Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (12): 78-89.DOI: 10.13304/j.nykjdb.2022.1030
• INNOVATIVE TECHNOLOGY • Previous Articles Next Articles
Lei YAN1(), Jinshan ZHANG2, Jiankang ZHU1,3(
), Lanqin XIA1(
)
Received:
2022-10-25
Accepted:
2022-12-02
Online:
2022-12-15
Published:
2023-02-06
Contact:
Jiankang ZHU,Lanqin XIA
通讯作者:
朱健康,夏兰琴
作者简介:
闫磊 E-mail:yanlei@caas.cn
CLC Number:
Lei YAN, Jinshan ZHANG, Jiankang ZHU, Lanqin XIA. Genome Editing and Its Applications in Crop Improvement[J]. Journal of Agricultural Science and Technology, 2022, 24(12): 78-89.
闫磊, 张金山, 朱健康, 夏兰琴. 基因编辑技术及其在农作物中的应用进展[J]. 中国农业科技导报, 2022, 24(12): 78-89.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.1030
Fig. 1 CRISPR/CAS-mediated gene editing technology[12]A: NHEJ and HDR repairing pathway; B: CBE base editing system; C: ABE base editing system; D: Prime editing system
1 | BAILEY-SERRES J, PARKER J E, AINSWORTH E A, et al.. Schroeder genetic strategies for improving crop yields [J]. Nature, 2019, 575(3):109-118. |
2 | LI S, XIA L. Precise gene replacement in plants through CRISPR/Cas genome editing technology: current status and future perspectives [J]. aBIOTECH, 2020, 1(1):58-73. |
3 | VOYTAS DF, GAO C. Precision genome engineering and agriculture: opportunities and regulatory challenges [J/OL]. PLoS Biol., 2014, 12, e1001877 [2022-09-20]. . |
4 | SHAN Q, BALTES N J, ATKINS P, et al.. ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: a disconnect between somatic and germinal cells [J]. J. Genet. Genomics, 2018, 45:681-684. |
5 | WOO J W, KIM J, KWON S I, et al.. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins [J]. Nat. Biotechnol., 2015, 33:1162-1164. |
6 | CHRISTIAN M, CERMAK T, DOYLE E L, et al.. Targeting DNA double-strand breaks with TAL effector nucleases [J]. Genetics, 2010, 186(2):757-761. |
7 | SUN Y, ZHANG X, WU C, et al.. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of Acetolactate synthase [J]. Mol. Plant, 2016, 9(4):628-631. |
8 | HUI S, LI H, MAWIA A M, et al.. Production of aromatic three-line hybrid rice using novel alleles of BADH2 [J]. Plant Biotechnol. J., 2022, 20(1):59-74. |
9 | ZHOU J, XIN X, HE Y, et al.. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties [J]. Plant Cell Reports, 2019, 38(4):475-485. |
10 | TIAN J, WANG C, XIA J, et al.. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields [J]. Science, 2019, 365(6454):658-664. |
11 | OLIVA R, JI C, ATIENZA-GRANDE G, et al.. Broad-spectrum resistance to bacterial blight in rice using genome editing [J]. Nat. Biotechnol., 2019, 37(11):1344-1350. |
12 | LI J, JIAO G, SUN Y, et al.. Modification of starch composition, structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9 [J]. Plant Biotechnol. J., 2021, 19(5):937-951. |
13 | CONG L, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339:819-823. |
14 | ZETSCHE B, GOOTENBERG-JONATHAN S, ABUDAYYEH O O, et al.. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell, 2015, 163:759-771. |
15 | HIOM K. Coping with DNA double strand breaks [J]. DNA Repair, 2010, 9:1256-1263. |
16 | PUCHTA H, FAUSER F. Synthetic nucleases for genome engineering in plants: prospects for a bright future [J]. Plant J., 2014, 78:727-741. |
17 | LI S, GAO F, XIE K, et al.. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice [J]. Plant Biotechnol. J., 2016, 14:2134-2146. |
18 | ZHENG X, YANG S, ZHANG D, et al.. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism [J]. Plant Cell Rep., 2016, 35(7):1545-1554. |
19 | LIU J, CHEN J, ZHENG X, et al.. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice [J/OL]. Nat. Plants, 2017, 3:17043 [2022-09-20]. . |
20 | LU K, WU B, WANG J, et al.. Blocking amino acid transporter OsAAP3 improves grain yield by promoting outgrowth buds and increasing tiller number in rice [J]. Plant Biotechnol. J., 2018, 16:1710-1722. |
