Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (11): 225-233.DOI: 10.13304/j.nykjdb.2024.0250
• INNOVATIVE METHODS AND TECHNOLOGIES • Previous Articles
Zixin LI1,2(), Hongfei BAI2, Yong XIE2,3, Xun LI1(
), Lijing BAI2(
)
Received:
2024-03-29
Accepted:
2024-05-21
Online:
2024-11-15
Published:
2024-11-19
Contact:
Xun LI,Lijing BAI
李紫馨1,2(), 白鸿飞2, 谢勇2,3, 李珣1(
), 白立景2(
)
通讯作者:
李珣,白立景
作者简介:
李紫馨E-mail: lizixin2023@163.com;
基金资助:
CLC Number:
Zixin LI, Hongfei BAI, Yong XIE, Xun LI, Lijing BAI. Establishment of CSE1L Knockout C2C12 Cells by CRISPR-Cas9 System[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 225-233.
李紫馨, 白鸿飞, 谢勇, 李珣, 白立景. 基于CRISPR-Cas9技术建立CSE1L基因敲除C2C12细胞[J]. 中国农业科技导报, 2024, 26(11): 225-233.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2024.0250
基因名称Gene name | 序列Sequence(5’-3’) | 用途Purpose |
---|---|---|
sgRNA-1 | F:CACCGAAGTTTCTCGAATCCGTAGAR:AAACTCTACGGATTCGAGAAACTTC | 载体构建 Vector construction |
sgRNA-2 | F:CACCGAATAATGTTAAAAGCAACAGR:AAACCTGTTGCTTTTAACATTATTC | |
sgRNA-3 | F:CACCGAACATTATTGGAAAAGTCACR:AAACGTGACTTTTCCAATAATGTTC | |
CSE1L-1 | F: GAAGACCACCTTGGACCTTTAA R: CCTGCTGTGAAATAAATGGACGAAT | PCR |
CSE1L-2 | F: GCGATGCGAATTTACAGACACT R: AAGCAACAGTGGGTAATTCTGA | RT-qPCR |
Gapdh | F:AGGTCGGTGTGAACGGATTTG R: TGTAGACCATGTAGTTGAGGTCA |
Table 1 Primer sequence
基因名称Gene name | 序列Sequence(5’-3’) | 用途Purpose |
---|---|---|
sgRNA-1 | F:CACCGAAGTTTCTCGAATCCGTAGAR:AAACTCTACGGATTCGAGAAACTTC | 载体构建 Vector construction |
sgRNA-2 | F:CACCGAATAATGTTAAAAGCAACAGR:AAACCTGTTGCTTTTAACATTATTC | |
sgRNA-3 | F:CACCGAACATTATTGGAAAAGTCACR:AAACGTGACTTTTCCAATAATGTTC | |
CSE1L-1 | F: GAAGACCACCTTGGACCTTTAA R: CCTGCTGTGAAATAAATGGACGAAT | PCR |
CSE1L-2 | F: GCGATGCGAATTTACAGACACT R: AAGCAACAGTGGGTAATTCTGA | RT-qPCR |
Gapdh | F:AGGTCGGTGTGAACGGATTTG R: TGTAGACCATGTAGTTGAGGTCA |
Fig. 1 DNA sequencing results of wild type and CSE1L-/- cellA:Flow cytometry of normal cells; B:Flow cytometry of CSE1L-/- cells. Q4 is the negative cells population, Q2 is the FITC-positive and PE-positive cells
Fig. 3 RT-qPCR and Western blot detection of the mRNA and protein of CSE1L gene in wild type and CSE1L knockout cell lineA:mRNA level;B:Protein level;*** indicates significant difference at P<0.001 level.
Fig. 4 Effects of CSE1L knockout on cell viability of C2C12 cellsNote: * and ** indicate significant differences between treatments at P<0.01 and P<0.001 levels, respectively.
