Protein-DNA | RNA-DNA |
靶向元件 Targeted element | ZF array 蛋白 ZF array protein | TALE array 蛋白 TALE array protein | sgRNA 蛋白 sgRNA protein |
切割元件 Cutting element | FokI 蛋白 FokI protein | FokI 蛋白 FokI protein | Cas9 蛋白 Cas9 protein |
识别长度 Length of recognition/bp | 18~36 | 24~40 | 20 |
识别序列特点Characteristics of recognition sequence | 以3 bp为单位 Units of 3 bp | 5’前一位为T The front base of 5’ is T | 3’ 序列为NGC The end sequence of 3’ is NGG |
优点 Advantage | 技术成熟,效率高 Technology mature, high efficiency | 设计较ZFN简单、特异性高Simpler than ZFN in design,more specific | 靶向精确、脱靶率低、较廉价、细胞 毒性低 Accurate targeting,low miss rate, low cost,low cytotoxicity |
缺点 Disadvantage | 设计依赖上下游序列、脱靶率高、具有细胞毒性 Design dependent,high miss rate,cytotoxicity | 具有细胞毒性,过程繁琐, 成本高 Cytotoxicity complicated process high cost | 靶点前无PAM不能进行切割,特异性不高 PAM recognition sites,low specificity |
RNA编辑 RNA editing | 不可以 No | 不可以 No | 可以 Yes |
表1 三种基因编辑系统的比较
Table 1 Comparison of three gene-editing techniques
编辑系统 Editing system | ZFN | TALENs | CRISPR |
---|---|---|---|
识别模式 Pattern of recognition | 蛋白质-DNA Protein-DNA | 蛋白质-DNA Protein-DNA | RNA-DNA |
靶向元件 Targeted element | ZF array 蛋白 ZF array protein | TALE array 蛋白 TALE array protein | sgRNA 蛋白 sgRNA protein |
切割元件 Cutting element | FokI 蛋白 FokI protein | FokI 蛋白 FokI protein | Cas9 蛋白 Cas9 protein |
识别长度 Length of recognition/bp | 18~36 | 24~40 | 20 |
识别序列特点Characteristics of recognition sequence | 以3 bp为单位 Units of 3 bp | 5’前一位为T The front base of 5’ is T | 3’ 序列为NGC The end sequence of 3’ is NGG |
优点 Advantage | 技术成熟,效率高 Technology mature, high efficiency | 设计较ZFN简单、特异性高Simpler than ZFN in design,more specific | 靶向精确、脱靶率低、较廉价、细胞 毒性低 Accurate targeting,low miss rate, low cost,low cytotoxicity |
缺点 Disadvantage | 设计依赖上下游序列、脱靶率高、具有细胞毒性 Design dependent,high miss rate,cytotoxicity | 具有细胞毒性,过程繁琐, 成本高 Cytotoxicity complicated process high cost | 靶点前无PAM不能进行切割,特异性不高 PAM recognition sites,low specificity |
RNA编辑 RNA editing | 不可以 No | 不可以 No | 可以 Yes |
性状 Trait | 基因名称 Gene name | 突变体表型 Phenotype of mutant | 编辑系统 Editing system | 参考文献 Reference |
---|---|---|---|---|
抗性 Resistance | Pita | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ |
Pi21 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
ERF922 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
bsr-d1 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
EPSPS | 抗草甘膦Resistance to glyphosate | CRISPR/Cas9 | [ | |
ALS | 抗除草剂Herbicide resistance | CRISPR/Cas9 | [ | |
品质 Quality | Wx | 糯性提高Glutinous improve | CRISPR/Cas9 | [ |
Badh2 | 香味增加Fragrance increases | CRISPR/Cas9 | [ | |
SBEIIb | 直链淀粉含量升高Amylose content increased | CRISPR/Cas9 | [ | |
产量 Yield | OsCKX2 | 大穗Big panicle | TALENs | [ |
GS3 | 粒长增加Increase grain length | CRISPR/Cas9 | [ | |
IPA1 | 分蘖增多/减少Tiller increase/decrease | CRISPR/Cas9 | [ | |
Gn1a | 穗粒数增多Grain number per panicle increase | CRISPR/Cas9 | [ | |
DEP1 | 穗子直立变密Erect and denser | CRISPR/Cas9 | [ | |
GS9 | 粒长增加Grain length increase | CRISPR/Cas9 | [ | |
