








Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (10): 161-168.DOI: 10.13304/j.nykjdb.2022.0572
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Yuyong WEI1(
), Qingfa ZHANG2, Kuichuan SHENG2(
)
Received:2022-07-11
Accepted:2022-08-03
Online:2022-10-15
Published:2022-10-25
Contact:
Kuichuan SHENG
通讯作者:
盛奎川
作者简介:魏俞涌 E-mail: weiyuyong66@sina.com;
基金资助:CLC Number:
Yuyong WEI, Qingfa ZHANG, Kuichuan SHENG. Effect of Biochar on Mechanical Properties of Zein/Polypropylene Composites[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 161-168.
魏俞涌, 张庆法, 盛奎川. 生物炭对玉米醇溶蛋白/聚丙烯复合材料力学性能的影响[J]. 中国农业科技导报, 2022, 24(10): 161-168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0572
| 样品 Sample | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|
| 聚丙烯 PP | 60 | 60 | 60 | 60 | 60 |
| 玉米醇溶蛋白 Zein | 20 | 15 | 10 | 5 | 0 |
| 碳酸钙 CaCO3 | 20 | 20 | 20 | 20 | 20 |
| 生物炭 Biochar | 0 | 5 | 10 | 15 | 20 |
Table 1 Raw material mass ratio of composites
| 样品 Sample | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|
| 聚丙烯 PP | 60 | 60 | 60 | 60 | 60 |
| 玉米醇溶蛋白 Zein | 20 | 15 | 10 | 5 | 0 |
| 碳酸钙 CaCO3 | 20 | 20 | 20 | 20 | 20 |
| 生物炭 Biochar | 0 | 5 | 10 | 15 | 20 |
| 力学性能 Mechanical property | PP | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|---|
| 弯曲强度 Flexural strength/MPa | 36.01±0.84 | 40.69±1.18 | 41.81±0.43 | 41.45±0.46 | 44.68±0.32 | 45.03±0.18 |
| 弯曲模量 Flexural modulus/GPa | 1.33±0.07 | 2.70±0.11 | 2.28±0.15 | 2.36±0.10 | 2.66±0.06 | 2.54±0.05 |
| 拉伸强度 Tensile strength/MPa | 23.19±1.79 | 20.71±0.55 | 22.41±0.17 | 24.00±0.25 | 24.27±0.05 | 23.64±0.23 |
| 拉伸模量 Tensile modulus/GPa | 0.23±0.01 | 0.33±0.02 | 0.27±0.03 | 0.37±0.01 | 0.29±0.02 | 0.36±0.10 |
| 断裂伸长率 Elongation/% | 8.71±0.17 | 5.97±0.18 | 6.71±0.22 | 7.00±0.41 | 7.07±0.13 | 7.26±0.22 |
| 冲击强度 Impact strength/(kJ·m-2) | 8.57±2.26 | 4.70±0.37 | 6.59±0.56 | 6.11±0.85 | 6.10±0.53 | 4.59±0.87 |
Table 2 Flexural properties, tensile properties and impact strength of the composites
| 力学性能 Mechanical property | PP | BC0 | BC5 | BC10 | BC15 | BC20 |
|---|---|---|---|---|---|---|
| 弯曲强度 Flexural strength/MPa | 36.01±0.84 | 40.69±1.18 | 41.81±0.43 | 41.45±0.46 | 44.68±0.32 | 45.03±0.18 |
| 弯曲模量 Flexural modulus/GPa | 1.33±0.07 | 2.70±0.11 | 2.28±0.15 | 2.36±0.10 | 2.66±0.06 | 2.54±0.05 |
| 拉伸强度 Tensile strength/MPa | 23.19±1.79 | 20.71±0.55 | 22.41±0.17 | 24.00±0.25 | 24.27±0.05 | 23.64±0.23 |
| 拉伸模量 Tensile modulus/GPa | 0.23±0.01 | 0.33±0.02 | 0.27±0.03 | 0.37±0.01 | 0.29±0.02 | 0.36±0.10 |
| 断裂伸长率 Elongation/% | 8.71±0.17 | 5.97±0.18 | 6.71±0.22 | 7.00±0.41 | 7.07±0.13 | 7.26±0.22 |
| 冲击强度 Impact strength/(kJ·m-2) | 8.57±2.26 | 4.70±0.37 | 6.59±0.56 | 6.11±0.85 | 6.10±0.53 | 4.59±0.87 |
| 1 | 李静雯, 张博明, 孙义亮, 等. 不同铺层方式下连续玻璃纤维/聚丙烯复合材料波纹夹芯板的力学性能[J]. 复合材料学报, 2019, 36(5): 1074-1082. |
| LI J W, ZHANG B M, SUN Y L, et al.. Mechanical properties of continuous glass fiber/polypropylene corrugated sandwich boards under different laminates [J]. Acta Mater. Compos. Sin., 2019, 36(5): 1074-1082. | |
