Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (1): 16-25.DOI: 10.13304/j.nykjdb.2021.0896
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Changzheng WU1(), Wenxuan PU2, Song SHENG1, Yucheng XIANG1, Weiqin YANG1, Wenrui LI1, Pingjun HUANG2(
), Laihua LIU1(
)
Received:
2021-10-20
Accepted:
2022-04-12
Online:
2023-01-15
Published:
2023-04-17
Contact:
Pingjun HUANG,Laihua LIU
吴长征1(), 蒲文宣2, 盛崧1, 向禹澄1, 杨伟芹1, 李文瑞1, 黄平俊2(
), 刘来华1(
)
通讯作者:
黄平俊,刘来华
作者简介:
吴长征E-mail: wuchangzheng@cau.edu.cn
基金资助:
CLC Number:
Changzheng WU, Wenxuan PU, Song SHENG, Yucheng XIANG, Weiqin YANG, Wenrui LI, Pingjun HUANG, Laihua LIU. Research Advance on Molecular Physiological Mechanisms of the Effect of Suboptimal Low Temperatures on Plant Growth and Nitrogen Nutrition[J]. Journal of Agricultural Science and Technology, 2023, 25(1): 16-25.
吴长征, 蒲文宣, 盛崧, 向禹澄, 杨伟芹, 李文瑞, 黄平俊, 刘来华. 亚适低温影响植物生长及氮营养的分子生理机制研究进展[J]. 中国农业科技导报, 2023, 25(1): 16-25.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0896
物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法 Method | 通路 Pathway | 参考文献 Reference |
---|---|---|---|---|---|
水稻 Rice (Oryza sativa L.) | 地上部 Shoot | 21/13 ℃(日/夜 day/night),24 h | 转录组学 Transcriptomics | 碳水化合物代谢、转运、次生代谢 Carbohydrate metabolism, transport, and secondary metabolism | [ |
幼苗 Seedling | 13 ℃, 7 d | 转录组学 Transcriptomics | 细胞分裂和扩张、细胞壁的完整性和延展性、膜转运能力 Cell division and expansion, cell wall integrity and extensibility, and membrane transport capacity | [ | |
地上部 Shoot | 17 ℃,15 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 促分裂活化蛋白激酶(MAPK)信号、玉米素合成、植物激素信号传导 Mitogen-activated protein kinase(MAPK) signaling, zeatin biosynthesis, and plant hormone signal transduction pathways | [ | |
叶片 Leaf | 12~14 ℃,48、72、96 h | 蛋白组学 Proteomics | 转运、光合作用、组蛋白和维生素B生物合成蛋白 Transport, photosynthesis, generation of precursor metabolites and energy, histones and vitamin B biosynthetic proteins | [ | |
叶片 Leaf | 15 ℃,24 h | 蛋白组学 Proteomics | 硫胺生物合成的酶、磷酸核酮糖激酶前体 Thiamine biosynthetic enzyme, phosphoribulokinase precursor | [ | |
细胞 Cell | 12℃,3 d | 蛋白组学 Proteomics | 蛋白代谢过程、转运 Protein metabolic process, transport | [ | |
幼苗 Seedling | 8 ℃,3 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 光敏色素、脱植基叶绿素加氧酶活性、葡聚糖分支酶活性、次生代谢 Phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme, biosynthesis of secondary metabolites | [ |
Table 1 Omics research of tobacco and rice at different temperature
物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法 Method | 通路 Pathway | 参考文献 Reference |
---|---|---|---|---|---|
水稻 Rice (Oryza sativa L.) | 地上部 Shoot | 21/13 ℃(日/夜 day/night),24 h | 转录组学 Transcriptomics | 碳水化合物代谢、转运、次生代谢 Carbohydrate metabolism, transport, and secondary metabolism | [ |
幼苗 Seedling | 13 ℃, 7 d | 转录组学 Transcriptomics | 细胞分裂和扩张、细胞壁的完整性和延展性、膜转运能力 Cell division and expansion, cell wall integrity and extensibility, and membrane transport capacity | [ | |
地上部 Shoot | 17 ℃,15 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 促分裂活化蛋白激酶(MAPK)信号、玉米素合成、植物激素信号传导 Mitogen-activated protein kinase(MAPK) signaling, zeatin biosynthesis, and plant hormone signal transduction pathways | [ | |
叶片 Leaf | 12~14 ℃,48、72、96 h | 蛋白组学 Proteomics | 转运、光合作用、组蛋白和维生素B生物合成蛋白 Transport, photosynthesis, generation of precursor metabolites and energy, histones and vitamin B biosynthetic proteins | [ | |
