Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (3): 57-65.DOI: 10.13304/j.nykjdb.2021.0809
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Zengqiang ZHAO1(), Guoli ZHANG1(
), Panpan MA1, Youzhong LI1, Zhijun WANG1, Zongming XIE1(
), Guoqing SUN1,2(
)
Received:
2021-09-14
Accepted:
2021-11-22
Online:
2023-03-15
Published:
2023-05-22
Contact:
Zongming XIE,Guoqing SUN
赵曾强1(), 张国丽1(
), 马盼盼1, 李有忠1, 王志军1, 谢宗铭1(
), 孙国清1,2(
)
通讯作者:
谢宗铭,孙国清
作者简介:
赵曾强 E-mail:tlx4109@126.com基金资助:
CLC Number:
Zengqiang ZHAO, Guoli ZHANG, Panpan MA, Youzhong LI, Zhijun WANG, Zongming XIE, Guoqing SUN. Role of Receptor-like Cytoplasmic Kinase Gene GbRLCK10 from Gossypium barbadense in Disease Resistance[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 57-65.
赵曾强, 张国丽, 马盼盼, 李有忠, 王志军, 谢宗铭, 孙国清. 海岛棉类受体胞质激酶基因GbRLCK10在抗病中的作用[J]. 中国农业科技导报, 2023, 25(3): 57-65.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0809
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) |
---|---|
35SF1 | TGGCTCCTACAAATGCCATCA |
GeneR1 | CAGCACCCGAACAACATCACT |
GbRLCK-F | GGGGTACCCCATGGGATTCTTGGCTAAACTT |
GbRLCK-R | GCTCTAGAGCCTCTACCTTCTTCAATGGACG |
NtActin-F | CTCCGAGGGCTGTTTTTCCTA |
NtActin-R | GCTGAGGGAAGTGGCGATTTC |
NtPR1-F | CCTAGCACATCCAACACGAACC |
NtPR1-R | GCAGCAGACGATGTAATGATGG |
NtNPR1-F | TCCACAAGCCTAGTGAGCCTC |
NtNPR1-R | GTGGTATGTTGAATGTTGCTCCTG |
NtPR3-F | GTGGTATGTTGAATGTTGCTCCTG |
NtPR3-R | TGATCTAACGAATCCTAGCCTTGG |
NtEIN4-F | TGCCTAAATGCACTAGGTCCTC |
NtEIN4-R | GCGAAATTTGCGCACTCTCA |
NtJAZ1-F | GAGATTGTGGATTCCGGTCGAT |
NtJAZ1-F | GAGATTGTGGATTCCGGTCGAT |
NtNTHK2-F | TGAGTGCCAAAAGGTGAGTGA |
NtNTHK2-R | TGGAAGGAAGGATGAGCACT |
NtAOS-F | CAATACGGAAGAGCCAAACGC |
NtAOS-R | AACTCATCGGGTCGGTCAAA |
Table 1 Sequence of pimers
引物名称 Primer name | 引物序列 Primer sequence(5’-3’) |
---|---|
35SF1 | TGGCTCCTACAAATGCCATCA |
GeneR1 | CAGCACCCGAACAACATCACT |
GbRLCK-F | GGGGTACCCCATGGGATTCTTGGCTAAACTT |
GbRLCK-R | GCTCTAGAGCCTCTACCTTCTTCAATGGACG |
NtActin-F | CTCCGAGGGCTGTTTTTCCTA |
NtActin-R | GCTGAGGGAAGTGGCGATTTC |
NtPR1-F | CCTAGCACATCCAACACGAACC |
NtPR1-R | GCAGCAGACGATGTAATGATGG |
NtNPR1-F | TCCACAAGCCTAGTGAGCCTC |
NtNPR1-R | GTGGTATGTTGAATGTTGCTCCTG |
NtPR3-F | GTGGTATGTTGAATGTTGCTCCTG |
NtPR3-R | TGATCTAACGAATCCTAGCCTTGG |
NtEIN4-F | TGCCTAAATGCACTAGGTCCTC |
NtEIN4-R | GCGAAATTTGCGCACTCTCA |
NtJAZ1-F | GAGATTGTGGATTCCGGTCGAT |
NtJAZ1-F | GAGATTGTGGATTCCGGTCGAT |
NtNTHK2-F | TGAGTGCCAAAAGGTGAGTGA |
NtNTHK2-R | TGGAAGGAAGGATGAGCACT |
NtAOS-F | CAATACGGAAGAGCCAAACGC |
NtAOS-R | AACTCATCGGGTCGGTCAAA |
Fig. 2 Transformation of GbRLCK10 gene into Nicotiana tabacum and screening of positive plantsA:Co-culture (tobacco leaf disc); B:Callus culture; C:Selective culture; D:Rooting culture; E and F:Domesticated; G:T0 positive identification of transgenic plants; H and I:T1/2 positive identification of transgenic plants;1~13—Transgenic plants; 14,15 and P—Recombinant plasmid; 16 and 17—Negative control; M—DL2000
Fig. 3 Tobacco disease resistance identificationA:Phenotypic characteristics of transgenic plants and wild-type plants after inoculation with Verticillium dahlia; B:Isolation of Verticillium dahliae from inoculated tobacco; C:Recovery culture of Verticillium wilt; D:Disease index statistics;different lowercase letters in the figure indicate significant differences between different plants at P<0.05 level
Fig. 4 Expression of disease resistance-related genes in WT and transgenic plant before treatment with Verticillium dahliaeNote: WT—Wild-type plant; OE—Transgenic plant; * and ** indicate significant differences between different types at P<0.05 and P<0.01 levels, respectively.