抽穗期 Heading stage | Hd2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
Hd4 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd5 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd6 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd16 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd17 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd18 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Dth2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
表2 水稻利用基因编辑育种涉及的部分基因
Table 2 Related genes in rice breeding using gene editing
性状 Trait | 基因名称 Gene name | 突变体表型 Phenotype of mutant | 编辑系统 Editing system | 参考文献 Reference |
---|---|---|---|---|
抗性 Resistance | Pita | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ |
Pi21 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
ERF922 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
bsr-d1 | 抗稻瘟病Resistance to rice blast | CRISPR/Cas9 | [ | |
EPSPS | 抗草甘膦Resistance to glyphosate | CRISPR/Cas9 | [ | |
ALS | 抗除草剂Herbicide resistance | CRISPR/Cas9 | [ | |
品质 Quality | Wx | 糯性提高Glutinous improve | CRISPR/Cas9 | [ |
Badh2 | 香味增加Fragrance increases | CRISPR/Cas9 | [ | |
SBEIIb | 直链淀粉含量升高Amylose content increased | CRISPR/Cas9 | [ | |
产量 Yield | OsCKX2 | 大穗Big panicle | TALENs | [ |
GS3 | 粒长增加Increase grain length | CRISPR/Cas9 | [ | |
IPA1 | 分蘖增多/减少Tiller increase/decrease | CRISPR/Cas9 | [ | |
Gn1a | 穗粒数增多Grain number per panicle increase | CRISPR/Cas9 | [ | |
DEP1 | 穗子直立变密Erect and denser | CRISPR/Cas9 | [ | |
GS9 | 粒长增加Grain length increase | CRISPR/Cas9 | [ | |
抽穗期 Heading stage | Hd2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
Hd4 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd5 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd6 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd16 | 开花延迟Flowering delay | CRISPR/Cas9 | [ | |
Hd17 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Hd18 | 开花提前Flowering in advance | CRISPR/Cas9 | [ | |
Dth2 | 开花提前Flowering in advance | CRISPR/Cas9 | [ |
1 | 王健康,李慧慧,张学才,等.中国作物分子设计育种[J].作物学报,2011,37(2):191-201. |
WANG J K, LI H H, ZHANG X C, et al.. Molecular design breeding in crops in China [J]. Acta. Agron Sin., 2011, 37(2):191-201. | |
2 | 陈欢,张文英,樊龙江.作物育种方法研究进展与展望[J].科技通报,2011,27(1):61-65. |
CHEN H, ZHANG W Y, FAN L J. Methodology of crop breeding: progress and prospect [J]. Bull. Sci. Technol., 2011, 27(1):61-65. | |
3 | 陈文艺.作物育种方法研究进展与展望[J].科技展望,2015,13. |
4 | 贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1995,29(4):1-10. |
JIA J Z. Molecular germplasm diagnostics and molecular marker assisted breeding [J]. Sci. Agric. Sin., 1995, 29(4):1-10. | |
5 | 王亚琦,孙子淇,郑峥,等.作物分子标记辅助选择育种的现状与展望[J].江苏农业科学,2018,46(5):6-12. |
6 | HUANG X H, WEI X H, SANG T, et al.. Genome-wide association studies of 14 agronomic traits in rice landraces [J]. Nat. Genet., 2010, 42(11):961-967. |
7 | 吴俊,庄文,熊跃东,等.导入野生稻增产QTL育成优质高产杂交稻新组合Y两优7号[J].杂交水稻, 2010, 25(4):20-22. |