叶片 Leaf | 15 ℃,24 h | 蛋白组学 Proteomics | 硫胺生物合成的酶、磷酸核酮糖激酶前体 Thiamine biosynthetic enzyme, phosphoribulokinase precursor | [ | |
细胞 Cell | 12℃,3 d | 蛋白组学 Proteomics | 蛋白代谢过程、转运 Protein metabolic process, transport | [ | |
幼苗 Seedling | 8 ℃,3 d | 转录组学、 蛋白组学 Transcriptomics, proteomics | 光敏色素、脱植基叶绿素加氧酶活性、葡聚糖分支酶活性、次生代谢 Phytochrome, chlorophyllide oxygenase activity and the glucan branching enzyme, biosynthesis of secondary metabolites | [ |
物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法Method | 通路 Pathway | 参考文献 Reference |
---|---|---|---|---|---|
水稻Rice (Oryza sativa L.) | 幼苗 Seedling | 6 ℃,6、24 h | 蛋白组学 Proteomics | 光合作用、光呼吸、信号传导、氧化还原平衡 Photosynthesis, photorespiration, signal transduction and redox homeostasis | [ |
烟草Tobacco (Nicotiana tabacum L.) | 叶片 Leaf | 4 ℃,12、24 h | 转录组学 Transcriptomics | 次生代谢物合成、光合作用、植物激素信号传导 Biosynthesis of secondary metabolites, photosynthesis, plant hormone signal transduction | [ |
叶片 Leaf | 4 ℃,24 h | 转录组学 Transcriptomics | 核糖体、植物激素信号传导、MAPK信号通路、cAMP信号通路 Ribosome, plant hormone signal transduction, MAPK signaling pathway and cAMP signaling pathway | [ | |
叶片 Leaf | 4 ℃,0、12、24 h | 转录组学 Transcriptomics | 次生代谢物合成 Biosynthesis of secondary metabolites | [ | |
叶片 Leaf | 6 ℃,0、12、24、48 h | 转录组学 Transcriptomics | 细胞壁代谢、转录因子、泛素蛋白酶系统(UPS)及 信号转导、植物昼夜节律 Cell wall metabolism, transcription factors, ubiquitinproteasome system (UPS) and signaling, and plant circadian clock | [ | |
叶片 Leaf | 4 ℃,6 h | 转录组学 Transcriptomics | 信号转导、碳水化合物代谢、苯丙素生物合成 Signal transduction, carbohydrate metabolism and phenylpropanoid biosynthesis | [ | |
叶片 Leaf | 4 ℃,4 h | 蛋白组学 Proteomics | 光合作用、蛋白质加工、氧化还原平衡、信号转导、 细胞分裂/周期、碳和能量代谢 Photosynthesis, protein processing, redox homeostasis, signal transduction, translation, cell division/cycle, and metabolisms of carbon and energy | [ | |
叶片 Leaf | 18 ℃,1、5、10 d | 转录组学 Transcriptomics | 光合作用、淀粉和糖代谢、植物激素信号传导、 核糖体 Photosynthesis, metabolisms of starch and glucose, plant hormone signal transduction, ribosome | 未发表Unpublished |
Table 1 Omics research of tobacco and rice at different temperature
物种 Species | 植物材料Plant material | 处理 Treatment | 研究方法Method | 通路 Pathway | 参考文献 Reference |
---|---|---|---|---|---|
水稻Rice (Oryza sativa L.) | 幼苗 Seedling | 6 ℃,6、24 h | 蛋白组学 Proteomics | 光合作用、光呼吸、信号传导、氧化还原平衡 Photosynthesis, photorespiration, signal transduction and redox homeostasis | [ |
烟草Tobacco (Nicotiana tabacum L.) | 叶片 Leaf | 4 ℃,12、24 h | 转录组学 Transcriptomics | 次生代谢物合成、光合作用、植物激素信号传导 Biosynthesis of secondary metabolites, photosynthesis, plant hormone signal transduction | [ |
叶片 Leaf | 4 ℃,24 h | 转录组学 Transcriptomics | 核糖体、植物激素信号传导、MAPK信号通路、cAMP信号通路 Ribosome, plant hormone signal transduction, MAPK signaling pathway and cAMP signaling pathway | [ | |
叶片 Leaf | 4 ℃,0、12、24 h | 转录组学 Transcriptomics | 次生代谢物合成 Biosynthesis of secondary metabolites | [ | |
叶片 Leaf | 6 ℃,0、12、24、48 h | 转录组学 Transcriptomics | 细胞壁代谢、转录因子、泛素蛋白酶系统(UPS)及 信号转导、植物昼夜节律 Cell wall metabolism, transcription factors, ubiquitinproteasome system (UPS) and signaling, and plant circadian clock | [ | |
叶片 Leaf | 4 ℃,6 h | 转录组学 Transcriptomics | 信号转导、碳水化合物代谢、苯丙素生物合成 Signal transduction, carbohydrate metabolism and phenylpropanoid biosynthesis | [ | |