Fig. 5 Expression of disease resistance related genes in wild type and transgenic strains after treatment with Verticillium dahliaeNote: WT—Wild-type plant; OE—Transgenic plant; different lowercase letters indicate significant differences between different types at P<0.05 level; ** indicates significant difference between different quessions in same time at P<0.01 level.
1 | 肖武.水稻OsRLCK91基因的功能研究[D].广州:华南农业大学,2018. |
XIAO W. Functional research of receptor like kinase OsRLCK77 in rice (Oryza sativa) [D]. Guangzhou: South China Agricultural University, 2018. | |
2 | COSTA A T, BRAVO J P, KRAUSE-SAKATE R, et al.. The receptor-like kinase SlSOBIR1 is differentially modulated by virus infection but its overexpression in tobacco has no significant impact on virus accumulation [J]. Plant Cell Rep., 2016, 35(1):65-75. |
3 | LI L, YU Y, ZHOU Z, et al.. Plant pattern-recognition receptors controlling innate immunity [J]. Sci. China Life Sci., 2016, 59(9):878-888. |
4 | DODDS P N, RATHJEN J P. Plant immunity: towards an integrated view of plant–pathogen interactions [J]. Nat. Rev. Genet., 2010, 11(8):539-548. |
5 | MACHO A P, ZIPFEL C. Plant PRRs and the activation of innate immune signaling [J]. Mol. Cell., 2014, 54(2):263-272. |
6 | MONAGHAN J, ZIPFEL C. Plant pattern recognition receptor complexes at the plasma membrane [J]. Curr. Opin. Plant Biol., 2012, 15(4):349-357. |
7 | WU Y, ZHOU J M. Receptor-like kinases in plant innate immunity [J]. J. Integr. Plant Biol., 2013, 55(12):1271-1286. |
8 | RAO S, ZHOU Z, MIAO P, et al.. Roles of receptor-like cytoplasmic kinase VII members in pattern-triggered immune signaling [J]. Plant Physiol., 2018, 177(4):1679-1690. |
9 | BI G, ZHOU Z, WANG W, et al.. Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in Arabidopsis [J]. Plant Cell, 2018, 30(7):1543-1561. |
10 | MA X, CLAUS L A N, LESLIE M E, et al.. Ligand-induced monoubiquitination of BIK1 regulates plant immunity [J]. Nature, 2020, 581(7807):1-5. |
11 | ZHANG J, LI W, XIANG T, et al.. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector [J]. Cell Host Microbe., 2010, 7(4):290-301. |
12 | LU D, WU S, GAO X, et al.. A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity [J]. Proc. Natl. Acad. Sci. USA, 2010, 107(1):496-501. |
13 | LIU Z, WU Y, YANG F, et al.. BIK1 interacts with PEPRs to mediate ethylene-induced immunity [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(15):6205-6210. |
14 | TANG D, WANG G, ZHOU J M. Receptor kinases in plant-pathogen interactions: more than pattern recognition [J]. Plant Cell, 2017, 29(4):618-637. |
15 | KANDA Y, NAKAGAWA H, NISHIZAWA Y, et al.. Broad-spectrum disease resistance conferred by the overexpression of rice RLCK BSR1 results from an enhanced immune response to multiple MAMPs [J/OL]. Int. J. Mol. Sci., 2019, 20(22): 20225523 [2021-08-10]. . |
16 | LI K, XIONG X, ZHU S, et al.. MeBIK1, a novel cassava receptor-like cytoplasmic kinase, regulates PTI response of transgenic Arabidopsis [J]. Funct. Plant Biol., 2018, 45(6):658-667. |
17 | WU T, ZHU X, LYU L, et al.. The wheat receptor-like cytoplasmic kinase TaRLCK1B is required for host immune response to the necrotrophic pathogen Rhizoctonia cerealis [J]. J. Integr. Agric., 2020, 19(11):2616-2627. |
18 | 赵曾强,孙国清,张国丽,等.海岛棉GbRLCK10基因克隆及表达分析[J].西北植物学报,2017,37(11):40-48. |
ZHAO Z Q, SUN G Q, ZHANG G L, et al.. Cloning and expression analysis of the GbRLCK10 gene in Gossypium barbadense L. [J]. Acta Bot. Bor-Occid. Sin., 2017, 37(11):40-48. | |
19 | 赵曾强,韩泽刚,李会会,等. GhWRKY44基因在烟草中遗传转化及功能分析[J]. 华北农学报,2016,31(1):117-122. |
