Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (12): 103-110.DOI: 10.13304/j.nykjdb.2022.0035
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Pengju LIU1(), Pingzeng LIU1(
), Dalei ZHANG2, Yan ZHANG1, Hui LI1, Lining LIU1, Fangjun DING3
Received:
2022-01-13
Accepted:
2022-04-12
Online:
2023-12-15
Published:
2023-12-12
Contact:
Pingzeng LIU
刘鹏菊1(), 柳平增1(
), 张大磊2, 张艳1, 李辉1, 刘力宁1, 丁方军3
通讯作者:
柳平增
作者简介:
刘鹏菊 E-mail: 2841430017@qq.com;
基金资助:
CLC Number:
Pengju LIU, Pingzeng LIU, Dalei ZHANG, Yan ZHANG, Hui LI, Lining LIU, Fangjun DING. Ventilation Control Model of Cucumber in Facility Based on Environmental Factors[J]. Journal of Agricultural Science and Technology, 2023, 25(12): 103-110.
刘鹏菊, 柳平增, 张大磊, 张艳, 李辉, 刘力宁, 丁方军. 基于环境因子的设施黄瓜通风控制模型[J]. 中国农业科技导报, 2023, 25(12): 103-110.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0035
指标 Index | Y | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|---|
Y | 1 | |||||||||
X1 | 0.987 | 1 | ||||||||
X2 | -0.819 | -0.856 | 1 | |||||||
X3 | 0.738 | 0.756 | -0.704 | 1 | ||||||
X4 | -0.177 | -0.177 | -0.021 | 0.07 | 1 | |||||
X5 | 0.778 | 0.789 | -0.664 | 0.513 | -0.482 | 1 | ||||
X6 | -0.634 | -0.657 | 0.764 | -0.555 | -0.049 | -0.575 | 1 | |||
X7 | 0.295 | 0.297 | -0.306 | 0.271 | -0.051 | 0.281 | -0.269 | 1 | ||
X8 | 0.109 | 0.122 | -0.154 | 0.109 | -0.022 | 0.142 | -0.177 | -0.147 | 1 | |
X9 | 0.842 | 0.802 | -0.806 | 0.671 | -0.013 | 0.567 | -0.567 | 0.351 | 0.059 | 1 |
Table 1 Correlation analysis of environmental indicators
指标 Index | Y | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 |
---|---|---|---|---|---|---|---|---|---|---|
Y | 1 | |||||||||
X1 | 0.987 | 1 | ||||||||
X2 | -0.819 | -0.856 | 1 | |||||||
X3 | 0.738 | 0.756 | -0.704 | 1 | ||||||
X4 | -0.177 | -0.177 | -0.021 | 0.07 | 1 | |||||
X5 | 0.778 | 0.789 | -0.664 | 0.513 | -0.482 | 1 | ||||
X6 | -0.634 | -0.657 | 0.764 | -0.555 | -0.049 | -0.575 | 1 | |||
X7 | 0.295 | 0.297 | -0.306 | 0.271 | -0.051 | 0.281 | -0.269 | 1 | ||
X8 | 0.109 | 0.122 | -0.154 | 0.109 | -0.022 | 0.142 | -0.177 | -0.147 | 1 | |
X9 | 0.842 | 0.802 | -0.806 | 0.671 | -0.013 | 0.567 | -0.567 | 0.351 | 0.059 | 1 |
风口开度Opening size/% | 回归自变量Regression independent variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
0 | 20.388 | 5.084 | 11.127 | 1.510 | 14.771 | 12.126 | 1.308 | 1.385 | 3.542 |
25 | 15.705 | 22.809 | 5.077 | 13.338 | 6.074 | 20.151 | 1.423 | 1.523 | 7.074 |
50 | 14.171 | 5.278 | 10.296 | 2.985 | 2.357 | 4.846 | 1.116 | 1.177 | 2.380 |
75 | 3.551 | 6.218 | 1.835 | 2.801 | 2.902 | 5.543 | 1.110 | 1.108 | 2.275 |
100 | 5.978 | 8.135 | 2.024 | 3.564 | 5.510 | 6.482 | 1.054 | 1.076 | 2.605 |
Table 2 VIF of environment fact under different opening size
风口开度Opening size/% | 回归自变量Regression independent variable | ||||||||
---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | |
0 | 20.388 | 5.084 | 11.127 | 1.510 | 14.771 | 12.126 | 1.308 | 1.385 | 3.542 |