叶片 Leaf | 4 ℃,4 h | 蛋白组学 Proteomics | 光合作用、蛋白质加工、氧化还原平衡、信号转导、 细胞分裂/周期、碳和能量代谢 Photosynthesis, protein processing, redox homeostasis, signal transduction, translation, cell division/cycle, and metabolisms of carbon and energy | [ | |
叶片 Leaf | 18 ℃,1、5、10 d | 转录组学 Transcriptomics | 光合作用、淀粉和糖代谢、植物激素信号传导、 核糖体 Photosynthesis, metabolisms of starch and glucose, plant hormone signal transduction, ribosome | 未发表Unpublished |
1 | DING Y L, SHI Y T, YANG S H. Molecular regulation of plant responses to environmental temperatures [J]. Mol. Plant, 2020, 13(4): 544-564. |
2 | LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980 [J]. Science, 2011, 333(6042): 616-620. |
3 | GAO H, YANG W J, LI C X, et al.. Gene expression and K+ uptake of two tomato cultivars in response to sub-optimal temperature [J]. Plants, 2020, 9(1): 65 [2022-09-13]. . |
4 | CHINNUSAMY V, ZHU J, ZHU J. Cold stress regulation of gene expression in plants [J]. Trends Plant Sci., 2007, 12(10): 444-451. |
5 | JOUYBAN Z, HASANZADE R, SHARAFI S. Chilling stress in plants [J]. Int. J. Agric. Crop Sci., 2013, 5(24): 2961-2968. |
6 | LU J Y, NAWAZ M A, WEI N N, et al.. Suboptimal temperature acclimation enhances chilling tolerance by improving photosynthetic adaptability and osmoregulation ability in watermelon [J]. Hortic. Plant J., 2020, 6(1): 49-60. |
7 | ALLEN D J, ORT D R. Impacts of chilling temperatures on photosynthesis in warm-climate plants [J]. Trends Plant Sci., 2001, 6(1): 36-42. |
8 | MCALLISTER C H, BEATTY P H, GOOD A G. Engineering nitrogen use efficient crop plants: the current status [J]. Plant Biotechnol. J., 2012, 10(9): 1011-1025. |
9 | NASHOLM T, KIELLAND K, GANETEG U. Uptake of organic nitrogen by plants [J]. New Phytol., 2009, 182(1): 31-48. |
10 | VAN PLOEG D, HEUVELINK E. Influence of sub-optimal temperature on tomato growth and yield: a review [J]. J. Hortic. Sci. Biotechnol., 2005, 80(6): 652-659. |
11 | ANWAR A, LI Y, HE C, et al.. 24-epibrassinolide promotes NO 3 - and NH 4 + ion flux rate and NRT1 gene expression in cucumber under suboptimal root zone temperature [J]. BMC Plant Biol., 2019, 19(1): 453 [2022-09-13]. . |
12 | ANWAR A, DI Q, YAN Y, et al.. Exogenous 24-epibrassinolide alleviates the detrimental effects of suboptimal root zone temperature in cucumber seedlings [J]. Arch. Agron. Soil Sci., 2019, 65(14): 1927-1940. |
13 | BAI L Q, DENG H H, ZHANG X C, et al.. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperatures [J]. PLoS One, 2016, 11(5): e156188 [2022-09-13]. . |
14 | 陶乐圆, 刘智蕾, 刘婷婷, 等. 营养生长期低温持续时间与水稻生长恢复的关系[J].生态学杂志, 2018, 37(12): 3610-3616. |
TAO L Y, LIU Z L, LIU T T, et al.. The relationship between low temperature duration and growth recovery of rice during the vegetative growth stage [J]. Chin. J. Ecol., 2018, 37(12): 3610-3616. | |
15 | JIA Y, WANG J, QU Z, et al.. Effects of low water temperature during reproductive growth on photosynthetic production and nitrogen accumulation in rice [J]. Field Crops Res., 2019, 242: 107587 [2022-09-13]. . |
16 | GILMOUR S J, HAJELA R K, THOMASHOW M F. Cold acclimation in Arabidopsis thaliana1 [J]. Plant Physiol., 1988, 87(3): 745-750. |
17 | KENCHANMANE R S K, BARNES A C, SCHNABLE J C, et al.. Low-temperature tolerance in land plants: are transcript and membrane responses conserved? [J]. Plant Sci., 2018, 276: 73-86. |