21 | MIAO C, XIAO L, HUA K, et al.. Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity [J]. Proceed. Nat. Academy Sci., 2018, 115:6058-6063. |
22 | ZHANG J, ZHOU Z, BAI J, et al.. Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions [J]. Nat. Sci. Review., 2020, 7(1):102-112. |
23 | ZHANG Y, LIANG Z, ZONG Y, et al.. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA [J/OL]. Nat. Comm., 2016, 7:12617 [2022-09-20]. . |
24 | ZHANG Y, LI D, ZHANG D, et al.. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits [J]. Plant J., 2018, 94:857-866. |
25 | WANG W, SIMMONDS J, PAN Q, et al.. Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat [J]. Theor. Appl. Genet., 2018, 131(11):2463-2475. |
26 | XU R, YANG Y, QIN R, LI H, QIU C, et al.. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice [J]. J. Genet. Genomics, 2016, 43:529-532. |
27 | ZHANG J, ZHANG H, LI S, et al.. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9 [J]. J. Int. Plant Biol., 2021, 63(9):1649-1663. |
28 | DONG L, QI X, ZHU J, et al.. Super sweet and waxy: meeting the diverse demands for specialty maize by genome editing [J]. Plant Biotechnol. J., 2019, 17(10):1853-1855. |
29 | SANCHEZ L S, GIL-HUMANES J, OZUNA CV, et al.. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9 [J]. Plant Biotechnol. J., 2018, 16:902-910. |
30 | WANG J, KUANG H, ZHANG Z, et al.. Generation of seed lipoxygenase-free soybean using crispr-cas9 [J]. Crop J., 2019, 8(3):432-439. |
31 | CHEN Y, FU M, LI H, et al.. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system [J]. Plant Biotechnol. J., 2021, 19(3):424-426. |
32 | WANG Y, CHENG X, SHAN Q, et al.. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew [J]. Nat. Biotechnol., 2014, 32:947-951. |
33 | WANG N, TANG C, FAN X, et al.. Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi [J]. Cell, 2022, 185(16):2961-2974. |
34 | PENG A, CHEN S, LEI T, et al.. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus [J]. Plant Biotechnol. J., 2017, 15(12):1509-1519. |
35 | HAO Z, TIAN J, FANG H, et al.. A VQ-motif-containing protein fine-tunes rice immunity and growth by a hierarchical regulatory mechanism [J/OL]. Cell Rep., 2022, 40(7):111235 [2022-09-20]. . |
36 | KELLIHER T, STARR D, RICHBOURG L, et al.. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction [J]. Nature. 2017, 542(7639):105-109. |
37 | LIU C, ZHONG Y, QI X, et al.. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat [J]. Plant Biotechnol. J., 2020, 18(2):316-318. |
38 | LI Y, LIN Z, YUE Y, et al.. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize [J]. Nat. Plants, 2021, 7(12):1579-1588. |
39 | ZHONG Y, LIU C, QI X, et al.. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat. Plants, 2019, 5(6):575-580. |
40 | LYU J, YU K, WEI J, et al.. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3 [J]. Nat. Biotechnol., 2020, 38(12):1397-1401. |
41 | QI X, ZHANG C, ZHU J, et al.. Genome editing enables next-generation hybrid seed production technology [J]. Mol. Plant, 2020, 13(9):1262-1269. |
42 | KHANDAY I, SKINNER D, YANG B, et al.. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds [J]. Nature, 2018, 565(7737):91-95. |
43 | WANG C, LIU Q, SHEN Y, et al.. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]. Nat. Biotechnol., 2019, 37(1):283-286. |
44 | LUO J, LI S, XU J, et al.. Pyramiding favorable alleles in an elite wheat variety in one generation by CRISPR-Cas9-mediated multiplex gene editing [J]. Mol. Plant, 2021, 14(6):847-850. |
45 | LI T, YANG X, YU Y, et al.. Domestication of wild tomato is accelerated by genome editing [J/OL]. Nat. Biotechnol., 2018, 10:4273 [2022-09-20]. . |
46 | YU H, LIN T, MENG X, et al.. A route to de novo domestication of wild allotetraploid rice [J]. Cell, 2021, 184(5):1156-1170. |
