Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (6): 1-8.DOI: 10.13304/j.nykjdb.2022.0391
• AGRICULTURAL INNOVATION FORUM • Next Articles
Hai WANG1(), Jinsheng LAI1, Haiyang WANG2,3, Xinhai LI3,4(
)
Received:
2022-04-30
Accepted:
2022-05-20
Online:
2022-06-15
Published:
2022-06-21
Contact:
Xinhai LI
通讯作者:
李新海
作者简介:
汪海 E-mail: wanghai@cau.edu.cn;
基金资助:
CLC Number:
Hai WANG, Jinsheng LAI, Haiyang WANG, Xinhai LI. Bipartite Intelligent Design of Crops—Intelligent Combination of Natural Variation and Intelligent Creation of Artificial Variation[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 1-8.
汪海, 赖锦盛, 王海洋, 李新海. 作物智能设计育种——自然变异的智能组合和人工变异的智能创制[J]. 中国农业科技导报, 2022, 24(6): 1-8.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2022.0391
1 | BUKOWSKI R, GUO X, LU Y, et al.. Construction of the third-generation Zea Mays haplotype map [J]. Gigascience, 2018, 7(4): 1-12. |
2 | KIMURA M. Evolutionary rate at the molecular level [J]. Nature, 1968, 217(5129): 624-626. |
3 | XIAO Y, LIU H, WARBURTION L, et al.. Genome-wide association studies in maize: praise and stargaze [J]. Mol. Plant, 2017, 10(3): 359-374. |
4 | LIU J, FERNIE A R, YAN J. The past, present, and future of maize improvement: domestication, genomics, and functional genomic routes toward crop enhancement [J/OL]. Plant Commun., 2020, 1(1): 100010 [2022-05-15].. |
5 | CHEN Q, LI W, TAN L, et al.. Harnessing knowledge from maize and rice domestication for new crop breeding [J]. Mol. Plant, 2021, 14(1): 9-26. |
6 | LIANG Y, LIU H J, YAN J, et al.. Natural variation in crops: realized understanding, continuing promise [J]. Annu. Rev. Plant Biol., 2021, 72: 357-385. |
7 | WEI X, QIU J, YONG K, et al.. A quantitative genomics map of rice provides genetic insights and guides breeding [J]. Nat. Genet., 2021, 53(2): 243-253. |
8 | ZUO W, CHAO Q, ZHANG N, et al.. A maize wall-associated kinase confers quantitative resistance to head smut [J]. Nat. Genet., 2015, 47(2): 151-157. |
9 | YANG Q, LI Z, LI W, et al.. CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(42): 16969-16974. |
10 | TIAN J, WANG C, XIA J, et al.. Teosinte ligule allele narrows plant architecture and enhances high-density maize yields [J]. Science, 2019, 365(6454): 658-664. |
11 | CHEN W, CHEN L, ZHANG X, et al.. Convergent selection of a WD40 protein that enhances grain yield in maize and rice [J/OL]. Science, 2022, 375(6587): eabg7985 [2022-05-15]. . |
12 | WALLACE J G, RODGERS-MELNICK E, BUCKLER E S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics [J]. Annu. Rev. Genet., 2018, 52(1): 421-444. |
13 | HENN B M, BOTIGUE L R, BUSTAMANTE C D, et al.. Estimating the mutation load in human genomes [J]. Nat. Rev. Genet., 2015, 16(6):333-343. |
14 | LYNCH M. Rate, molecular spectrum, and consequences of human mutation [J]. Proc. Natl. Acad. Sci. USA, 2010, 107(3): 961-968. |
15 | ROESSLER K, MUYLE A, DIEZ C M, et al.. The genome-wide dynamics of purging during selfing in maize [J]. Nat. Plants, 2019, 5(9): 980-990. |
16 | ZHU M, CHENG Y, WU S, et al.. Deleterious mutations are characterized by higher genomic heterozygosity than other genic variants in plant genomes [J/OL]. Genomics, 2022, 114(2): 110290 [2022-05-15]. . |
17 | ZHOU Q, TANG D, HUANG W, et al.. Haplotype-resolved genome analyses of a heterozygous diploid potato [J]. Nat. Genet., 2020, 52(10): 1018-1023. |
18 | RAMU P, ESUMA W, KAWUKI R, et al.. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation [J]. Nat. Genet., 2017, 49(6): 959-963. |
19 | RODGERS-MELNICK E, BRADBURY P J, ELSHIRE R J, et al.. Recombination in diverse maize is stable, predictable, and associated with genetic load [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(12): 3823-3828. |
20 | KREMLING K A G, CHEN S Y, SU M H, et al.. Dysregulation of expression correlates with rare-allele burden and fitness loss in maize [J]. Nature, 2018, 555(7697): 520-523. |
21 | MEZMOUK S, ROSS-IBARRA J. The pattern and distribution of deleterious mutations in maize [J]. G3 (Bethesda), 2014, 4(1): 163-171. |