18 | GAZQUEZ A, MAIALE S J, RACHOSKI M M, et al.. Physiological response of multiple contrasting rice (Oryza sativa L.) cultivars to suboptimal temperatures [J]. J. Agron. Crop Sci., 2015, 201(2): 117-127. |
19 | GONG Z Z, XIONG L M, SHI H Z, et al.. Plant abiotic stress response and nutrient use efficiency [J]. Sci. China Life Sci., 2020, 63(5): 635-674. |
20 | YAN Q Y, DUAN Z Q, MAO J D, et al.. Low root zone temperature limits nutrient effects on cucumber seedling growth and induces adversity physiological response [J]. J. Integr. Agric., 2013, 12(8): 1450-1460. |
21 | ANDREWS M, RAVEN J A, LEA P J. Do plants need nitrate? The mechanisms by which nitrogen form affects plants [J]. Ann. Appl. Biol., 2013, 163(2): 174-199. |
22 | GEIGER M, HAAKE V, LUDEWIG F, et al.. The nitrate and ammonium nitrate supply have a major influence on the response of photosynthesis, carbon metabolism, nitrogen metabolism and growth to elevated carbon dioxide in tobacco [J]. Plant Cell Environ., 1999, 22(10): 1177-1199. |
23 | LIU G Y, DU Q J, LI J M. Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings [J]. Sci. Hortic., 2017, 214: 41-50. |
24 | WANG P, WANG Z K, PAN Q C, et al.. Increased biomass accumulation in maize grown in mixed nitrogen supply is mediated by auxin synthesis [J]. J. Exp. Bot., 2019, 70(6): 1859-1873. |
25 | WANG J, ZHANG J B, MÜLLER C, et al.. Temperature sensitivity of gross N transformation rates in an alpine meadow on the Qinghai-Tibetan Plateau [J]. J. Soils Sediments, 2017, 17(2): 423-431. |
26 | CLARKSON D T, HOPPER M J, JONES H P. The effect of root temperature on the uptake of nitrogen and the relative size of the root system in Lolium perenne. I. solutions containing both NO 3 - and NH 4 + [J]. Plant Cell Environ., 1986(9): 535-545. |
27 | KHUANKAEW T, TANABATA S, YAMAMOTO M, et al.. Temperature affects N and C assimilation and translocation in Curcuma alismatifolia gagnep [J]. J. Hortic. Sci. Biotechnol., 2014, 89(3): 287-292. |
28 | CAO X C, CHU Z, ZHU L F, et al.. Glycine increases cold tolerance in rice via the regulation of N uptake, physiological characteristics, and photosynthesis [J]. Plant Physiol. Biochem., 2017, 112: 251-260. |
29 | MALAGOLI P, LAINÉ P, LE DEUNFF E, et al.. Modeling nitrogen uptake in oilseed rape cv capitol during a growth cycle using influx kinetics of root nitrate transport systems and field experimental data [J]. Plant Physiol., 2004, 134(1): 388-400. |
30 | LAINE P, OURRY A, MACDUFF J, et al.. Kinetic-parameters of nitrate uptake by different catch crop species-effects of low-temperatures or previous nitrate starvation [J]. Physiol. Plant, 1993, 88(1): 85-92. |
31 | WANG M Y, SIDDIQI M Y, RUTH T J, et al.. Ammonium uptake by rice roots [J]. Plant Physiol., 1993, 103(4): 1259-1267. |
32 | JUNG J, DOMIJAN M, KLOSE C, et al.. Phytochromes function as thermosensors in Arabidopsis [J]. Science, 2016, 354(6314): 886-889. |
33 | LEGRIS M, KLOSE C, BURGIE E S, et al.. Phytochrome B integrates light and temperature signals in Arabidopsis [J]. Science, 2016, 354 (6314): 897-900. |
34 | JIANG B, SHI Y, ZHANG X, et al.. PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis [J]. Proc. Nat. Acad. Sci. USA, 2017, 114(32): E6695-E6702. |