47 | KOMOR A C, KIM Y B, PACKER M S, et al.. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature. 2016, 533(7603):420-424. |
48 | GAUDELLI N M, KOMOR A C, REES H A, et al.. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage [J]. Nature, 2017, 551:464-471. |
49 | BHARAT S S, LI S, LI J . et al .. Base editing in plants: current status and challenges [J]. Crop J., 2020, 8(3):384-395. |
50 | HUA K, TAO X, YUAN F K, et al.. Precise A·T to G·C base editing in the rice genome [J]. Mol. Plant, 2018, 11:627-630. |
51 | LI C, ZONG Y, WANG Y, et al.. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion [J/OL]. Genome Biol., 2018, 19:59 [2022-09-20]. . |
52 | KURT, IC, ZHOU R, IYER S, et al.. CRISPR C-to-G base editors for inducing targeted DNA transversions in human cells [J]. Nat. Biotechnol., 2021, 39(1):41-46. |
53 | HESS G T, TYCKO J, YAO D, et al.. Methods and applications of CRISPR-mediated base editing in eukaryotic genomes [J]. Mol. Cell., 2017, 68:26-43. |
54 | ZONG Y, WANG Y, LI C, et al.. Precise base editing in rice, wheat and maize with a Cas9-cytidined lieaminase fusion [J]. Nat. Biotechnol., 2017, 35(5):438-440. |
55 | KIM K, RYU S M, KIM S T, et al.. Highly efficient RNA-guided base editing in mouse embryos [J]. Nat. Biotechnol., 2017, 35(5):435-437. |
56 | NISHIDA K, ARAZOE T, YACHIE N, et al.. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems [J/OL]. Science, 2016, 353(6305): aaf8729 [2022-09-20]. . |
57 | D’ADDA D I, FAGAGNA F, WELLER G R, et al.. The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku [J]. EMBO Rep., 2003, 4(1):47-52. |
58 | HUA K, TAO X, HAN P, et al.. Genome engineering in rice using Cas9 variants that recognize NG PAM sequences [J]. Mol. Plant, 2019, 12(7):1003-1014. |
59 | REN B, YAN F, KUANG Y, et al.. Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9-guided hyperactive hAID mutant [J]. Mol. Plant, 2018, 11(4):623-626. |
60 | REN Q, SRETENOVIC S, LIU S, et al.. PAM-less plant genome editing using a CRISPR-SpRY toolbox [J]. Nat. Plants, 2021, 7(1):25-33. |
61 | WALTON R T, CHRISTIE K A, WHITTAKER M N, et al.. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants [J]. Science, 2020, 368(6488):290-296. |
62 | LI J, SUN Y, DU J, et al.. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system [J]. Mol. Plant, 2017, 10(3):526-529. |
63 | LU Y, ZHU J. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system [J]. Mol. Plant, 2017, 10(3):523-525. |
64 | REN B, YAN F, KUANG Y, et al.. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice [J]. Sci. China Life Sci., 2017, 60(5):516-519. |
65 | SHIMATANI Z, KASHOJIYA S, TAKAYAMA M, et al.. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion [J]. Nat. Biotechnol., 2017, 35(5):441-443. |
66 | TIAN S, JIANG L, CUI X, et al.. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing [J]. Plant Cell Rep., 2018, 37(9):1353-1356. |
67 | VEILLET F, PERROT L, CHAUVIN L, et al.. Transgene-free genome editing in tomato and potato plants using agrobacterium-mediated delivery of a CRISPR/Cas9 cytidine base editor [J/OL]. Int. J. Mol. Sci., 2019, 20(2):402 [2022-09-20]. . |
68 | QIN L, LI J, WANG Q, et al.. High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system [J]. Plant Biotechnol. J., 2020, 18(1):45-56. |
69 | ZHANG R, LIU J, CHAI Z, et al.. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing [J]. Nat. Plants, 2019, 5(5):480-485. |
70 | KOBLAN L W, DOMAN J L, WILSON C, et al.. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction [J]. Nat. Biotechnol., 2018, 36(9):843-846. |
71 | RICHTER M F, ZHAO K T, ETON E, et al.. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity [J]. Nat. Biotechnol., 2020, 38(7):883-891. |
72 | TAN J, ZENG D, ZHAO Y, et al.. PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants [J]. Plant Biotechnol. J., 2022, 20(5):934-943. |