| 2 | 迟晓红, 俞利, 郑杰, 等. 蒙脱土/聚丙烯复合材料结晶形态及耐电树枝化特性[J]. 复合材料学报, 2015, 32 (1): 76-84. |
| CHI X H, YU L, ZHENG J, et al.. Crystallization morphology and electrical tree resistance characteristics of montmorillonite/polypropylene composites [J]. Acta. Mater. Compos. Sin., 2015,32 (1): 76-84. | |
| 3 | KAYA G G, YILMAZ E, DEVECI H. Sustainable bean pod/calcined kaolin reinforced epoxy hybrid composites with enhanced mechanical, water sorption and corrosion resistance properties [J]. Constr. Build. Mater., 2018, 162: 272-279. |
| 4 | GOORANORIMI O, SUARIS W, DAUER E, et al.. Microstructural investigation of glass fiber reinforced polymer bars [J]. Compos. Part-B Eng., 2017, 110: 388-395. |
| 5 | ELGABBAS F, VINCENT P, AHMED E A, et al.. Experimental testing of basalt-fiber-reinforced polymer bars in concrete beams [J]. Compos. Part-B Eng., 2016, 91: 205-218. |
| 6 | ENAYATI M S, BEHZAD T, SAJKIEWICZ P Ł, et al.. Theoretical and experimental study of the stiffness of electrospun composites of poly (vinyl alcohol), cellulose nanofibers, and nanohydroxy apatite [J]. Cellulose, 2018, 25(1): 65-75. |
| 7 | TREINYTE J, BRIDZIUVIENE D, FATARAITE-URBONIENE E, et al.. Forestry wastes filled polymer composites for agricultural use [J]. J. Clean. Prod., 2018, 205: 388-406. |
| 8 | SEPE R, BOLLINO F, BOCCARUSSO L, et al.. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites [J]. Compos. Part-B Eng., 2018, 133: 210-217. |
| 9 | BARCZWSKI M, MATYKIEWICZ D, PIASEKI A, et al.. Polyethylene green composites modified with post agricultural waste filler: thermo-mechanical and damping properties [J]. Compos. Interface., 2018, 25(4): 287-299. |
| 10 | JIANG Y, WANG D, LI F, et al.. Cinnamon essential oil pickering emulsion stabilized by zein-pectin composite nanoparticles: characterization, antimicrobial effect and advantages in storage application [J]. Int. J. Boil. Macromol., 2020, 148: 1280-1289. |
| 11 | 张庆法, 杨科研, 蔡红珍, 等. 稻壳/高密度聚乙烯复合材料与稻壳炭/高密度聚乙烯复合材料性能对比[J]. 复合材料学报, 2018, 35(11): 3044-3050. |
| ZHANG Q F, YANG K Y, CAI H Z, et al.. Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites [J]. Acta Mater. Compos. Sin., 2018, 35(11): 3044-3050. | |
| 12 | 王海莹, 余晓, 李穗奕, 等. 热塑性塑料/生物炭复合材料研究进展[J]. 工程塑料应用, 2018, 46(12): 139-142. |
| WANG H Y, YU X, LI S Y, et al.. Research progress of thermoplastic/biomass charcoal composites [J]. Eng. Plast. Appl., 2018, 46(12):139-142. | |
| 13 | 陈温福, 张伟明, 孟军, 等. 生物炭应用技术研究[J]. 中国工程科学, 2011, 13(2): 83-89. |
| CHEN W F, ZHANG W M, MENG J, et al.. Researches on biochar application technology [J]. Eng. Sci., 2011, 13(2): 83-89. | |
| 14 | ZHAO B, O’CONNOR D, ZHANG J, et al.. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar [J]. J. Clean. Prod., 2018, 174: 977-987. |
| 15 | DAS O, BHATTACHRYYA D, HUI D, et al.. Mechanical and flammability characterisations of biochar/polypropylene biocomposites [J]. Compos. Part-B Eng., 2016, 106: 120-128. |
| 16 | 张庆法, 徐航, 任夏瑾, 等. 农林废物生物炭/高密度聚乙烯复合材料的制备与性能[J]. 复合材料学报, 2021, 38(2): 1-8. |