35 | DONG X, YAN Y, JIANG B, et al.. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures [J]. EMBO J., 2020, 39 (13): e103630 [2022-09-13]. . |
36 | POOAM M, DIXON N, HILVERT M, et al.. Effect of temperature on the Arabidopsis cryptochrome photocycle [J]. Physiol. Plant, 2021, 172 (3): 1653-1661. |
37 | LI Y, SHI Y, LI M, et al.. The CRY2-COP1-HY5-BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis [J]. Plant Cell, 2021, 33(11): 3555-3573. |
38 | ANDREWS M. The partitioning of nitrate assimilation between root and shoot of higher plants [J]. Plant Cell Environ., 1986, 9(7): 511-519. |
39 | ZHANG G B, MENG S, GONG J M. The expected and unexpected roles of nitrate transporters in plant abiotic stress resistance and their regulation [J]. Int. J. Mol. Sci., 2018, 19 (11): 3535 [2022-09-13]. . |
40 | ZHANG G B, YI H Y, GONG J M. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-Off between growth and environmental adaptation [J]. Plant Cell, 2014, 26(10): 3984-3998. |
41 | HO C H, LIN S H, HU H C, et al.. CHL1 functions as a nitrate sensor in plants [J]. Cell, 2009, 138(6): 1184-1194. |
42 | VIDAL E A, ALVAREZ J M, ARAUS V, et al.. Nitrate in 2020: thirty years from transport to signaling networks [J]. Plant Cell, 2020, 32(7): 2094-2119. |
43 | LV X Z, GE S B, JALAL AHAMMED G, et al.. Crosstalk between nitric oxide and MPK1/2 mediates cold acclimation-induced chilling tolerance in tomato [J]. Plant Cell Physiol., 2017, 58(11): 1963-1975. |
44 | BOUGUYON E, BRUN F, MEYNARD D, et al.. Multiple mechanisms of nitrate sensing by Arabidopsis nitrate transceptor NRT1.1 [J]. Nature Plants, 2015, 1(3): 15015 [2022-09-13]. . |
45 | GAZQUEZ A, VILAS J M, COLMAN LERNER J E, et al.. Rice tolerance to suboptimal low temperatures relies on the maintenance of the photosynthetic capacity [J]. Plant Physiol. Biochem., 2018, 127: 537-552. |
46 | DAMETTO A, SPEROTTO R A, ADAMSKI J M, et al.. Cold tolerance in rice germinating seeds revealed by deep RNA-seq analysis of contrasting indica genotypes [J]. Plant Sci., 2015, 238: 1-12. |
47 | JIA Y, LIU H L, QU Z J, et al.. Transcriptome sequencing and iTRAQ of different rice cultivars provide insight into molecular mechanisms of cold-tolerance response in japonica rice [J]. Rice, 2020, 13(1): 43 [2022-09-13]. . |
48 | NEILSON K A, MARIANI M, HAYNES P A. Quantitative proteomic analysis of cold-responsive proteins in rice [J]. Proteomics, 2011, 11 (9): 1696-1706. |
49 | CUI S X, HUANG F, WANG J, et al.. A proteomic analysis of cold stress responses in rice seedlings [J]. Proteomics, 2005, 5(12): 3162-3172. |
50 | GAMMULLA C G, PASCOVICI D, ATWELL B J, et al.. Differential metabolic response of cultured rice (Oryza sativa) cells exposed to high- and low-temperature stress [J]. Proteomics, 2010, 10 (16): 3001-3019. |
51 | WANG W X, DU J, CHEN L M, et al.. Transcriptomic, proteomic, and physiological comparative analyses of flooding mitigation of the damage induced by low-temperature stress in direct seeded early indica rice at the seedling stage [J]. BMC Genomics, 2021, 22 (1): 176 [2022-09-13]. . |
52 | YAN S P, ZHANG Q Y, TANG Z C, et al.. Comparative proteomic analysis provides new insights into chilling stress responses in rice [J]. Mol. Cell. Proteomics, 2006, 5(3): 484-496. |