73 | YAN D, REN B, LIU L, et al.. High-efficiency and multiplex adenine base editing in plants using new TadA variants [J]. Mol. Plant, 2021, 14(5):722-731. |
74 | YAN F, KUANG Y, REN B, et al.. Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice [J]. Mol. Plant, 2018, 11(5):631-634. |
75 | KANG B C, YUN J Y, KIM S T, et al.. Precision genome engineering through adenine base editing in plants [J]. Nat. Plants, 2018, 11(4):427-431. |
76 | WEI C, WANG C, JIA M, et al.. Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor [J]. J. Int. Plant Biol., 2021, 63(9):1595-1599. |
77 | TIAN Y, SHEN R, LI Z, et al.. Efficient C-to-G editing in rice using an optimized base editor [J]. Plant Biotechnol. J., 2022, 20(7):1238-1240. |
78 | LI C, ZHANG R, MENG X, et al.. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors [J]. Nat. Biotechnol., 2020;38(7):875-882. |
79 | KUANG Y, LI S, REN B, et al.. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms [J]. Mol. Plant, 2020, 13(4):565-572. |
80 | WANG H, HE Y, WANG Y, et al.. Base editing-mediated targeted evolution of ACCase for herbicide-resistant rice mutants [J]. J. Int. Plant Biol., 2022, 64(11):2029-2032. |
81 | LUO M, GILBERT B, AYLIFFE M . et al .. Applications of CRISPR/Cas9 technology for targeted mutagenesis, gene replacement and stacking of genes in higher plants [J]. Plant Cell Rep., 2016, 35:1439-1450. |
82 | LI S, ZHANG Y, XIA L, et al.. CRISPR-Cas12a enables efficient biallelic gene targeting in rice [J]. Plant Biotechnol. J., 2020, 18:1351-1353. |
83 | LI S, LI J, HE Y, et al.. Precise gene replacement in rice by RNA transcript-templated homologous recombination [J]. Nat. Biotechnol., 2019, 37(1):445-450. |
84 | LI J, SUN Y, DU J, et al.. Efficient allelic replacement in rice by gene editing: a case study of the NRT1.1B gene [J]. J. Int. Plant Biol., 2018, 60(10):536-540. |
85 | LI Z, LIU Z B, XING A, et al.. Cas9-guide RNA directed genome editing in soybean [J]. Plant Physiol., 2015, 169(2):960-970. |
86 | SVITASHEV S, YOUNG J K, SCHWARTZ C, et al.. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA [J]. Plant Physiol., 2015, 169(2):931-945. |
87 | SAUER N J, NARVAEZ-VASQUEZ J, MOZORUK J, et al.. Oligonucleotide-mediated genome editing provides precision and function to engineered nucleases and antibiotics in plants [J]. Plant Physiol., 2016, 170(4):1917-1928. |
88 | HUMMEL A W, CHAUHAN R D, CERMAK T, et al.. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava [J]. Plant Biotechnol. J., 2017, 16(3):1275-1282. |
89 | WANG M, LU Y, BOTELLA J R, et al.. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 system [J]. Mol. Plant, 2017, 10(7):1007-1010. |
90 | SHI J, GAO H, WANG H, et al.. ARGOS8 variants generated by CRISPRCas9 improve maize grain yield under field drought stress conditions [J]. Plant Biotechnol. J., 2017, 15(3):207-216. |
91 | FILLER H S, MELAMED B C, LEVY A A. Targeted recombination between homologous chromosomes for precise breeding in tomato [J/OL]. Nat. Commun., 2017, 8:15605 [2022-09-20]. . |
92 | FILLER-HAYUT S, KNIAZEV K, MELAMED-BESSUDO C, et al.. Targeted inter-homologs recombination in Arabidopsis euchromatin and heterochromatin [J/OL]. Int. J. Mol. Sci., 2021, 22(22):12096 [2022-09-20]. . |
93 | GIL-HUMANES J, WANG Y, LIANG Z, et al.. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9 [J]. Plant J., 2017, 89(6):1251-1262. |
94 | VU T V, SIVANKALYANI V, KIM E J, et al.. Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato [J]. Plant Biotechnol. J., 2020, 18(10):2133-2143. |
95 | HUANG T K, ARMSTRONG B, SCHINDELE P, et al.. Efficient gene targeting in Nicotiana tabacum using CRISPR/SaCas9 and temperature tolerant LbCas12a [J]. Plant Biotechnol. J., 2021, 19(7):1314-1324. |
96 | AIRD E J, LOVENDAHL K N, MARTIN A S T, et al.. Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template [J/OL]. Comm. Biol., 2018, 1:54 [2022-09-20]. . |
