








Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (3): 91-97.DOI: 10.13304/j.nykjdb.2022.1066
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Wei WANG(
), Hongyu FU, Jianning LU, Yunkai YUE, Ruifang YANG(
), Guoxian CUI(
), Wei SHE
Received:2022-12-07
Accepted:2023-03-22
Online:2024-03-15
Published:2024-03-07
Contact:
Ruifang YANG,Guoxian CUI
王薇(
), 付虹雨, 卢建宁, 岳云开, 杨瑞芳(
), 崔国贤(
), 佘玮
通讯作者:
杨瑞芳,崔国贤
作者简介:王薇 E-mail:984140573@qq.com
基金资助:CLC Number:
Wei WANG, Hongyu FU, Jianning LU, Yunkai YUE, Ruifang YANG, Guoxian CUI, Wei SHE. Research on Interpretation of Ramie Lodging Information Based on Unmanned Aerial Vehicles[J]. Journal of Agricultural Science and Technology, 2024, 26(3): 91-97.
王薇, 付虹雨, 卢建宁, 岳云开, 杨瑞芳, 崔国贤, 佘玮. 基于无人机航拍的苎麻倒伏信息解译研究[J]. 中国农业科技导报, 2024, 26(3): 91-97.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.1066
特征分类 Classification | 特征指标 Indicator | 计算 Calculation |
|---|---|---|
光谱 Optical spectrum | 红色标准值 Red | r=R/(R+G+B) |
| 绿色标准值 Green | g=G/(R+G+B) | |
| 蓝色标准值 Blue | b=B/(R+G+B) | |
绿叶植被指数 Green Leaf Index(GLA) | GLA=(2G-R-B)/(2G+R+B) | |
超绿植被指数 Excess Green Index(ExG) | ExG=2G-R-B | |
纹理 Texture | 灰度共生矩阵同质度 GLCM homogeneity | H= |
灰度共生矩阵对比度 GLCM contrast | Con= | |
灰度共生矩阵熵 GLCM entropy | Ent= | |
灰度共生矩阵均值 GLCM mean | M= | |
形状 Shape | 边界指数 Border index(Bd) | Bd=e/LminBdRd |
| 圆度 Roundness(Rd) | Rd=Rdmax-Rdmin | |
| 紧凑度 Compactness | C=SminBdRd/A | |
| 密度 Density | D=S/R1 |
Table 1 Characterization and calculation
特征分类 Classification | 特征指标 Indicator | 计算 Calculation |
|---|---|---|
光谱 Optical spectrum | 红色标准值 Red | r=R/(R+G+B) |
| 绿色标准值 Green | g=G/(R+G+B) | |
| 蓝色标准值 Blue | b=B/(R+G+B) | |
绿叶植被指数 Green Leaf Index(GLA) | GLA=(2G-R-B)/(2G+R+B) | |
超绿植被指数 Excess Green Index(ExG) | ExG=2G-R-B | |
纹理 Texture | 灰度共生矩阵同质度 GLCM homogeneity | H= |
灰度共生矩阵对比度 GLCM contrast | Con= | |
灰度共生矩阵熵 GLCM entropy | Ent= | |
灰度共生矩阵均值 GLCM mean | M= | |
形状 Shape | 边界指数 Border index(Bd) | Bd=e/LminBdRd |
| 圆度 Roundness(Rd) | Rd=Rdmax-Rdmin | |
| 紧凑度 Compactness | C=SminBdRd/A | |
| 密度 Density | D=S/R1 |
指标 Index | 均值 Mean/m | 标准差 Standard deviation | 标准误差均值 Standard error mean |
|---|---|---|---|
株高数字表面模型 HDSM | 1.691 | 0.465 | 0.039 7 |
实际株高 Actual height | 1.675 | 0.174 | 0.015 0 |
Table 2 HDSM and actual ramie height
指标 Index | 均值 Mean/m | 标准差 Standard deviation | 标准误差均值 Standard error mean |
|---|---|---|---|
株高数字表面模型 HDSM | 1.691 | 0.465 | 0.039 7 |
实际株高 Actual height | 1.675 | 0.174 | 0.015 0 |
模型 Model | 精确率 Precision | 召回率 Recall | F1分数 F1 score | 准确率 Accuracy/% | |||||
|---|---|---|---|---|---|---|---|---|---|
训练集 Train | 测试集 Validation | 训练集 Train | 测试集 Validation | 训练集 Train | 测试集 Validation | ||||
随机森林 Random forest | 1.00 | 0.98 | 0.67 | 1.00 | 0.80 | 0.99 | 98 | ||
支持向量机 Support vector machine | 1.00 | 0.99 | 0.83 | 1.00 | 0.91 | 1.00 | 99 | ||
决策树 Decision tree | 0.86 | 1.00 | 1.00 | 0.99 | 0.92 | 1.00 | 99 | ||