Fig. 5 Effects of CSE1L knockout on cell cycle of C2C12 cellsA: Flow cytometry cell cycle analysis of C2C12 and CSE1L-/- cells; B: Statistical results of flow cytometry. * indicates significant difference at P <0.05 level
Fig. 6 Effects of CSE1L knockout on C2C12 cell apoptosisA: Flow cytometry analysis of cell apoptosis; B: Radio of normal apoptotic cells at different stage. ** indicates significant difference at P<0.01 level
1 | BEHRENS P, BRINKMANN U, WELLMANN A. CSE1L/CAS:Its role in proliferation and apoptosis [J]. Apoptosis,2003, 8(1): 39-44. |
2 | BEHRENS P, BRINKMANN U, FOGT F, et al.. Implication of the proliferation and apoptosis associated CSE1L/CAS gene for breast cancer development [J]. Anticancer Res., 2001,21(4A):2413-2417. |
3 | TANAKA T, OHKUBO S, TATSUNO I, et al.. hCAS/CSE1L associates with chromatin and regulates expression of select p53 target genes [J]. Cell, 2007, 130(4): 638-650. |
4 | 刘小玉,李旭东,关坤萍.沉默CSE1L对急性髓系白血病细胞阿糖胞苷敏感性的影响及作用机制研究[J].中国病理生理杂志,2023,39(2): 269-275. |
LIU X Y, LI X D, GUAN K P. Effect of CSE1L silencing on cytarabine sensitivity of acute myeloid leu-kemia cells [J]. Chin. J. Pathophysiol., 2023, 39(2): 269-275. | |
5 | 王婧.CAS/CSE1L在急性白血病中的表达水平及对其临床意义的探讨[D].太原:山西医科大 学,2022. |
WANG Q. Expression level of CAS/CSE1L in acute leukemia and its clinical significance [D]. Taiyuan: Shanxi Medical University, 2022. | |
6 | DONG Q, LI X, WANG C Z,et al.. Roles of the CSE1L-mediated nuclear import pathway in epigenetic silencing [J]. Proc. Natl. Acad. Sci. USA, 2018,115(17):E4013-E4022. |
7 | 徐宾.Circ_cse1l在结直肠癌中的表达及相关功能研究[D].石家庄:河北医科大学,2021. |
XU B. Expression and function syudy of Circ_cse1l in colorectal cancer [D]. Shijiazhuang: Hebei Medical Unibersity, 2021. | |
8 | 马晨博,杨能红. CSE1L在恶性肿瘤中的表达及治疗应用研究进展[J].现代医药卫生, 2019,35(5):698-701. |
9 | 袁新.染色体分离1样基因(CSE1L)在肝癌中的表达及临床意义[D].郑州:郑州大学,2021. |
YUAN X. Expression and clinical significance of chromosome segregation 1-like in hepatocellular carcinoma [D]. Zhenzhou: Zhenzhou University, 2021. | |
10 | LIU C Y, WEI J J, XU K, et al.. CSE1L participates in regulating cell mitosis in human seminoma [J/OL]. Cell Prolif., 2019, 52(2): e12549 [2024-07-19]. . |
11 | TENG J Y, GAO Y H, YIN H W, et al.. A compendium of genetic regulatory effects across pig tissues [J]. Nat. Genet., 2024, 56(1): 112-123. |
12 | WANG J Y, DOUDNA J A. CRISPR technology: a decade of genome editing is only the beginning [J/OL]. Science, 2023, 379(6629): eadd8643 [2024-07-19]. . |
13 | KWON D H, GIM G M, YUM S Y, et al..Current status and future of gene engineering in livestock [J]. BMB Rep., 2024, 57(1): 50-59. |
14 | PACESA M, PELEA O, Past JINEK M., present,and future of CRISPR genome editing technologies [J]. Cell, 2024, 187(5): 1076-1100. |
15 | 谢春嫡,郭肖蓉,张煦栋,等.基于CRISPR/Cas9技术建立IGF2R基因修饰PK-15细胞[J].中国农业科技导报,2022,24(10):200-207. |
XIE C D, GUO X R, ZHANG X D, et al.. Establishment of IGF2R knockout PK-15 cells by CRISPR/Cas9 system [J]. J. Agric. Sci. Technol., 2022, 24(10): 200-207. | |
16 | FRESHNEY R I. Culture of Animal Cells : A Manual of Basic Technique and Specialized Applications [M].Sixth Edn. Hoboken, N. J.:Wiley-Blackwell, 2010: 1-732. |
17 | 黄新磊.纳米紫杉醇共组装系统通过稳定微管细胞骨架减轻缺血性卒中神经元死亡的实验研究[D].扬州:扬州大学,2023. |
HUANG X L. Experimental study of nano-paclitaxel co-assembly system to alleviate neuronal death in ischemic stroke by stabilizing microtubule cytoskeleton [D]. Yangzhou:Yangzhou University, 2023. | |
18 | 周倩宇.细胞骨架微管蛋白在PHEV感染神经细胞过程中的作用及其机制[D].长春:吉林大学,2022. |
ZHUO Q Y.The function and mechanism of microtubule cytoskeleton in porcine hemagglutinating encephalomyelitis virus infecting nerve cells [D]. Changchun: Jilin University, 2022. | |
19 | 张继华,李浩,张媛媛,等. CSE1L在人喉鳞癌颈淋巴结转移中的作用研究[J].河北医科大学学报,2021,24(12):1417-1420, 1436. |
ZHANG J H, LI H, ZHANG Y Y, et al.. Role of CSE1L in cervical lymph node metastasis of human laryngeal squamous cell carcinoma[J]. J. Hebei Med. Univ., 2021,24(12):1417-1420, 1436. | |
20 | LIAO C F, LUO S F, SHEN T Y, et al.. CSE1L/CAS, a microtubule-associated protein,inhibits taxol (paclitaxel)-induced apoptosis but enhances cancer cell apoptosis induced by various chemotherapeutic drugs [J]. BMB Rep., 2008,41(3):210-216. |
21 | 刘小玉.沉默CSE1L增强急性髓系白血病细胞对阿糖胞苷敏感性的机制研究[D].太原:山西医科大学,2023. |