97 | MIKI D, ZHANG W, ZENG W, et al.. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation [J/OL]. Nat. Comm.. 2018, 9:1967 [2022-09-20]. . |
98 | LU Y, TIAN Y, SHEN R, et al.. Targeted, efficient sequence insertion and replacement in rice [J]. Nat. Biotechnol., 2020, 38(12):1402-1407. |
99 | WILDE J J, AIDA T, DEL ROSARIO R C H, et al.. Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair [J]. Cell, 2021, 184(12):3267-3280. |
100 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.. Search-and-replace genome editing without double-strand breaks or donor DNA [J]. Nature, 2019, 576(7785):149-157. |
101 | LIN Q, ZONG Y, XUE C, et al.. Prime genome editing in rice and wheat [J]. Nat. Biotechnol., 2020, 38(2):582-585. |
102 | LI H Y, LI J Y, CHEN J L, et al.. Precise modifications of both exogenous and endogenous genes in rice by prime editing [J]. Mol. Plant, 2020, 13(5):671-674. |
103 | TANG X, SRETENOVIC S, REN Q R, et al.. Plant prime editors enable precise gene editing in rice cells [J]. Mol. Plant, 2020, 13(5):667-670. |
104 | XU W, ZHANG C W, YANG Y X, et al.. Versatile nucleotides substitution in plant using an improved prime editing system [J]. Mol. Plant, 2020, 13(5):675-678. |
105 | XU R F, LI J, LIU X H, et al.. Development of plant prime-editing systems for precise genome editing [J/OL]. Plant Comm., 2020, 1:100043 [2022-09-20]. . |
106 | HUA K, JIANG Y W, TAO X P, et al.. Precision genome engineering in rice using prime editing system [J]. Plant Biotechnol. J., 2020, 18:2167-2169. |
107 | JIANG Y Y, CHAI Y P, LU M H, et al.. Prime editing efficiently generates W542L and S621I double mutations in two ALS genes of maize [J/OL]. Genome Biol., 2020, 21:257 [2022-09-20]. . |
108 | CHOW R D, CHEN J S, SHEN J, et al.. A web tool for the design of prime-editing guide RNAs [J/OL]. Nat. Biomed. Eng., 2020, 5:190 [2022-09-20]. . |
109 | KIM H K, YU G, PARK J, et al.. Predicting the efciency of prime editing guide RNAs in human cells [J]. Nat. Biotechnol., 2020, 39(1):198-206. |
110 | LIN Q, JIN S, ZONG Y, et al.. High-efficiency prime editing with optimized, paired pegRNAs in plants [J]. Nat. Biotechnol., 2021, 40(2):923-927. |
111 | XU W, YANG Y, YANG B, et al.. A design optimized prime editor with expanded scope and capability in plants [J]. Nat. Plants, 2022, 8(1):45-52. |
112 | ZOU J, MENG X, LIU Q, et al.. Improving the efficiency of prime editing with epegRNAs and high-temperature treatment in rice [J]. Sci. China Life Sci., 2022, 65(11):2328-2331. |
113 | LI H, ZHU Z, LI S, et al.. Multiplex precision gene editing by a surrogate prime editor in rice [J]. Mol. Plant, 2022, 15(7):1077-1080. |
114 | CARLSON-STEVERMER J, ABDEEN A A, KOHLENBERG L, et al.. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing [J/OL]. Nat. Comm., 2017, 8:1711 [2022-09-20]. . |
115 | WOLTER F, KLEMM J, PUCHTA H. Efficient in planta gene targeting in Arabidopsis using egg cell-specific expression of the Cas9 nuclease of Staphylococcus aureus [J]. Plant J., 2018, 94(2):735-746. |
116 | HU J, LI S, LI Z, et al.. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize [J]. Mol. Plant Pathol., 2019, 20(10):1463-1474. |
117 | ELLISON E E, NAGALAKSHMI U, GAMO M E, et al.. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs [J]. Nat. Plants, 2020, 6(6):620-624. |
118 | MA X, ZHANG X, LIU H, et al.. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9 [J]. Nat. Plants, 2020, 6(7):773-779. |
119 | LI T, HU J, SUN Y, et al.. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture [J]. Mol. Plant, 2021, 14(11):1787-1798. |
120 | STAAHL B T, BENEKAREDDY M, COULON-BAINIER C, et al.. Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes [J]. Nat. Biotechnol., 2017, 35(5):431-434. |