25 | 15.705 | 22.809 | 5.077 | 13.338 | 6.074 | 20.151 | 1.423 | 1.523 | 7.074 |
50 | 14.171 | 5.278 | 10.296 | 2.985 | 2.357 | 4.846 | 1.116 | 1.177 | 2.380 |
75 | 3.551 | 6.218 | 1.835 | 2.801 | 2.902 | 5.543 | 1.110 | 1.108 | 2.275 |
100 | 5.978 | 8.135 | 2.024 | 3.564 | 5.510 | 6.482 | 1.054 | 1.076 | 2.605 |
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
0 | 常量Constant | 1.772 | 2.107 | — | 0.401 |
X1 | 0.560 | 0.043 | 0.557 | 0.000 | |
X3 | 0.105 | 0.011 | 0.311 | 0.000 | |
X5 | 0.412 | 0.063 | 0.231 | 0.000 | |
X6 | 0.036 | 0.006 | 0.204 | 0.000 | |
X9 | 0.026 | 0.002 | 0.253 | 0.000 | |
X2 | 0.071 | 0.010 | 0.157 | 0.000 | |
X4 | -0.313 | 0.057 | -0.065 | 0.000 | |
25 | 常量Constant | -4.117 | 0.979 | — | 0.000 |
X1 | 0.909 | 0.026 | 0.898 | 0.000 | |
X9 | 0.054 | 0.003 | 0.364 | 0.000 | |
X2 | 0.070 | 0.006 | 0.284 | 0.000 | |
50 | 常量Constant | -0.217 | 0.815 | — | 0.490 |
X1 | 0.799 | 0.013 | 0.800 | 0.000 | |
X9 | 0.085 | 0.003 | 0.305 | 0.000 | |
X2 | 0.102 | 0.007 | 0.241 | 0.000 | |
X5 | -0.061 | 0.008 | -0.130 | 0.000 | |
X4 | -0.077 | 0.012 | -0.058 | 0.000 | |
X8 | 0.003 | 0.001 | 0.033 | 0.000 | |
75 | 常量Constant | -0.799 | 0.651 | — | 0.220 |
X1 | 0.842 | 0.012 | 0.787 | 0.000 | |
X9 | 0.066 | 0.002 | 0.319 | 0.000 | |
X2 | 0.054 | 0.005 | 0.143 | 0.000 | |
X7 | -0.134 | 0.025 | -0.044 | 0.000 | |
X8 | -0.002 | 0.001 | -0.034 | 0.000 | |
X4 | -0.035 | 0.009 | -0.040 | 0.000 |
Table 3 Temperature prediction model coefficients based on different opening size
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
0 | 常量Constant | 1.772 | 2.107 | — | 0.401 |
X1 | 0.560 | 0.043 | 0.557 | 0.000 | |
X3 | 0.105 | 0.011 | 0.311 | 0.000 | |
X5 | 0.412 | 0.063 | 0.231 | 0.000 | |
X6 | 0.036 | 0.006 | 0.204 | 0.000 | |
X9 | 0.026 | 0.002 | 0.253 | 0.000 | |
X2 | 0.071 | 0.010 | 0.157 | 0.000 | |
X4 | -0.313 | 0.057 | -0.065 | 0.000 | |
25 | 常量Constant | -4.117 | 0.979 | — | 0.000 |
X1 | 0.909 | 0.026 | 0.898 | 0.000 | |
X9 | 0.054 | 0.003 | 0.364 | 0.000 | |
X2 | 0.070 | 0.006 | 0.284 | 0.000 | |
50 | 常量Constant | -0.217 | 0.815 | — | 0.490 |
X1 | 0.799 | 0.013 | 0.800 | 0.000 | |
X9 | 0.085 | 0.003 | 0.305 | 0.000 | |
X2 | 0.102 | 0.007 | 0.241 | 0.000 | |
X5 | -0.061 | 0.008 | -0.130 | 0.000 | |
X4 | -0.077 | 0.012 | -0.058 | 0.000 | |
X8 | 0.003 | 0.001 | 0.033 | 0.000 | |
75 | 常量Constant | -0.799 | 0.651 | — | 0.220 |
X1 | 0.842 | 0.012 | 0.787 | 0.000 | |
X9 | 0.066 | 0.002 | 0.319 | 0.000 | |
X2 | 0.054 | 0.005 | 0.143 | 0.000 | |
X7 | -0.134 | 0.025 | -0.044 | 0.000 | |
X8 | -0.002 | 0.001 | -0.034 | 0.000 | |
X4 | -0.035 | 0.009 | -0.040 | 0.000 |
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
100 | 常量Constant | -3.319 | 0.400 | — | 0.000 |
X1 | 0.763 | 0.019 | 0.707 | 0.000 | |
X9 | 0.075 | 0.003 | 0.308 | 0.000 | |
X5 | 0.138 | 0.018 | 0.109 | 0.000 | |
X2 | 0.076 | 0.010 | 0.156 | 0.000 | |
X6 | -0.042 | 0.007 | -0.105 | 0.000 |
Table 3 Temperature prediction model coefficients based on different tuyere openings