53 | ZHOU P, KHAN R, LI Q, et al.. Transcriptomic analyses of chilling stress responsiveness in leaves of tobacco (Nicotiana tabacum) seedlings [J]. Plant Mol. Biol. Rep., 2020, 38(1): 1-13. |
54 | JIN J J, ZHANG H, ZHANG J F, et al.. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum [J]. BMC Genomics, 2017, 18(1): 496 [2022-09-13]. . |
55 | ZHOU P, LI Q, LIU G, et al.. Integrated analysis of transcriptomic and metabolomic data reveals critical metabolic pathways involved in polyphenol biosynthesis in Nicotiana tabacum under chilling stress [J]. Funct. Plant Biol., 2019, 46 (1): 30-43. |
56 | HU R, ZHU X, XIANG S, et al.. Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco [J]. Biochem. Biophys. Res. Commun., 2016, 469 (3): 535-541. |
57 | XU J, CHEN Z, WANG F, et al.. Combined transcriptomic and metabolomic analyses uncover rearranged gene expression and metabolite metabolism in tobacco during cold acclimation [J]. Sci. Rep., 2020, 10(1): 5242 [2022-09-13]. . |
58 | YAN J, CAO Z. Proteomic analysis of cold stress responses in tobacco seedlings [J]. Afr. J. Biotechnol., 2011, 10(82): 18991-19004. |
59 | HANNAH M A, HEYER A G, HINCHA D K. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana [J]. PLoS Genet., 2005, 1(2): e26 [2022-09-13]. . |
60 | SHIBASAKI K, UEMURA M, TSURUMI S, et al.. Auxin response in Arabidopsis under cold stress: underlying molecular mechanisms [J]. Plant Cell, 2009, 21(12): 3823-3838. |
61 | HUANG N C, LIU K H, LO H J, et al.. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake [J]. Plant Cell, 1999, 11(8): 1381-1392. |
62 | KANNO Y, KAMIYA Y, SEO M. Nitrate does not compete with abscisic acid as a substrate of AtNPF4.6/NRT1.2/AIT1 in Arabidopsis [J]. Plant Signal. Behav., 2014, 8(12): e26624 [2022-09-13]. . |
63 | LEE H G, SEO P J. The MYB96-HHP module integrates cold and abscisic acid signaling to activate the CBF-COR pathway in Arabidopsis [J]. Plant J., 2015, 82(6): 962-977. |
64 | CHEN C C, LIANG C S, KAO A L, et al.. HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis [J]. J. Exp. Bot., 2010, 61(12): 3305-3320. |
65 | DING Y, LI H, ZHANG X, et al.. OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in Arabidopsis [J]. Dev. Cell., 2015, 32(3): 278-289. |
66 | KREPS J A, WU Y, CHANG H, et al.. Transcriptome changes for arabidopsis in response to salt, osmotic, and cold stress [J]. Plant Physiol., 2002, 130 (4): 2129-2141. |
67 | MEGA R, MEGURO-MAOKA A, ENDO A, et al.. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice(Oryza sativa L.) [J]. Sci. Rep., 2015, 5(1): 13819 [2022-09-13]. . |
[1] | Jianfeng ZHANG, Wenfeng HOU, Yongqing WU, Kaixu LI, Xiaokun LI. Effects of Nitrogen Fertilizer and Density Interactions on Occurrence of Diseases and Insect Pests and Grain Yield of Rice [J]. Journal of Agricultural Science and Technology, 2025, 27(9): 145-154. |
[2] | Caixia LYU, Yongfu LI, Huinan XIN, Na LI, Ning LAI, Qinglong GENG, Shuhuang CHEN. Effects of Slow Release Nitrogen Fertilizer on Yield of Winter Wheat and Soil Nitrate/Ammonium Nitrogen Under Drip Irrigation [J]. Journal of Agricultural Science and Technology, 2025, 27(8): 179-186. |
[3] | Xiyu ZHANG, Xing SHEN, Wei LI, Wenge XIE, Jie LI, Changhao YANG, Zhongping CHAI. Influence of Reduced Nitrogen Fertilizer Combined with Organic Fertilizer on Soil Bacterial Community Structure in Korla Pear Orchards [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 217-228. |