| ZHANG Q F, XU H, REN X J, et al.. Preparation and properties of agroforestry wastes biochar/high density polyethylene composites [J]. Acta. Mater. Compos. Sin., 2021, 38(2): 1-8. | |
| 17 | POULOSE A M, ELNOUR A Y, ANIS A, et al.. Date palm biochar-polymer composites: an investigation of electrical, mechanical, thermal and rheological characteristics [J]. Sci. Total Environ., 2018, 619: 311-318. |
| 18 | ZHANG Q, ZHANG D, XU H, et al.. Biochar filled high-density polyethylene composites with excellent properties: towards maximizing the utilization of agricultural wastes [J/OL]. Ind. Crop. Prod., 2020, 146: 112185 [2022-06-10]. . |
| 19 | BAZJWA D S, ADHIKARI S, SHOJAEIARANI J, et al.. Characterization of bio-carbon and ligno-cellulosic fiber reinforced bio-composites with compatibilizer [J]. Constr. Build. Mater., 2019, 204: 193-202. |
| 20 | 杨荔, 刘洪波, 张东升, 等. 竹炭/酚醛树脂复合导电材料的制备与性能[J]. 复合材料学报, 2011, 28(2): 70-76. |
| YANG L, LIU H B, ZHANG D S, et al.. Preparation and properties of bamboo charcoal/phenolic resin conductive composite [J]. Acta. Mater. Compos. Sin., 2011, 28(2): 70-76. | |
| 21 | OGUNSONA E O, MISRA M, MOHANTY A K. Accelerated hydrothermal aging of biocarbon reinforced nylon biocomposites [J]. Polym. Degrad. Stabil., 2017, 139: 76-88. |
| 22 | GIORCELLI M, KHAN A, PUGNO N M, et al.. Biochar as a cheap and environmental friendly filler able to improve polymer mechanical properties [J]. Biomass. Bioenergy, 2019, 120: 219-223. |
| 23 | LIN Y, LIU Y, ZHANG D, et al.. Radiation resistance of polypropylene composites by incorporating reduced graphene oxide and antioxidant: a comparison study [J]. Compos. Sci. Technol., 2017, 146: 83-90. |
| 24 | ZHANG C, FU Z, LIU Y C, et al.. Ionic liquid-functionalized biochar sulfonic acid as a biomimetic catalyst for hydrolysis of cellulose and bamboo under microwave irradiation [J]. Green. Chem., 2012, 14(7): 1928-1934. |
| 25 | WANG K, WU K, XIAO M, et al.. Structural characterization and properties of konjac glucomannan and zein blend films [J]. Int. J. Boil. Macromol., 2017, 105: 1096-1104. |
| 26 | RAO J, BAO L, WANG B, et al.. Plasma surface modification and bonding enhancement for bamboo composites[J]. Compos. Part B-Eng., 2018, 138: 157-167. |
| 27 | 张庆法, 张东红, 雷寒武, 等. 不同炭化温度的稻壳炭对稻壳炭/高密度聚乙烯复合材料的影响[J]. 高分子材料科学与工程, 2020, 36(7): 67-72. |
| ZHANG Q F, ZHANG D H, LEI H W, et al.. Effect of rice husk biochar obtained at different carbonized temperatures on rice husk biochar/high density polyethylene composites [J]. Polym. Mater. Sci. Eng., 2020, 36(7): 67-72. | |
| 28 | DAS O, KIM N K, KALAMKAROV A L, et al.. Biochar to the rescue: balancing the fire performance and mechanical properties of polypropylene composites [J]. Polym. Degrade. Stabil., 2017, 144: 485-496. |
| 29 | 张庆法, 任夏瑾, 吴娟娟, 等. 活性炭/高密度聚乙烯复合材料的力学性能[J]. 复合材料学报, 2020, 37(11): 2816-2824. |
| ZHANG Q F, REN X J, WU J J, et al.. Mechanical properties of activated carbon/high density polyethylene composites [J]. Acta Mater. Compos. Sin., 2020, 37(11): 2816-2824. | |