风口开度Opening size/% | 变量名称 Variable | 非标准化系数Denormalization coefficient | 标准化系数Normalization coefficient | 显著性 Significance | |
---|---|---|---|---|---|
回归系数 Regression coefficient | 标准误差 Standard Error | ||||
100 | 常量Constant | -3.319 | 0.400 | — | 0.000 |
X1 | 0.763 | 0.019 | 0.707 | 0.000 | |
X9 | 0.075 | 0.003 | 0.308 | 0.000 | |
X5 | 0.138 | 0.018 | 0.109 | 0.000 | |
X2 | 0.076 | 0.010 | 0.156 | 0.000 | |
X6 | -0.042 | 0.007 | -0.105 | 0.000 |
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution/% | 累计贡献率 Cumulative contribution/% |
---|---|---|---|
P1 | 5.751 | 95.845 | 95.845 |
P2 | 0.221 | 3.688 | 99.530 |
P3 | 0.019 | 0.312 | 99.842 |
P4 | 0.007 | 0.110 | 99.952 |
P5 | 0.006 | 0.048 | 100.00 |
P6 | 5.431e-6 | 9.052e-5 | 100.00 |
Table 5 Growth index and contribution value of cucumber
主成分 Principal component | 特征值 Eigenvalue | 贡献率 Contribution/% | 累计贡献率 Cumulative contribution/% |
---|---|---|---|
P1 | 5.751 | 95.845 | 95.845 |
P2 | 0.221 | 3.688 | 99.530 |
P3 | 0.019 | 0.312 | 99.842 |
P4 | 0.007 | 0.110 | 99.952 |
P5 | 0.006 | 0.048 | 100.00 |
P6 | 5.431e-6 | 9.052e-5 | 100.00 |
因变量Dependent variable | 自变量Variable | 估计值Estimate | 标准误差Std. Error | 显著性Significance |
---|---|---|---|---|
黄瓜长势 Cucumber growth | 常数项Intercept | -4.48 | 1.024 275 8 | P<0.001 |
X10 | 0.952 | 0.018 762 4 | P<0.001 | |
X11 | 0.043 | 0.007 364 2 | P<0.001 | |
X12 | 0.060 | 0.013 774 9 | P<0.001 |
Table 6 Analysis of greenhouse cucumber growth model based on Lasso regression
因变量Dependent variable | 自变量Variable | 估计值Estimate | 标准误差Std. Error | 显著性Significance |
---|---|---|---|---|
黄瓜长势 Cucumber growth | 常数项Intercept | -4.48 | 1.024 275 8 | P<0.001 |
X10 | 0.952 | 0.018 762 4 | P<0.001 | |
X11 | 0.043 | 0.007 364 2 | P<0.001 | |
X12 | 0.060 | 0.013 774 9 | P<0.001 |
1 | 程陈,董朝阳,黎贞发,等.日光温室芹菜外观形态及干物质积累分配模拟模型[J].农业工程学报,2021,37(10):142-151. |
CHENG C, DONG C Y, LI Z F, et al.. Simulation model of external morphology and dry matter accumulation and distribution of celery in solar greenhouse [J].Trans. Chin. Soc. Agric. Eng., 2021,37(10):142-151. | |
2 | JHA U C, BOHRA A, JHA R. Breeding approaches and genomics technologies to increase crop yield under low-temperature stress [J]. Plant Cell Rep., 2017,36:1-35. |
3 | 张川,张亨年,闫浩芳,等.微喷灌结合滴灌对温室高温环境和作物生长生理特性的影响[J].农业工程学报,2018,34(20): 83-89. |
ZHNAG C, ZHANG H N, YAN H F, et al.. Effects of micro-sprinkler irrigation combined with drip irrigation on greenhouse high temperature environment and crop growth physiological characteristics [J]. Trans. Chin. Soc. Agric. Eng., 2018,34(20): 83-89. | |
4 | 徐立鸿,苏远平,梁毓明.面向控制的温室系统小气候环境模型要求与现状[J].农业工程学报,2013,29(19):1-15. |
XU L H, SU Y P, LIANG S M. Requirement and current situation of control-oriented microclimate environmental model in greenhouse system [J]. Trans.Chin. Soc. Agric. Eng., 2013,29(19):1-15. | |
5 | 袁洪波,李莉,王俊衡,等.基于温度积分算法的温室环境控制方法[J].农业工程学报,2015,31(11):221-227. |