ZHAO Z Q, HAN Z G, LI H H, et al.. Genetic transformation and functional analysis of GhWRKY44 gene in tobacco [J]. Acta Agric. Boreali-Sin., 2016, 31(1):117-122. | |
20 | 杨占武,杨君,张艳,等.棉花GbRvd的亚细胞定位及其超表达烟草抗病性分析[J].中国农业科学,2016,49(21):4065-4073. |
YANG Z W, YANG J, ZHANG Y, et al.. Subcellular localization and Verticillium wilt resistance analysis of cotton GbRvd in overexpressed tobacco [J]. Sci. Agric. Sin., 2016, 49(21):4065-4073. | |
21 | MONAGHAN J, C ZIP F L. Plant pattern recognition receptor complexes at the plasma membrane [J]. Curr. Opin. Plant Biol., 2012, 15(4):349-357. |
22 | COUTO D, ZIPFEL C. Regulation of pattern recognition receptor signalling in plants [J]. Nat. Rev. Immunol., 2016, 16(9):537-552. |
23 | AO Y, LI Z, FENG D, et al.. OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity [J]. Plant J. Cell Mol. Biol., 2015, 80(6):1072-1084. |
24 | DESAKI Y, TAKAHASHI S, SATO K, et al.. PUB4, a CERK1-interacting ubiquitin ligase, positively regulates MAMP-triggered immunity in Arabidopsis [J]. Plant Cell Physiol., 2019, 60(11): 2573-2583. |
25 | MONAGHAN J, MATSCHI S, ROMEIS T, et al.. The calcium-dependent protein kinase CPK28 negatively regulates the BIK1-mediated PAMP-induced calcium burst [J]. Plant Signal. Behav., 2015, 10(5):1-5. |
26 | LEE K J, KIM K. The rice serine/threonine protein kinase OsPBL1 (Oryza sativa PBS1-like 1) is potentially involved in resistance to rice stripe disease [J]. Plant Growth Regul., 2015, 77(1):67-75. |
27 | KHARE E, KIM K, LEE K J. Rice OsPBL1 (Oryza sativa PBS1-like 1) enhanced defense of Arabidopsis against Pseudomonas syringae DC3000 [J]. Eur. J. Plant Pathol., 2016, 146(4):901-910. |
28 | YAN Z, XING F W, DING Z G, et al.. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement [J]. BMC Genomic, 2013, 14(1):637-654. |
29 | YANG Z, TONG W, YIN K Q, et al.. Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses [J]. New Phytol., 2012, 195(2):450-460. |
30 | LI J, ZHANGK, MENG Y, et al.. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynthesis through ORA59 transcription factor [J]. TPJ, 2018, 95(3):444-457. |
31 | SHABAN M, MIAO Y, ULLAH A, et al.. Physiological and molecular mechanism of defense in cotton against Verticillium dahlia [J]. Plant Physiol. Biochem., 2018, 125:193-204. |
32 | 陈涛,张劲松.乙烯的生物合成与信号传递[J]. 植物学报, 2006,23(5):519-530. |
CHEN T, ZHANG J S. Ethylene biosynthesis and signal pathway model [J]. Chin. Bull. Bot., 2006, 23(5):519-530. | |
33 | ZHANG Z G, ZHOU H L, CHEN T, et al.. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2 [J]. Plant Physiol., 2004, 136(2):2971-2981. |
34 | ZHANG X Q, PENG K Q, WEN Z K U, et al.. Recent research advances on ethylene receptors in tobacco subtropical [J]. Plant Sci., 2007, 36(1):85-88. |
35 | BARI R, JONES J. Role of plant hormones in plant defence responses [J]. Plant Mol. Biol., 2009, 69(4):473-88. |
36 | THINES B, KATSIR L, MELOTTO M, et al.. JAZ repressor proteins are targets of the SCF COI1 complex during jasmonate signaling [J]. Nature, 2007, 448(7154):661-665. |
37 | CHINI A, BOTER M, SOLANO R. Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid signalling module [J]. FEBS J., 2009, 276(17):4682-4692. |
38 | DEMIANSKI A J, CHUNG K M, KUNKEL B N. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis [J]. Mol. Plant Pathol., 2011, 13(1):46-57. |
39 | ZABALA M T, ZHAI BING, JAYARAMAN S, et al.. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection [J]. New Phytol., 2016, 209(3):1120-1134. |