22 | 王向峰, 才卓.中国种业科技创新的智能时代——"玉米育种4.0"[J]. 玉米科学, 2019, 27(1): 1-9. |
WANG X F, CAI Z. Era of maize breeding 4.0 [J]. J. Maize Sci., 2019, 27(1): 1-9. | |
23 | WATSON A, GHOSH S, WILLIAMS M J, et al.. Speed breeding is a powerful tool to accelerate crop research and breeding [J]. Nat. Plants, 2018, 4(1): 23-29. |
24 | LI Y, LIN Z, YUE Y, et al.. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize [J]. Nat. Plants, 2021, 7(12): 1579-1588. |
25 | ZHONG Y, LIU C, QI X, et al.. Mutation of ZmDMP enhances haploid induction in maize [J]. Nat. Plants, 2019, 5(6): 575-580. |
26 | KOURANOV A, ARMSTRONG C, SHRAWAT A, et al.. Demonstration of targeted crossovers in hybrid maize using CRISPR technology [J]. Commun. Biol., 2022, 5(1): 53. |
27 | TAAGEN E, BOGDANOVE A J, SORRELLS M E. Counting on crossovers: controlled recombination for plant breeding [J]. Trends Plant Sci., 2020, 25(5): 455-465. |
28 | WANG C, LIU Q, SHEN Y, et al.. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes [J]. Nat. Biotechnol., 2019, 37(3): 283-286. |
29 | ZHANG D, WU S, AN X, et al.. Construction of a multicontrol sterility system for a maize male-sterile line and hybrid seed production based on the zmms7 gene encoding a phd-finger transcription factor [J]. Plant Biotechnol. J., 2018, 16(2): 459-471. |
30 | KACSER H, BURNS J A. The control of flux [J]. Symp. Soc. Exp. Biol., 1973, 27: 65-104. |
31 | ZHOU J, THEESFELD C L, YAO K, et al.. Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk [J]. Nat. Genet., 2018, 50(8): 1171-1179. |
32 | ZHOU J, PARK C Y, THEESFELD C L, et al.. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk [J]. Nat. Genet., 2019, 51(6): 973-980. |
33 | LIU J, LI J, WANG H, et al.. Application of deep learning in genomics [J]. Sci. China Life Sci., 2020, 63(12): 1860-1878. |
34 | WANG H, CIMEN E, SINGH N, et al.. Deep learning for plant genomics and crop improvement [J]. Curr. Opin. Plant Biol., 2020, 54: 34-41. |
35 | WASHBURN J D, MEJIA-GUERRA M K, RAMSTEIN G, et al.. Evolutionarily informed deep learning methods for predicting relative transcript abundance from DNA sequence [J]. Proc. Natl. Acad. Sci. USA, 2019, 116(12): 5542-5549. |
36 | WANG Y, ZHANG P, GUO W, et al.. Adeep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants [J]. New Phytol., 2021, 232(2): 880-897. |
37 | JENKO J, GORJANC G, CLEVELAND M A, et al.. Potential of promotion of alleles by genome editing to improve quantitative traits in livestock breeding programs [J/OL]. Genet. Sel. Evol., 2015, 47: 55 [2022-05-15]. . |
38 | JOHNSSON M, GAYNOR R C, JENKO J, et al.. Removal of alleles by genome editing (RAGE) against deleterious load [J/OL]. Genet. Sel. Evol., 2019, 51(1): 14 [2022-05-15]. . |
39 | RODRIGUEZ-LEAL D, LEMMON Z H, MAN J, et al.. Engineering quantitative trait variation for crop improvement by genome editing [J]. Cell, 2017, 171(2): 470-480. |
40 | LIU L, GALLAGHER J, AREVALO E D, et al.. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes [J]. Nat. Plants, 2021, 7: 287-294. |
41 | SONG X, MENG X, GUO H, et al.. Targeting a gene regulatory element enhances rice grain yield by decoupling panicle number and size [J/OL]. Nat. Biotechnol., 2022 [2022-05-15]. . |
42 | LU Y, WANG J, CHEN B, et al.. Adonor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice [J]. Nat. Plants, 2021, 7(11): 1445-1452. |
43 | GAO H, GADLAGE M J, LAFITTE H R, et al.. Superior field performance of waxy corn engineered using CRISPR-Cas9 [J]. Nat. Biotechnol., 2020, 38(5): 579-581. |
44 | BEPLER T, BERGER B. Learning the protein language: evolution, structure, and function [J]. Cell Syst., 2021, 12(6): 654-669. |
45 | ESVELT K M, CARLSON J C, LIU D R. Asystem for the continuous directed evolution of biomolecules [J]. Nature, 2011, 472(7344): 499-503. |
46 | RAVIKUMAR A, ARZUMANYAN G A, OBADI M K A, et al.. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds [J]. Cell, 2018, 175(7): 1946-1957. |
47 | ENGLISH J G, OLSEN R H J, LANSU K, et al.. Vegas as a platform for facile directed evolution in mammalian cells [J]. Cell, 2019, 178(3): 748-761. |