YUAN H B, LI L, WANG J H, et al.. Control method for greenhouse climate based on temperature integration [J]. Trans. Chin. Soc. Agric. Eng., 2015,31(11): 221-227. | |
6 | WANG L, WANG B, ZHU M. Multi-model adaptive fuzzy control system based on switch mechanism in a greenhouse [J]. Appl. Eng. Agric.,2020,36:549-556. |
7 | SUN W, KONG F, ZHANG J, et al.. Greenhouse intelligent control system based on indoor and outdoor environmental data fusion [J/OL]. IOP Conf. Seri.: Earth and Environ. Sci., 440(4):042073 [2023-06-16]. . |
8 | CHENG Y. Research on intelligent control of agricultural greenhouse based on fuzzy PID control [J]. J. Environ. Eng.Sci.,2020,15(3):1-6. |
9 | BERSANI C, FOSSA M, PRIARONE A, et al.. Model predictive control versus traditional relay control in a high energy efficiency greenhouse [J]. Energies,2021,14(11):1-21. |
10 | HAMIDANE H, FAIZ S E, LACHHAB A, et al.. Constrained discrete model predictive control of a greenhouse relative humidity [C/OL]// E3S Web of Conferences, 2021, 229: 01001 [2023-06-16]. . |
11 | 吴曼玲,陈一飞,李琦,等.基于灰色预测的温室地源热泵系统温度变频调控及验证[J].农业工程学报,2016,32(16): 183-187. |
WU M L, CHEN Y F, LI Q, et al.. Frequency transformation and its validation of ground source heat pump system based on grey prediction of greenhouse temperature [J]. Trans. Chin. Soc. Agric. Eng., 2016,32(16):183-187. | |
12 | SONG Y E, MOON A, AN S Y, et al.. Prediction of smart greenhouse temperature-humidity based on multi-dimensional LSTMs [J]. J. Korean Soc. Precision Eng., 2019,36(3):239-246. |
13 | 温永菁,李春,薛庆禹,等.基于逐步回归与BP神经网络的日光温室温湿度预测模型对比分析[J].中国农学通报,2018,34:115-125. |
WEN Y J, LI C, XUE Q Y, et al.. Temperature and humidity prediction models in solar greenhouse:comparative analysis based on stepwise regression and BP neural network [J]. Chin. Agric. Sci. Bull., 2018,34:115-125. | |
14 | 秦琳琳,马娇,黄云梦,等.基于积温理论的温室温度混杂系统预测控制[J].农业机械学报,2018,49:347-355. |
QIN L L, MA J, HUANG Y M, et al.. Predictive control of greenhouse temperature hybrid system based on crop temperature integration theory [J].Trans. Chin. Soc. Agric. Mach., 2018,49:347-355. | |
15 | ZHANG X, GAO L, ZHAO Z Y, et al.. Modeling and analysis of greenhouse environmental factors in north China based on path analysis and stepwise regression [J]. Semin-Cienc Agrar., 41(6):2587-2596 2020, 41(6):2587-2596. |
16 | 陈俐均,杜尚丰,李嘉鹏,等.温室环境温度预测自适应机理模型参数在线识别方法[J].农业工程学报,2017, |
33(S1):315-321. CHEN L J, DU S F, LI J P, et al.. Online identification method of parameters for greenhouse temperature prediction self-adapting mechanism model [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(S1):315-321. | |
17 | 张观山,李天华,侯加林.考虑动态吸收率的玻璃温室覆盖层温度预测模型[J].农业工程学报,2020,36:201-211. |
ZHANG G S, LI T H, HOU J L. Model for predicting the temperature of glass greenhouse cover considering dynamic absorptivity [J]. Trans. Chin. Soc. Agric. Eng.,2020,36(5): 201-211. | |