Table 3 Model results of three machine learning
模型 Model | 精确率 Precision | 召回率 Recall | F1分数 F1 score | 准确率 Accuracy/% | |||||
|---|---|---|---|---|---|---|---|---|---|
训练集 Train | 测试集 Validation | 训练集 Train | 测试集 Validation | 训练集 Train | 测试集 Validation | ||||
随机森林 Random forest | 1.00 | 0.98 | 0.67 | 1.00 | 0.80 | 0.99 | 98 | ||
支持向量机 Support vector machine | 1.00 | 0.99 | 0.83 | 1.00 | 0.91 | 1.00 | 99 | ||
决策树 Decision tree | 0.86 | 1.00 | 1.00 | 0.99 | 0.92 | 1.00 | 99 | ||
类型 Type | 地上部生物产量 Aboveground biological yield(kg·m-2) | |||
|---|---|---|---|---|
最大值 Max | 最小值 Min | 均值 Mean | 标准差 Standard deviation | |
正常苎麻 Normal ramie | 5.34 | 0.41 | 2.372 | 0.909 |
倒伏苎麻 Lodging ramie | 5.13 | 1.32 | 2.184 | 1.388 |
严重倒伏苎麻 Severe lodging ramie | 1.46 | 0.79 | 1.199 | 0.258 |
Table 4 Biomass of normal ramie and lodging ramie
类型 Type | 地上部生物产量 Aboveground biological yield(kg·m-2) | |||
|---|---|---|---|---|
最大值 Max | 最小值 Min | 均值 Mean | 标准差 Standard deviation | |
正常苎麻 Normal ramie | 5.34 | 0.41 | 2.372 | 0.909 |
倒伏苎麻 Lodging ramie | 5.13 | 1.32 | 2.184 | 1.388 |
严重倒伏苎麻 Severe lodging ramie | 1.46 | 0.79 | 1.199 | 0.258 |
| 1 | 刘利华,金再欣,刘小丽,等.水稻倒伏对产量影响的试验结果分析[J].中国稻米,2009(2):19-21. |
| 2 | 张建,谢田晋,杨万能,等.近地遥感技术在大田作物株高测量中的研究现状与展望[J].智慧农业,2021,3(1):1-15. |
| ZHANG J, XIE T J, YANG W N,et al.. Research status and prospect on height estimation of field crop using near-field remote sensing technology [J]. Smart Agric., 2021,3(1):1-15. | |
| 3 | SU W, ZHANG M, BIAN D,et al.. Phenotyping of corn plants using unmanned aerial vehicle (UAV) images [J/OL]. Remote Sens.,2019,11(17):2021 [2022-11-06]. . |
| 4 | XUE J, GOU L, ZAO Y S,et al.. Effects of light intensity within the canopy on maize lodging [J]. Field Crops Res.,2016,188:133-141. |
| 5 | 周龙飞.基于多源遥感数据的玉米倒伏灾情监测研究[D].青岛:山东科技大学,2020. |
| ZHOU L F. Monitoring of maize lodging disaster based on multi-source remote sensing data [D]. Qingdao: Shandong University of Science and Technology,2020. | |
| 6 | 王猛,隋学艳,梁守真,等.夏玉米倒伏模拟试验及遥感监测[J].测绘科学,2017,42(8):137-141. |
| WANG M, SUI X Y, LIANG S Z,et al.. Simulation test and remote sensing monitoring of summer corn lodging [J]. Sci. Survey. Map., 2017,42(8):137-141. | |
| 7 | 田明璐,班松涛,袁涛,等.基于低空无人机多光谱遥感的水稻倒伏监测研究[J].上海农业学报,2018,34(6):88-93. |
| TIAN M L, BAN S T, YUAN T,et al.. Monitoring of lodged rice using low-altitude UAV based multispectral image [J]. Acta Agric. Shanghai, 2018,34(6):88-93. | |
| 8 | 陆洲,徐飞飞,罗明,等.倒伏水稻特征分析及其多光谱遥感提取方法研究[J].中国生态农业学报,2021,29(4):751-761. |
| LU Z, XU F F, LUO M,et al.. Characteristic analysis of lodging rice and study of the multi-spectral remote sensing extraction method [J]. Chin. J. Eco-Agric., 2021,29(4):751-761. | |
| 9 | 樊鸿叶,李姚姚,卢宪菊,等.基于无人机多光谱遥感的春玉米叶面积指数和地上部生物量估算模型比较研究[J].中国农业科技导报,2021,23(9):112-120. |
| FAN H Y, LI Y Y, LU X J,et al.. Comparative analysis of LAI and above-ground biomass estimation models based on UAV multispectral remote sensing [J]. J. Agric. Sci. Technol.,2021,23(9):112-120. | |