WU J, ZHUANG W, XIONG Y D, et al.. Breeding of new hybrid rice combination Y liangyou 7 with high yield and good quality by introducing yield-increase QTLs of wild rice [J]. Hybrid Rice, 2010, 25(4):20-22. | |
8 | 周屹峰,赵霏,任三娟,等.具中等支链淀粉含量的籼型优质不育系浙农3A的选育[J]. 杂交水稻,2010,25(4):14-17. |
ZHOU Y F, ZHAO F, REN S J, et al.. Breeding of good quality indica CMS line Zhenong 3A with intermediate amylose content [J]. Hybrid Rice, 2010, 25(4):14-17. | |
9 | 王岩,付新民,高冠军,等.分子标记辅助选择改良优质水稻恢复系明恢63的稻米品质[J].分子植物育种,2009,7(4):661-665. |
WANG Y, FU X J, GAO G J, et al.. Improving the grain quality of Minghui63, a restorer line of rice with good quality through marker-assisted selection [J]. Mol. Plant Breed., 2009, 7(4):661-665. | |
10 | 刘巧泉,蔡秀玲,李钱峰,等.分子标记辅助选择改良特青及其杂交稻米的蒸煮与食味品质[J].作物学报,2006,32(1):64-69. |
LIU Q Q, CAI X L, LI Q F, et al.. Molecular marker-assisted selection for improving cooking and eating quality in Teqing and its hybrid rice [J]. Acta. Agron. Sin., 2006, 32(1):64-69. | |
11 | LIU S P, LI X, WANG C Y, et al.. Improvement of resistance to rice blast in Zhenshan97 by molecular marker-aided selection [J]. Acta Botan. Sin., 2003, 45(11):1346-1350. |
12 | 杨子贤,姜恭好,徐才国,等.利用分子标记辅助选择改良93-11对白叶枯病和螟虫抗性[J].分子植物育种,2004,2(4):473-480. |
YANG Z X, JIANG G H, XU C G, et al.. Simultaneously improvement of resistance to bacterial blight and stem borer of 93-11 by molecular marker-assisted selection [J]. Mol. Plant Breed., 2004, 2(4):473-480. | |
13 | 陈学伟,李仕贵,马玉清,等.水稻抗稻瘟病基因Pi-d(t)1、Pi-b、Pi-ta2的聚合及分子标记选择[J].生物工程学报,2004,20(5):708-714. |
CHEN X W, LI S G, MA Y Q, et al.. Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t)1, Pi-b, Pi-ta2, in rice [J]. Chin. J. Biotech., 2004, 20(5):708-714. | |
14 | 倪大虎,易成新,李莉,等.利用分子标记辅助选择聚合水稻基因Xa21和Pi9(t)[J].分子植物育种,2005,3(3):329-334. |
NI D H, YI C X, LI L, et al.. Pyramiding Xa21 and Pi9(t) in rice by marker-assisted selection [J]. Mol. Plant Breed., 2005, 3(3):329-334. | |
15 | 官华忠,陈志伟,潘润森,等.通过标记辅助回交育种改良优质水稻保持系金山B-1的稻瘟病抗性[J].分子植物育种,2006,4(1):49-53. |
GUAN H Z, CHEN Z W, PAN R S, et al.. Improving the resistance of Jinshan B-1, a male sterile persistence line of rice with good quality, to rice blast via marker-assisted backcross breeding [J]. Mol. Plant Breed., 2006, 4(1):49-53. | |
16 | 董巍,李信,晏斌,等.利用分子标记辅助选择改良培矮64S的稻瘟病抗性[J].分子植物育种,2010,8(5):853-860. |
DONG W, LI X, YAN B, et al.. Improving the blast resistance of Peiai64S through marker-assisted selection [J]. Mol. Plant Breed., 2010, 8(5):853-860. | |
17 | 陈英之,陈乔,孙荣科,等.改良水稻对稻褐飞虱的抗性研究[J].西南农业学报,2010,23(4):1099-2007. |
CHEN Y Z, CHEN Q, SUN R K, et al.. Improvement of rice resistance to brown planthoppers [J]. S.W. Chin. J. Agric. Sci., 2010, 23(4):1099-2007. | |
18 | 刘斌.紧跟世界科技发展前沿,水稻分子育种初见成效——广东省农业科学院水稻分子育种进展[J].广东农业科学,2020,47(12):12-23. |
LIU B. Following the frontier of scientific and technological development, significant progress has been made in molecular rice breeding—a brief introduction to the work in molecular rice breeding of rice research institute of Guangdong academy of agricultural sciences [J]. Guangdong Agric. Sci., 2020, 47(12):12-23. | |