18 | JUNG D H, KIM H J, KIM J Y, et al.. Model predictive control via output feedback neural network for improved Multi-window greenhouse ventilation control [J/OL]. Sensors, 2020,20(6):1756 [2023-06-16]. . |
19 | 秦琳琳,马国旗,储著东,等.基于灰色预测模型的温室温湿度系统建模与控制[J].农业工程学报,2016,32(S1):233-241. |
QIN L L, MA G Q, CHU Z D, et al.. Molding and control of greenhouse temperature-humidity system based on grey prediction model [J]. Trans. Chin. Soc. Agric. Eng.,2016,32(S1):233-241. | |
20 | SUMARUDIN A, ISMANTOHADI E, PUSPANINGRUM A,et al.. Implementation irrigation system using support vector machine for precision agriculture based on IoT [J/OL]. IOP Conf. Ser.: Mater. Sci. Eng., 2021,1098:032098 [2023-06-16]. . |
21 | KANEDA Y, IBAYASHI H, OISHI N,et al.. Greenhouse environmental control system based on SW-SVR [J]. Procedia Computer Sci., 2015,08(249):860-869. |
22 | 刘浩,孙景生,段爱旺,等.基于AutoCAD软件确定番茄与青椒叶面积的简易方法[J].中国农学通报,2009,25(5):287-293. |
LIU H, SUN J S, DUAN A W, et al.. Simple model for tomato and green pepper leaf area based on auto CAD software [J]. Chin. Agric. Sci. Bull.,2009,25(5):287-293. | |
23 | WOLD S, ESBENSEN K, GELADI P. Principal component analysis [J].Chemom. Intell. Lab. Systs.,1987,2:37-52. |
24 | 张红梅,金海军,丁小涛,等.有机肥无机肥配施对温室黄瓜生长、产量和品质的影响[J].植物营养与肥料学报,2014, 20(1): 247-253. |
ZHANG H M, JIN H J, DING X T, et al.. Effects of application of organic and inorganic fertilizers on the growth,yield and quality of cucumber in greenhouse [J]. Plant Nutr. Fert. Sci.,2014,20(1): 247-253. | |
25 | THOMPSON B. Stepwise regression and stepwise discriminant analysis need not apply here: a guidelines editorial [J]. Edu. Psychol. Measure., 1995,55(4):525-534. |
26 | REID S, TIBSHIRANI R, FRIEDMAN J. A Study of error variance estimation in Lasso regression [J]. Statistica Sinica,2016(1):453-457. |
27 | 陶惠林,徐良骥,冯海宽,等.基于无人机数码影像的冬小麦株高和生物量估算[J].农业工程学报,2019,35(19):107-116. |
TAO H L, XU L J, FENG H K, et al.. Estimation of plantheight and biomass of winter wheat based on UAV digita image [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(19): 107-116. | |
28 | HAIR J, BLACK W, BABIN B, et al.. Advanced Diagnostics for Multiple Regression: A Supplement to Multivariate Data Analysis [M]. Upper Saddle River, NJ: Pearson Prentice Hall, 2010:87-93. |
[1] | Gang LEI, Rong FANG, Kunhua ZHOU, Xuejun CHEN, Xinjie YUAN, Yueqin HUANG, Gege LI, Yuanyuan XIE, Xiaomin SONG. Establishment of Comprehensive Evaluation System of Pepper Germplasm Resources on Heat Tolerance at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 60-70. |
[2] | Feifei LIU, Wanrong HE, Qiang SUN, Linqiao XI, Jiean LIAO, Lu HAN. Effect of Alfalfa Green Manure on Diversity and Function of Soil Bacteria in Apple Orchards in Tarim Basin [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 223-233. |
[3] | Xiaofei XIONG, Wenqian WU, Hongyan HUO, Xin ZHANG, Yan YU, Dong AN, Tong ZHANG, Jianwei WU. Research on Sensor-based Agricultural Greenhouse Data Direct Reporting System and Intelligent Control [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 93-102. |