121 | LEE K, CNOBOY M, PARK H M, et al.. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair [J]. Nat. Biomed. Eng., 2017, 1(11):889-901. |
[1] | Kexin WANG, Yuehua DONG, Xuanyi HE, Huaiyu YANG. Regulation of Lysine Uptake and Metabolism in Plants and Its Effects on Plants [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 20-29. |
[2] | Weiming WANG, Xin PAN, Deping KONG, Yu AN, Shuang GUO, Zhimei SUN, Cheng XUE, Rongjun SUN, Wenqi MA, Huasen XU. Spatiotemporal Characteristics and Their Influencing Factors of Crop Diversification in China [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 16-27. |
[3] | Wenting ZHANG, Yang LI, Shi QIU, Guangming LU, Dongshu GUO, Baolong ZHANG, Jinyan WANG. Effects of Badh2 Gene on Rice Quality Based on CRISPR/Cas9 Gene Editing Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 39-48. |
[4] | Saisai HOU, Shanshan TONG, Pengqi WANG, Bingxue XIE, Ruifang ZHANG, Xinxin WANG. Effects of Biochar and Straw on Growth Characteristics and Nutrient Uptake of Different Crops [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 179-191. |
[5] | Zili CHEN, Wei LIN, Jia HE, Laigang WANG, Guoqing ZHENG, Yilong PENG, Jiadong JIAO, Yan GUO. Research Progress on Crop Diseases Identification Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 99-109. |
[6] | Xueqing MA, Aoran JI, Jiaoli ZHENG, Chunxia CAO, Yan GONG, Daye HUANG, Beibei WANG. Research Progress on Growth-promoting Mechanism and Application of Plant Growth-promoting Rhizobacteria [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 13-23. |
[7] | Zhikang SUN, Liqun LI, Jie HAO, Han WU, Na WU, Chao ZHENG, Qiang JI, Xuanwen LI, Chen CHEN. Recent Advances of CRISPR-Cas System in Genome Editing of Bacillus subtilis [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 24-32. |
[8] | Chengliang XIONG, Qingfu ZHANG, Weiyuan YAO, Tao XIA, Qingping XU, Xixin ZHOU, Yi ZHANG, Lijuan CHEN, Liu YANG. Effects of Different Types of Rice Straw Addition on Soil Microbial Communities Under Continuous Tobacco Cropping [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 233-240. |
[9] | Peiqiang ZHAO, Yongfeng CUI, Ya XU, Mingli LI. Analysis of Characteristics of Heavy Metal Accumulation in Soil and Crops in Industrial Agglomeration Zone [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 163-171. |
[10] | Jidong ZHANG, Yaxiong ZHANG, Wei CHENG, Li PU, Luhang LIU, Yaming WANG. Effects of Combined Application of Biochar and Organic Fertilizer on Soil Physicochemical Properties and Microbial Community Characteristics in Apple Recropping Field [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 213-222. |
[11] | Feifei LIU, Wanrong HE, Qiang SUN, Linqiao XI, Jiean LIAO, Lu HAN. Effect of Alfalfa Green Manure on Diversity and Function of Soil Bacteria in Apple Orchards in Tarim Basin [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 223-233. |
[12] | Xixin ZHOU, Shilin YUAN, Liu YANG, Tao XIA, Yi ZHANG, Wei FAN. Identification of Continuous Cropping Tobacco Root Exudates and Screening of Potential Allelopathic Substances [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 136-146. |
[13] | Yongjun XIE, Xiaozhuo PAN, Fuhui CHEN, Kaibo YIN, Jiayue JIN, Yibing WANG. Screening, Identification and Biocontrol of Bacteria Degrading Ginseng Phenolic Acid Autotoxic Substances [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 147-155. |
[14] | Zitian PU, Hong WANG, Bin ZHAO, Xinxin WANG. Effects of Different Soil Amendments on Growth of Scutellaria baicalensis and Soil Enzyme Activities in Continuous Cropping [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 189-198. |
[15] | Yafeng LIU, Zhichao FANG, Haifeng XIA, Yongbo QU, Mingliang WU. Design and Experiment of a Opposite Roller Extrusion Type Allium chinense Harvester [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 72-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||