19 | 黎裕,王健康,邱丽娟,等.中国作物分子育种现状与发展前景[J].作物学报,2010,36(9):1425-1430. |
LI Y, WANG J K, QIU L J, et al.. Crop molecular breeding in China: current status and perspectives [J]. Acta. Agron. Sin., 2010, 36(9):1425-1430. | |
20 | 于志晶,张文娟,李淑芳,等.水稻抗虫转基因研究进展[J].吉林农业科学,2010,35(6):16-20. |
YU Z J, ZHANG W J, LI S F, et al.. Advances in studies on insect resistant transgenic rice [J]. J. Jilin Agric. Sci., 2010, 35(6):16-20. | |
21 | 冯道荣,许新萍,卫剑文,等.使用双抗真菌蛋白基因提高水稻抗病性的研究[J].植物学报,1999,41(11):1187-1191. |
FENG D R, XU X P, WEI J W, et al.. Enhancement of rice disease resistance by two antifungal protein genes [J]. Acta Botan. Sin., 1999, 41(11):1187-1191. | |
22 | 翟文学,李晓兵,田文忠,等.由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种[J].中国科学,2000,30(2):200-207. |
23 | 刘利丹,于磊,赵明杰.扑朔迷离的转基因安全之争[J].医学与哲学,2014,35(11A):13-18. |
LIU L D, YU L, ZHAO M J. The bewildering dispute about safety of transgenically modified foods [J]. Med. Phil., 2014, 35(11A):13-18. | |
24 | 玛丽莲,郭龙彪,钱前.转基因水稻安全性评价的内容[J].中国稻米,2004,5. |
25 | 张白雪,孙其信,李海峰.基因修饰技术研究进展[J].生物工程学报,2015,31(8):1162-1174. |
ZHANG B X, SUN Q X, LI H F. Advances in genetic modification technologies [J]. Chin. J. Biotech., 2015, 31(8):1162-1174. | |
26 | 刘浩,张国良,许仁良,等.基因编辑技术在水稻分子育种上的应用[J].淮阴工学院学报,2018,27(5):31-37. |
LIU H, ZHANG G L, XU R L, et al.. Application of gene editing technology in rice molecular breeding [J]. J. Huaiyin Inst. Technol., 2018, 27(5):31-37. | |
27 | CAO H X, WANG W, LE H T, et al.. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding [J/OL]. Int. J. Genomics, 2016, 2016:5078796 [2021-06-26]. . |
28 | SHAN Q W, WANG Y P, CHEN K L, et al.. Rapid and efficient gene modification in rice and brachypodium using TALENs [J]. Mol. Plant, 2013, 6(4):1365-1368. |
29 | GAO C. Genome editing in crops: from bench to field [J]. Natl. Sci. Rev., 2015, 2(1):13-15. |
30 | 徐鹏,王宏,涂燃冉,等.利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J].中国水稻科学,2019,33(4):313-322. |
XU P, WANG H, TU R R, et al.. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system [J]. Chin. J. Rice. Sci., 2019, 33(4):313-322. | |
31 | LI W T, ZHU Z W, CHERN M S, et al.. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance [J]. Cell, 2017, 170(1):114-126. |
32 | 刘畅媛,孙一丁,马继琼,等.水稻抗稻瘟病基因Bsr-d1的SNP区域在地方品种中的变异分析[J].分子植物育种,2021,19(7):2097-2102. |
LIU C Y, SUN Y D, MA J Q, et al.. SNP fragment variations analysis of resistant gene Bsr-d1 to rice blast in rice landraces [J]. Mol. Plant Breed., 2021, 19(7):2097-2102. | |
33 | LI J, MENG X B, YUAN Z, et al.. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J]. Nat. Plants, 2016, 2(10):16139-16148. |
34 | 戴焱,赵德刚.抗草甘膦水稻突变体osgr-1EPSPS基因克隆及生物信息学分析[J].种子,2018,37(3):1-7. |
DAI Y, ZHAO D G. Bioinformatic analysis of EPSPS gene from the rice resistant mutant osgr-1 of glyphosate [J]. Seed, 2018, 37(3):1-7. | |
35 | SUN Y W, ZHANG X, WU C Y, et al.. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase [J]. Mol. Plant, 2016, 9(4):628-631. |