[4] | Fengxia BIAN, Kaige LIU, Xinmin RONG. Development and Verification of Prediction Model for Grape Downy Mildew Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 126-137. |
[5] | Jing ZHANG, Simeng GUO, Yingchun HAN, Yaping LEI, Fangfang XING, Wenli DU, Yabing LI, Lu FENG. Estimation of Cotton Yield Based on Unmanned Aerial Vehicle RGB Images [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 112-120. |
[6] | Yuanyuan DING, Xi’ao WANG, Ce LIU, Shuju LI, Zhihui CHENG. Establishment of Comprehensive Evaluation and Prediction Equation for Cucumber Wet-cold Tolerance at Seedling Stage [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 87-96. |
[7] | WANG Chuanxu, WANG Kang, CHEN Lin, LI Xue, ZHANG Hongwei. Research and Realization of Granary Temperature Field Prediction Model Based on Kriging Interpolation and BP Neural Network [J]. Journal of Agricultural Science and Technology, 2021, 23(9): 96-102. |
[8] | SU Yumeng§, ZHANG Xuting§, Terigele, TIAN Min, SHANG Xiaorui, LI Guojing, WANG Ruigang*. Identification of microRNAs in Caragana intermedia Kuang by High Throughput Sequencing Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2021, 23(3): 51-57. |
[9] | LIU Huan, YANG Yanjie, SHI Yuliang, LI Min, XING Manman. Analysis and Prediction on the Annual Temperature and Humidity Change of Solar Greenhouse in Jiaodong Area [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 136-144. |
[10] | LIU Zhe, YUAG Donggen, WANG EN. Automatic Counting Method of Wheat Grain Based on Improved Bayes Matting Algorithm [J]. Journal of Agricultural Science and Technology, 2020, 22(8): 75-82. |
[11] |
LI Xiaowei1,WU Baoguo1*,SU Xiaohui1,CHEN Yuling1,PENG Yiqin2,YU Yonghui2, FAN Xiaohu2.
Study on Estimation Model of Eucalyptus Accumulation in Guangxi Based on Decision Tree Integrated Learning
[J]. Journal of Agricultural Science and Technology, 2020, 22(6): 81-90.
|
[12] | YANG Xuecheng, HUANG Runxia, ZHOU Qing, XU Mingfeng, TANG Qiming, SU Zhiyao*. Association of Bryophytes with Site Factors and Indicator Species in Agroforestry Ecotone of East Guangdong [J]. Journal of Agricultural Science and Technology, 2020, 22(4): 177-186. |
[13] | ZHANG Xingwei, CHEN Chao*, TIAN Shan, FU Lin. Prediction of Apple Initial Flowering Period Based on Machine Learning [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 93-100. |
[14] | CHEN Yuling1, WU Baoguo1*, CUI Yan 2, WEI Yanjun3. Research and Application of Prediction Model of Subcompartment Volume for Larix principis-rupprechtii Mayr. Based on Back Propagation Neural Network [J]. Journal of Agricultural Science and Technology, 2019, 21(7): 82-93. |
[15] | TANG Jun, HE Banghua, TANG Li, WEN Yadong, CHEN Wen, FU Liang, ZHOU Bing*. Mining Inherent Law of Cut Tobacco Drying Process Based on Large Data [J]. Journal of Agricultural Science and Technology, 2019, 21(12): 94-101. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||