| 10 | 胡琪,武红旗,轩俊伟,等.基于无人机DSM的小麦倒伏信息提取[J].安徽农业科学,2020,48(16):227-231. |
| HU Q, WU H Q, XUAN J W,et al.. Information extraction of wheat lodging based on DSM by UAV remote sensing [J]. J. Anhui Agric. Sci.,2020,48(16):227-231. | |
| 11 | 董锦绘,杨小冬,高林,等.基于无人机遥感影像的冬小麦倒伏面积信息提取[J].黑龙江农业科学,2016(10):147-152. |
| DONG J H, YANG X D, GAO L,et al.. Information extraction of winter wheat lodging area based on UAV remote sensing image [J]. Heilongjiang Agric. Sci., 2016(10):147-152. | |
| 12 | 赵立成,段玉林,史云,等.基于无人机DSM的小麦倒伏识别方法[J].中国农业信息,2019,31(4):36-42. |
| ZHAO L C, DUAN Y L, SHI Y,et al.. Wheat lodging identification using DSM by drone [J]. Chin. Agric. Inform.,2019,31(4):36-42. | |
| 13 | PÉREZHARGUINDEGUY N, DÍAZ S, GARNIER E,et al.. New handbook for standardised measurement of plant functional traits worldwide [J/OL]. Australian J. Botany,2013,61: 12225[2022-11-06]. . |
| 14 | 宋茜.农作物空间分布信息提取及其时空格局变化分析研究[D].北京:中国农业科学院,2018. |
| SONG Q. Crop mapping and spatio-temporal analysis of agricultural land-use [D]. Beijing: Chinese Academy of Agricultural Sciences,2018. | |
| 15 | 梁永检,吴文志,施泽升,等.基于无人机RGB遥感的甘蔗株高估测[J].作物杂志,2023(1):226-232. |
| LIANG Y J, WU W Z, SHI Z S,et al.. Estimation of sugarcane plant height based on UAV RGB remote sensing [J]. Crops,2023(1):226-232. | |
| 16 | 赵静,闫春雨,杨东建,等.基于无人机多光谱遥感的台风灾后玉米倒伏信息提取[J].农业工程学报,2021,37(24):56-64. |
| ZHAO J, YAN C Y, YANG D J,et al.. Extraction of maize lodging information after typhoon based on UAV multispectral remote sensing [J]. Trans. Chin. Soc. Agric. Eng.,2021,37(24):56-64. | |
| 17 | 李宗南,陈仲新,王利民,等.基于小型无人机遥感的玉米倒伏面积提取[J].农业工程学报,2014,30(19):207-213. |
| LI Z N, CHEN Z X, WANG L M,et al.. Area extraction of maize lodging based on remote sensing by small unmanned aerial vehicle [J]. Trans. Chin. Soc. Agric. Eng.,2014,30(19):207-213. | |
| 18 | 毛智慧,邓磊,赵晓明,等.利用无人机遥感提取育种小区玉米倒伏信息[J].中国农学通报,2019,35(3):62-68. |
| MAO Z H, DENG L, ZHAO X M,et al.. Extraction of maize lodging in breeding plot based on UAV remote sensing [J]. Chin. Agric. Sci. Bull.,2019,35(3):62-68. | |
| 19 | 申华磊,苏歆琪,赵巧丽,等.基于深度学习的无人机遥感小麦倒伏面积提取方法[J].农业机械学报,2022,53(9):252-260, 341. |
| SHEN H L, SU X Q, ZHAO Q L,et al.. Extraction of lodging area of new wheat varieties by unmanned aerial vehicle remote sensing via deep learning [J]. Trans. Chin. Soc. Agric. Mach.,2022,53(9):252-260, 341. |
| [1] | Ying ZHOU, Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU, Zhi DOU, Hui GAO. Effect of Melatonin Spraying on Rice Yield Formation and Lodging Resistance Under Rice-Crayfish Coculture Mode [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 34-42. |
| [2] | Yajun YUAN, Jiaxing FENG, Qifan YANG, Xue BAI, R A J PUSHPA, Dahong BIAN, Yanhong CUI. Lodging-resistance Comparison Among Sumer Maize Varieties with Different Growth Period in North of Huang-Huai-Hai Plain [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 21-28. |