| 30 | GEZAHEGN S, LAI R, HUANG L, et al.. Porous graphitic biocarbon and reclaimed carbon fiber derived environmentally benign lightweight composites [J]. Sci. Total Environ., 2019, 664: 363-373. |
| 31 | HO M P, LAU K T. Enhancement of impact resistance of biodegradable polymer using bamboo charcoal particles [J]. Mater. Lett., 2014, 136: 122-125. |
| 32 | HILMI A R, FAUZIYAH N A, PRATAPA S. A temperature-dependent storage modulus model for filler-dispersed PEG/silica composites [J/OL]. Compos. Part-B Eng., 2019, 173: 106868 [2022-06-10]. . |
| 33 | LI S, WANG H, CHEN C, et al.. Size effect of charcoal particles on the properties of bamboo charcoal/ultra‐high molecular weight polyethylene composites [J/OL]. J. Appl. Polym. Sci., 2017, 134(47): 45530 [2022-06-10]. . |
| 34 | YOU Z, LI D. The dynamical viscoelasticity and tensile property of new highly filled charcoal powder/ultra-high molecular weight polyethylene composites [J]. Mater. Lett., 2013, 112: 197-199. |
| 35 | DAVIS A M, HANZLY L E, DEBUTTS B L, et al. Characterization of dimensional stability in flax fiber reinforced polypropylene composites [J]. Polym. Compos., 2019, 40(1): 132-140. |
| 36 | OBAID N, KORTSCHOT M T, SAIN M. Predicting the stress relaxation behavior of glass-fiber reinforced polypropylene composites [J]. Compos. Sci. Technol., 2018, 161: 85-91. |
| 37 | IKRAM S, DAS O, BHATTACHARYYA D. A parametric study of mechanical and flammability properties of biochar reinforced polypropylene composites [J]. Compos. Part A-Appl. Sci., 2016, 91: 177-188. |
| 38 | LI S, LI X, CHEN C, et al.. Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network [J]. Compos. Sci. Technol., 2016, 132: 31-37. |
| 39 | BARTOLI M, ROSSO C, GIORCELLI M, et al.. Effect of incorporation of microstructured carbonized cellulose on surface and mechanical properties of epoxy composites [J/OL]. J. Appl. Polym. Sci., 2020, 137(27): 48896 [2022-06-10]. . |
| [1] | Fu QING, Hongyue LIANG, Jing SUN, Xinrui LU, Yunjiang LIANG. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Aggregate and Organic Carbon Content of Black Soil in Northeast China [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 195-204. |
| [2] | Saisai HOU, Shanshan TONG, Pengqi WANG, Bingxue XIE, Ruifang ZHANG, Xinxin WANG. Effects of Biochar and Straw on Growth Characteristics and Nutrient Uptake of Different Crops [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 179-191. |
| [3] | Ruyan ZHANG, Shenhao LI, Qipeng ZHU, Taigang FENG, Hongbo LI, Zebing XING, Yu XIAN. Effect of Biochar Content on Physical and Mechanical Properties of Garden Greening Waste/polylactic Acid Composites [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 192-200. |
| [4] | Zhenhua MA, Qianru SHI, Xinjie NING, Hongyang WEI, Can WANG, Jingjing ZHANG, Biao ZHANG, Suqin YANG. Effects of Modified Biochar on Soil Nematode Community in Cadmium and Lead Contaminated Soil [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 201-210. |