LIU X Y. Mechanism of CSE1L silencing to enhance the sensitivity of acute myeloid leukemia cells to Cytarabine [D]. Taiyuan: Shanxi Medical University, 2023. | |
22 | JIANG M C. CAS (CSE1L) signaling pathway in tumor progression and its potential as a biomarker and target for targeted therapy [J].Tumor. Biol., 2016,37(10):13077-13090. |
23 | WELLMANN A, FLEMMING P, BEHRENS P, et al..High expression of the proliferation and apoptosis associated CSE1L/CAS gene in hepatitis and liver neoplasms: correlation with tumor progression [J]. Int. J. Mol. Med, 2001,7(5):489-494. |
24 | SEIDEN-LONG I M, BROWN K R, SHIH W, et al.. Transcriptional targets of hepatocyte growth factor signaling and Ki-ras oncogene activation in colorectal cancer [J]. Oncogene, 2006, 25(1): 91-102. |
25 | WELLMANN A, KRENACS L, FEST T, et al.. Localization of the cell proliferation and apoptosis-associated CAS protein in lymphoid neoplasms [J]. Am. J. Pathol., 1997,150(1):25-30. |
26 | PEIRÓ G, DIEBOLD J, BARETTON G B, et al.. Cellular apoptosis susceptibility gene expression in endometrial carcinoma:correlation with Bcl-2,Bax,and caspase-3 expression and outcome [J]. Int. J. Gynecol. Pathol., 2001,20(4):359-367. |
27 | BRUSTMANN H. Expression of cellular apoptosis susceptibility protein in serous ovarian carcinoma: a clinicopathologic and immunohistochemical study [J]. Gynecol. Oncol., 2004,92(1):268-276. |
28 | TAI C J, HSU C H, SHEN S C, et al.. Cellular apoptosis susceptibility (CSE1L/CAS) protein in cancer metastasis and chemotherapeutic drug-induced apoptosis [J/OL].J. Exp. Clin. Cancer Res.,2010,29(1):110 [2024-07-19]. . |
29 | LIU W J, ZHOU Z Q, LI Y, et al.. CSE1L silencing impairs tumor progression via MET/STAT3/PD-L1 signaling in lung cancer [J]. Am. J. Cancer. Res., 2021,11(9):4380-4393. |
30 | LORENZATO A, BIOLATTI M, DELOGU G, et al.. AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells [J]. Exp. Cell Res., 2013, 319(17): 2627-2636. |
31 | TAI C J, SU T C, JIANG M C, et al.. Correlations between cytoplasmic CSE1L in neoplastic colorectal glands and depth of tumor penetration and cancer stage [J]. J. Transl Med., 2023,21(1):315 [2024-07-19]. . |
32 | LIU X, LI X, GUAN K. Effect of CSE1L silencing on cytarabine sensitivity of acute myeloid leukemia cells [J]. Chin. J. Pathophysiol., 2023, 39(2): 269-275. |
[1] | Wenting ZHANG, Yang LI, Shi QIU, Guangming LU, Dongshu GUO, Baolong ZHANG, Jinyan WANG. Effects of Badh2 Gene on Rice Quality Based on CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 39-48. |
[2] | Qiangzhou WANG, Shiyu PAN, Mengya FANG, Wei LI, Jiaxing WANG, Yinyin LIU, Shihao CHEN. Construction of Chicken Embryo Fibroblast Cell Line with TET2 Gene Knockout Based on CRISPR-Cas9 Technology [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 227-233. |
[3] | Chundi XIE, Xiaorong GUO, Xudong ZHANG, Rong ZHOU, Kui LI. Establishment of IGF2R Knockout PK-15 Cells by CRISPR/Cas9 System [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 200-207. |
[4] | Zhong ZHUANG, Long ZHAO, Hao BAI, Yulin BI, Yingquan HUANG, Guohong CHEN, Guobin CHANG. Development of CRISPR/Cas9 and Its Application in Poultry [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 14-23. |
[5] | LIAO Jiaming, §, LI Chunmei§, ZHANG Shihu, LI Buye, OUYANG Kunxi, CHEN Xiaoyang. Development of CRISPR/Cas9 System and Its Aapplication in Plants [J]. Journal of Agricultural Science and Technology, 2021, 23(12): 20-28. |
[6] | XIN Hongjia, LI Pengcheng, TENG Shouzhen, LI Shengyan, WANG Hai, LANG Zhihong*. Construction and Functional Characterization of Mutants of Arabidopsis SWEET1/2/3 Genes [J]. Journal of Agricultural Science and Technology, 2020, 22(2): 39-49. |
[7] | LIU Dujuan, HUANG Huoqing*, SU Xiaoyun*. Construction of a Trichoderma reesei Strain with Low Cellulase Background and Its Application [J]. Journal of Agricultural Science and Technology, 2020, 22(12): 50-57. |
[8] | HAN Song, DUAN Xingpeng, ZHANG Zhidong, ZUO Kaijing*. Functional Verification and Pathogenesis Analysis of VdTri15 Gene from Verticillium dahliae on Cotton [J]. Journal of Agricultural Science and Technology, 2018, 20(12): 26-35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||