36 | LI H, LI X F, XU Y, et al.. High-efficiency reduction of rice amylose content via CRISPR/Cas9-mediated base editing [J]. Rice Sci., 2020, 27(6):445-448. |
37 | 范美英,梅法庭,朱义旺,等.利用CRISPR/Cas9技术创制糯稻新材料[J].福建农业学报,2019,34(5):503-508. |
FAN M Y, MEI F T, ZHU Y W, et al.. Greating new glutinous rice by CRISPR/Cas9-targeted mutagenesis in rice [J]. J. Fujian Agric. Sci., 2019, 34(5):503-508. | |
38 | 邵高能,谢黎虹,焦桂爱,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2 [J].中国水稻科学,2017,31(2):216-222. |
SHAO G N, XIE L H, JIAO G A, et al.. CRISPR/Cas9-mediated editing of the fragrant gene Badh2 in rice [J]. Chin. J. Rice. Sci., 2017, 31(2):216-222. | |
39 | 祁永斌,张礼霞,王林友,等.利用CRISPR/Cas9技术编辑水稻香味基因Badh2 [J].中国农业科学,2020,53(8):1501-1509. |
QI Y B, ZHANG L X, WANG L Y, et al.. CRISPR/Cas9 targeted editing for the fragrant gene Badh2 in rice [J]. Sci. Agric. Sin., 2020, 53(8):1501-1509. | |
40 | SUN Y W, JIAO G A, LIU Z, et al.. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes [J]. Front. Plant Sci., 2017, 8:298-313. |
41 | SHEN L, WANG C, FU Y P, et al.. QTL editing confers opposing yield performance in different rice varieties [J]. J. Integr. Plant Biol., 2018, 60(2):89-93. |
42 | LI M R, LI X X, ZHOU Z J, et al.. Reassessment of the four yield-related genes Gn1a, DEP1, GS3, and IPA1 in rice using a CRISPR/Cas9 system [J]. Front. Plant Sci., 2016, 7:377-390. |
43 | ZHAO D S, LI Q F, ZHANG C Q, et al.. GS9 acts as a transcriptional activator to regulate rice grain shape and appearance quality [J]. Nat. Commun., 2018, 9(1):1240-1254. |
44 | 周文甲,田晓杰,任月坤,等.利用CRISPR/Cas9创造早熟香味水稻[J].土壤与作物,2017,6(2):146-152. |
ZHOU W J, TIAN X J, REN Y K, et al.. Breeding of early maturatity and fragrant rice via CRISPR/Cas9 mediated genome editing [J]. Soils Crops, 2017, 6(2):146-152. | |
45 | LI X F, SUN Y Q, TIAN X J, et al.. Comprehensive identification of major flowering time genes and their combinations, which determined rice distribution in Northeast China [J]. Plant Growth Regul., 2018, 84(3):593-602. |
46 | 范守山,邹德堂.水稻抽穗期的光周期调控[J].遗传育种,2011,2:12-15. |
47 | HORI K, OGISO TANAKA E, MATSUBARA K, et al.. Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response [J]. Plant J., 2013, 76(1):36-46. |
48 | MATSUBARA K, OGISO TANAKA E, HORI K, et al.. Natural variation in Hd17, a homolog of ArabidopsisELF3 that is involved in rice photoperiodic flowering [J]. Plant Cell Physiol., 2012, 53(4):709-716. |
49 | SHIBAYA T, HORI K, OGISO TANAKA E, et al.. Hd18, encoding histone acetylase related to Arabidopsis FLOWERING LOCUS D, is involved in the control of flowering time in Rice [J]. Plant Cell Physiol., 2016, 57(9):1828-1838. |
50 | WU W X, ZHENG X M, LU G W, et al.. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(8):2775-2780. |
51 | LI X F, ZHOU W J, REN Y, et al.. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing [J]. J. Genet. Genomics, 2017, 44(3):175-178. |