[4] | Fu QING, Hongyue LIANG, Jing SUN, Xinrui LU, Yunjiang LIANG. Effects of Combined Application of Biochar and Nitrogen Fertilizer on Aggregate and Organic Carbon Content of Black Soil in Northeast China [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 195-204. |
[5] | Shichao CHEN, Ju WANG, Fuqiang GUO, Rui HAO, Jianping SHI. Effects of Different Water and Nitrogen Coupling on Physiological Indexes and Yield of Protein Mulberry [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 240-249. |
[6] | Shenghao ZOU, Qiwei YU, Shuai HE, Xuewei ZHANG, Qian MA, Guankai MA, Feihu XI, Dongsheng LUO, Maoxian WANG, Zhenbao LUO, Yanqiu JING. Effect of Exogenous Chlorellavulgaris on Physiological Characteristics of Flue-cured Tobacco Seedlings Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 64-71. |
[7] | Yan WU, Leping ZOU, Huijie SONG, Dandan HU, Kailou LIU, Wanli LIANG. Effect of Controlled-release Nitrogen Fertilizer Combined Urea on Ammonium Nitrogen of Surface Water and Early Rice Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 192-200. |
[8] | Bei MA, Jie GONG, Yinke DU, Yuwei GAN, Rong CHENG, Bo ZHU, Lixia YI, Jinxiu MA, Shiqing GAO. Identification and Expression Analysis of TaINP1 Gene Related to Pollen Pore Development in Wheat [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 22-35. |
[9] | Junya DUAN, Yuanyuan ZHAO, Tingting WANG, Jianyu WEI, Zheng WANG, Dexun WANG, Juan LI, Hongzhi SHI. Effects of Nitrogen Reduction Combined with Polyaspartic Acid on Nitrogen Utilization, Yield and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 227-238. |
[10] | Tingting NIE, Yiqiang DONG, Qinghe SU, Yongjuan ZHANG, Helong YANG, Shazhou AN. Effects of Nitrogen Application and Cattle Manure Addition on Vegetation Restoration in Coal Mine Replanting Area [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 218-227. |
[11] | Songjiang DUAN, Haoran HU, Chengjie ZHANG, Wei SUN, Yifan WU, Rensong GUO, Jusong ZHANG. Differences in Nitrogen Efficiency of Different Genotypes of Island Cotton and Their Effects on Photosynthetic Characteristics and Yield [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 61-71. |
[12] | Lingwei KONG, Kongtan WANG, Liwen MAI, Yupeng WU, Xiongfei WANG, Zhaobi WANG, Jiacong LIN, Qinfen LI. Effects of Carbon Source with Different Bioavailability on Vermicomposting [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 199-209. |
[13] | Yukun QIN, Junying CHEN, Lijuan ZHANG. Response of Dry Matter Accumulation Characteristics and Yield of Cotton in North Jiangxi Cotton Region to Nitrogen Reduction Measures [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 191-199. |
[14] | Peihan JIANG, Xiaonan YANG, Chenxu YANG, Aijun ZHANG. Estimation of Nitrogen Content in Millet Canopy Based on Multi Parameter Partial Least Squares Model [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 91-101. |
[15] | Yuxin CHEN, Hongmei ZHAO, Weijun YANG, Mei YANG, Song GUO, Shilong SONG, Chao HUI. Effects of Biochar on Soil Microbial Carbon Source Utilization and Spring Wheat Yield [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 174-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||