| [5] | Zhiwei LYU, Dongmei LI, Meijuan JIN, Yanhui ZHANG, Yueyue TAO, Xinwei ZHOU, Haihou WANG. Effects of Pyrolysis Temperature and Time on Physicochemical Properties and Adsorption Properties of Biochar [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 211-217. |
| [6] | Danyi SHI, Yu QIU, Chengzhen HUANG, Juan WANG. Effect of Acid Modified Biochar on Infiltration Characteristics of Coastal Saline Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(9): 183-192. |
| [7] | Jidong ZHANG, Yaxiong ZHANG, Wei CHENG, Li PU, Luhang LIU, Yaming WANG. Effects of Combined Application of Biochar and Organic Fertilizer on Soil Physicochemical Properties and Microbial Community Characteristics in Apple Recropping Field [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 213-222. |
| [8] | Hao WANG, Pengjie JIN, Shan GAO, Mingxuan ZHAO, Changai ZHANG, Shengdao SHAN. Effect of Additives on Stability Immersed in Water of Biochar Based Long-acting Fertilizer [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 174-182. |
| [9] | Zitian PU, Hong WANG, Bin ZHAO, Xinxin WANG. Effects of Different Soil Amendments on Growth of Scutellaria baicalensis and Soil Enzyme Activities in Continuous Cropping [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 189-198. |
| [10] | Yanbo FU, Bingbing LENG, Qingyong BIAN, Zhiduo DONG, Guohong LIU, Haifeng LI, Yunmeng WEN, Wenbo GUO, Wanxu ZHANG. Passivation Effect of Biochar on Soil Cadmium Pollution and Rape Growth [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 183-190. |
| [11] | Yuxin CHEN, Hongmei ZHAO, Weijun YANG, Mei YANG, Song GUO, Shilong SONG, Chao HUI. Effects of Biochar on Soil Microbial Carbon Source Utilization and Spring Wheat Yield [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 174-183. |
| [12] | Ling LIN, Yujie ZHU, Lei FENG, Guangmu TANG, Yunshu ZHANG, Wanli XU. Effects of Aged Cotton Straw Biochars on Soil Properties and Nitrogen Utilization of Wheat [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 184-191. |
| [13] | Yahong ZHAO, Qianyu HU, Rong XIA, Zhijiang WANG, Yonghui XIE, Xianwen YE, Lei YU, Ying QI, Shaowu YANG, Zhiqin XUE, Zhixing WU, Feiyan HUANG, Tianhua HAN. Effects of Biochar Fertilizer on Rhizosphere Flora and Physicochemical Properties of Flue-cured Tobacco Susceptible to Root Knot Nematode [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 206-214. |
| [14] | Jing GAO, Minggang XU, Ran LI, Zejiang CAI, Nan SUN, Qiang ZHANG, Lei ZHENG. Effects of Biochar Application on Soil pH: A Meta-Analysis [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 186-196. |
| [15] | Hongyuan LIU, Zhihua ZHOU, Guangxin ZHAO, Qinrui SHEN. Effects of Long-term Biochar Application on Greenhouse Gas Emission and Its Temporal Effect in Huang-Huai-Hai Plain [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 178-186. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010802021197号