48 | BADRAN A H, GUZOV V M, HUAI Q, et al.. Continuous evolution of bacillus thuringiensis toxins overcomes insect resistance [J]. Nature, 2016. 533(7601): 58-63. |
49 | INAMOTO I, SHEORAN I, POPA S C, et al.. Combining rational design and continuous evolution on minimalist proteins that target the E-Box DNA site [J]. ACS Chem. Biol., 2021, 16(1): 35-44. |
50 | POPA S C, INAMOTO I, THURONYI B W, et al.. Phage-assisted continuous evolution (PACE): a guide focused on evolving protein-DNA interactions [J]. ACS Omega, 2020, 5(42): 26957-26966. |
51 | RICHTER M F, ZHAO K T, ETON E, et al.. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity [J]. Nat. Biotechnol., 2020, 38(7): 883-891. |
52 | THURONYI B W, KOBLAN L W, LEVY J M, et al.. Continuous evolution of base editors with expanded target compatibility and improved activity [J]. Nat. Biotechnol., 2019, 37(9): 1070-1079. |
53 | CARLSON J C, BADRAN A H, GUGGIANA-NILO D A, et al.. Negative selection and stringency modulation in phage-assisted continuous evolution [J]. Nat. Chem. Biol., 2014, 10(3): 216-222. |
54 | WELLNER A, MCMAHON C, GILMAN M S A, et al.. Rapid generation of potent antibodies by autonomous hypermutation in yeast [J]. Nat. Chem. Biol., 2021, 17(10): 1057-1064. |
55 | KUANG Y, LI S, REN B, et al.. Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms [J]. Mol. Plant, 2020, 13(4): 565-572. |
56 | LI C, ZHANG R, MENG X, et al.. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors [J]. Nat. Biotechnol., 2020, 38(7): 875-882. |
57 | YU H, LI J. Breeding future crops to feed the world through de novo domestication [J/OL]. Nat. Commun., 2022, 13(1): 1171 [2022-05-15]. . |
58 | YU H, LIN T, MENG X, et al.. Aroute to de novo domestication of wild allotetraploid rice [J]. Cell, 2021. 184(5): 1156-1170. |
59 | WANG Y, WANG H, WEI L, et al.. Synthetic promoter design in escherichia coli based on a deep generative network [J]. Nucleic Acids Res., 2020, 48(12): 6403-6412. |
60 | STROKACH A, KIM P M. Deep generative modeling for protein design [J]. Curr. Opin. Struct. Biol., 2022, 72: 226-236. |
61 | WU Z, JOHNSTON K E, ARNOLD F H, et al.. Protein sequence design with deep generative models [J]. Curr. Opin. Chem. Biol., 2021, 65: 18-27. |
[1] | Zhikang SUN, Liqun LI, Jie HAO, Han WU, Na WU, Chao ZHENG, Qiang JI, Xuanwen LI, Chen CHEN. Recent Advances of CRISPR-Cas System in Genome Editing of Bacillus subtilis [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 24-32. |
[2] | Song FANG, Lihua JIANG, Jingjun CAO, Xiao WANG, Minghui QIU, Xiaoyi TIAN. Reaearch on the Application of AI for Science in Agricultural Field [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 1-10. |
[3] | Nan LI, Zheping XU, Xiaozhen GUO, Youhua WANG, Xuefu ZHANG. Development Trend in the Field of Plant Synthetic Biology [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 24-38. |
[4] | Mijuan SHI, Wanting ZHANG, Yingyin CHENG, Xiaoqin XIA. Fish Breeding Technology Based on Whole Genome Analysis and Its Application [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 33-41. |
[5] | Lei YAN, Jinshan ZHANG, Jiankang ZHU, Lanqin XIA. Genome Editing and Its Applications in Crop Improvement [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 78-89. |
[6] | Weijun GUO, Dongwei LI, Shang XIE, Liwen YANG, Cong LI, Jian TIAN, Li PU, Xiaofeng GU. Artificial Intelligence Accelerates Epigenetics and Plant Breeding [J]. Journal of Agricultural Science and Technology, 2022, 24(12): 90-100. |
[7] | JIAO Yue1, WU Gang2, HUANG Yaohui1, XIONG Li1, ZHAI Yong1*. Genome Editing Technology and Its Safety Assessment Management [J]. Journal of Agricultural Science and Technology, 2018, 20(4): 12-19. |
[8] | WEI Jing\|liang, WU Tian\|wen, RUAN Jin\|xue, MU Yu\|lian*. Advance in Genome Editing Technologies for Livestock Improvement [J]. , 2014, 16(1): 32-38. |
[9] | YUAN Fang, GUO Pei-yuan, WU Hao, SUN Mei. Study on the Development of Pork Freshness Detection Techniques [J]. , 2009, 11(S1): 72-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||