52 | 刘欣欣,李赫,卜庆云,等.CRISPR/Cas9系统在水稻分子育种中的应用[J].土壤与作物,2021,10(1):18-26. |
LIU X X, LI H, BU Q Y, et al.. Application of CRISPR/Cas9 system in rice molecular breeding [J]. Soils Crops, 2021, 10(1):18-26. | |
53 | JAGANATHAN D, BOHRA A, THUDI M, et al.. Fine mapping and gene cloning in the post-NGS era: advances and prospects [J]. Theor. Appl. Genet., 2020, 133(5):1791-1810. |
54 | 万建民.作物分子设计育种[J].作物学报,2006,32(3):455-462. |
WAN J M. Perspectives of molecular design breeding in crops [J]. Acta. Agron. Sin., 2006, 32(3):455-462. | |
55 | WANG J K, WAN X Y, LI H H, et al.. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach [J]. Theor. Appl. Genet., 2007, 115(1):87-100. |
56 | BAI S W, YU H, WANG B, et al.. Retrospective and perspective of rice breeding in China [J]. J. Genet Genomics, 2018, 45(11):603-612. |
57 | WANG J K, WAN X Y, LI H H, et al.. Application of identified QTL-marker associations in rice quality improvement through a design-breeding approach [J]. Theor. Appl. Genet., 2007, 115(1):87-100. |
58 | 顾铭洪,刘巧泉.作物分子设计育种及其发展前景分析[J].扬州大学学报,2009,30(1):64-68. |
GU M H, LIU Q Q. Prospects of crop breeding by molecular design [J]. J. Yangzhou Univ., 2009, 30(1):64-68. | |
59 | TIAN Z X, QIAN Q, LIU Q Q, et al.. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities [J]. Proc. Natl. Acad. Sci. USA, 2009, 106(51):21760-21765. |
60 | ZENG D L, TIAN Z X, RAO Y, et al.. Rational design of high-yield and superior-quality rice [J/OL]. Nat. Plants, 2017, 3(4):17031 [2020-06-15]. . |
[1] | 张剑峰, 侯文峰, 伍永清, 李凯旭, 李小坤. 氮肥与密度互作对水稻病虫害发生和产量的影响[J]. 中国农业科技导报, 2025, 27(9): 145-154. |
[2] | 刘之恩, 何勇, 王志成, 詹逍康, 王廷宝, 刘耀威, 田志宏. 水稻生长调节因子GRF基因家族的鉴定及生物信息学分析[J]. 中国农业科技导报, 2025, 27(8): 18-27. |
[3] | 吴正, 杨红云, 孙爱珍, 孔杰, 黄淑梅. 基于CA_MobileViT模型的水稻钾素营养诊断研究[J]. 中国农业科技导报, 2025, 27(8): 80-88. |
[4] | 邵丽华, 李鹏. 水稻对恶苗病菌侵染响应的蛋白质组分析[J]. 中国农业科技导报, 2025, 27(6): 126-135. |
[5] | 沈乐丞, 温志刚, 廖涵, 刘贤标, 蒋耀聪, 张远聪, 刘婷, 王玫. 叶面喷施不同硒肥对水稻硒含量及硒形态和稻米组分的影响[J]. 中国农业科技导报, 2025, 27(3): 206-215. |
[6] | 杨大兵, 胡亮, 杜雪树, 万丙良, 夏明元, 戚华雄, 李进波. CRISPR/Cas9基因编辑技术创制水稻雄性不育系的研究进展[J]. 中国农业科技导报, 2025, 27(3): 24-34. |
[7] | 熊橙梁, 张庆富, 姚未远, 夏滔, 许庆平, 周喜新, 张毅, 陈丽鹃, 杨柳. 添加不同类型水稻秸秆对植烟连作土壤微生物群落的影响[J]. 中国农业科技导报, 2025, 27(1): 233-240. |
[8] | 魏荣华, 尹明, 王文生, 崔彦茹. 基于BSA-seq发掘水稻抽穗期相关QTLs及候选基因[J]. 中国农业科技导报, 2024, 26(9): 12-24. |
[9] | 孙亮, 徐益, 蔡沁, 郭靖豪, 赵灿, 郭保卫, 邢志鹏, 霍中洋, 张洪程, 胡雅杰. 中微量元素对水稻产量和品质的影响研究进展[J]. 中国农业科技导报, 2024, 26(8): 9-19. |
[10] | 刘大为, 秦锋, 廖骞, 王修善, 谢方平, 李铁辉. 南方籼稻热风干燥特性及其工艺参数优化[J]. 中国农业科技导报, 2024, 26(8): 93-102. |
[11] | 岳伟, 王晖, 陈曦, 占新春, 阮新民. 安徽省稻米品质综合评价方法研究[J]. 中国农业科技导报, 2024, 26(6): 141-147. |
[12] | 陈明迪, 胡桂花, 张海文, 王旺田. 水稻RR基因家族生物信息学及表达模式分析[J]. 中国农业科技导报, 2024, 26(5): 20-29. |
[13] | 曾建光, 刘桃李, 孙林娟, 袁定阳, 黄钰博, 金晨钟, 谭炎宁. 水稻矮秆迟抽穗突变体d534的性状及其对赤霉素的敏感性分析[J]. 中国农业科技导报, 2024, 26(3): 7-14. |
[14] | 张艺, 何军, 张宝龙, 张才军, 甘学华. 蓄雨型间歇灌溉模式下缓释肥对水稻生长、产量及水分利用的影响[J]. 中国农业科技导报, 2024, 26(10): 195-205. |
[15] | 钱政, 杨孙哲, 张国卿, 郭紫微, 张林朋, 万家兴, 杨红云. 基于卷积神经网络的水稻氮素营养诊断[J]. 中国农业科技导报, 2023, 25(9): 113-121. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||