| [3] | Qiujing CHEN, Zhaodi YANG, Shiyu WANG, Fenggen GUO, Xiaoxue ZHAO, Fan CHEN, Yang FENG. Effects of Plant Growth Retarders on Lodging Resistance and Yield of Quinoa [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 42-48. |
| [4] | YU Bingxing, WANG Hongfu, WANG Zhenhua, ZHANG Peng, CHENG Kai, YU Aili, YAN Haili, YU Bingjie. Effects of Paclobutrazol on Stalk Characteristics and Lodging Resistance of Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2021, 23(8): 37-44. |
| [5] | WANG Wenyu, WAN Siyu, ZHANG Xuesong, WANG Xu, LI Jiashuo, ZHENG Guiping*. Effects of Silicon Fertilizer on Lodging Resistance of Kenjing 7 Under Different Tillage Modes [J]. Journal of Agricultural Science and Technology, 2021, 23(4): 145-153. |
| [6] | ZHANG Ying, MA Yushen, WANG Yamei, LIU Zehang, XU Yuejun, XING Hucheng, JIE Yucheng. Genotype Differences in Cadmium Accumulation Ability of Ramie on Cadmium-polluted Field [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 54-65. |
| [7] | XIANG Wei, MA Lan, LIU Jiajie, DENG Xin, LONG Chaohai, WEN Qinghua, LIU Chunjie, LYU Jiangnan*. Development Trend of Ramie Mechanized Production Technology Based on Patent Analysis of IncoPat [J]. Journal of Agricultural Science and Technology, 2021, 23(1): 107-118. |
| [8] | JIANG Mingjin1, LI Min1*, ZHOU Weijia1, LUO Deqiang1, JIANG Xuehai1, JI Guangmei1, LI Lijiang1, XU Wenbo1, QIN Yuhe2. Screening and Evaluation of High-quality Indica Rice Cultivars Suitable for Mechanized Transplanting [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 27-37. |
| [9] | YANG Anming1, WU Mingliang1,2*, LYU Jiangnan3, XIANG Wei3. Design and Experiment on Chopping System of Forage Ramie Harvester [J]. Journal of Agricultural Science and Technology, 2020, 22(10): 110-118. |
| [10] | LI Linlin1, HUANG Minsheng1, CUI Guoxian1,2*, BAI Yuchao1,3, LI Xueling1, LIU Nannan1, CUI Dandan1, SU Xiaohui1, WANG Jilong1. Principal Component and Cluster Analysis of the Main Agronomic Characters of Ramie Germplasm [J]. Journal of Agricultural Science and Technology, 2019, 21(3): 34-41. |
| [11] | XIANG Wei1, MA Lan1, LIU Jiajie1, XIAO Le2, LONG Chaohai1, WEN Qinghua1, LYU Jiangnan1*. Research Progress on Technology and Equipment of Ramie Fibre Stripping and Processing in China [J]. Journal of Agricultural Science and Technology, 2019, 21(11): 59-69. |
| [12] | YU Miao, CHEN Honggao*, WANG Chaoqun, SHI Wei. Isolation and Characterization of Two Predominant Strains from Ramie Degumming Bacterial Consortium RAMCD407 [J]. , 2013, 15(4): 144-150. |
| [13] | ZHENG Ke*, DUAN Sheng-wen*, LIU Zheng-chu, FENG Xiang-yuan, CHENG Li-feng, ZHENG. Breeding of High Efficient Degumming Strain Erwinia carotovora CXJZU-120 for Fiber Crops [J]. , 2011, 13(6): 72-77. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备11010802021197号