[1] | Guotao YANG, Shijie ZHANG, Chao CHEN, Yun LIU, Chen HE, Yinghao NING, Qing ZHANG. Identification of 5 Common Pesticides Used in Flue-tobacco Field Production Based on Hyperspectral Technology [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 122-132. |
[2] | Shenghao ZOU, Qiwei YU, Shuai HE, Xuewei ZHANG, Qian MA, Guankai MA, Feihu XI, Dongsheng LUO, Maoxian WANG, Zhenbao LUO, Yanqiu JING. Effect of Exogenous Chlorellavulgaris on Physiological Characteristics of Flue-cured Tobacco Seedlings Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 64-71. |
[3] | Junya DUAN, Yuanyuan ZHAO, Tingting WANG, Jianyu WEI, Zheng WANG, Dexun WANG, Juan LI, Hongzhi SHI. Effects of Nitrogen Reduction Combined with Polyaspartic Acid on Nitrogen Utilization, Yield and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 227-238. |
[4] | Yilong DENG, Jianan WANG, Shaolong GU, Xiaoquan ZHANG, Xiaohui MIAO, Shoujie SHI, Weidong DUAN. Effect of Variable Temperature During Yellowing Stage on Synergistic Relationship Between Color Parameters and Pigment Contents of Upper leaves [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 238-249. |
[5] | Chengliang XIONG, Qingfu ZHANG, Weiyuan YAO, Tao XIA, Qingping XU, Xixin ZHOU, Yi ZHANG, Lijuan CHEN, Liu YANG. Effects of Different Types of Rice Straw Addition on Soil Microbial Communities Under Continuous Tobacco Cropping [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 233-240. |
[6] | Zhuoran XING, Songshuang DING, Kai ZHANG, Ming MA, Wenlong GUO, Xudong LIU, Xiangdong SHI. Research Progress of Deep Learning and Computer Vision in Tobacco Leaf Production [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 96-106. |
[7] | Xixin ZHOU, Shilin YUAN, Liu YANG, Tao XIA, Yi ZHANG, Wei FAN. Identification of Continuous Cropping Tobacco Root Exudates and Screening of Potential Allelopathic Substances [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 136-146. |
[8] | Yue HUANG, Yanfen XIE, Xuanquan ZHU, Meng JIA, Ge WANG, Yuxiang BAI, Yu DU, Peng ZHOU, Yuting ZHAO, Hongqiong ZHU, Fan YANG, Zhiwen XIAO, Wenbo WANG, Zhipeng FANG, Jiabao HAN, Na WANG. Risk Assessment and Influencing Factors Analysis of Chlorine Content in Tobacco Leaves in Tobacco Planting Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 206-213. |
[9] | Yahong ZHAO, Qianyu HU, Rong XIA, Zhijiang WANG, Yonghui XIE, Xianwen YE, Lei YU, Ying QI, Shaowu YANG, Zhiqin XUE, Zhixing WU, Feiyan HUANG, Tianhua HAN. Effects of Biochar Fertilizer on Rhizosphere Flora and Physicochemical Properties of Flue-cured Tobacco Susceptible to Root Knot Nematode [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 206-214. |
[10] | Xudong ZHOU, Tianhua HAN, Yunxin SHEN, Zhufeng SHI, Biao HE, Mingying YANG, Weihua PEI, Yonghong HE, Peiwen YANG. Response Characteristics of Soil Microecology in Long-term Continuous Cropping Tobacco Field Under 4 Rotation Patterns [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 174-187. |
[11] | Fengfeng LIU, Ming WU, Yinghui ZHOU, Yong WU, Jiashu TIAN, Jiayang XU, Zicheng XU, Jiewang HE. Effects of Combined Application of Auxin and Molybdenum on Physiological Metabolism and Quality of Upper Leaves of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 208-215. |
[12] | Hao GUO, Ronglei TAN, Jinpeng YANG, Jun YU, Wenchang HUANG, Jiuhong YANG, Baoming QIAO, Ruiwei YANG, Fangsen XU, Chunlei YANG, Guangda DING. Effects of Shading Cultivation on Leaf Uniformity of Cigar-wrapper Tobacco (Nicotiana tabacum) [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 216-225. |
[13] | Yongjin LIANG, Ruixuan ZHU, Beilei WEI, Xiaomai YUAN, Wuyang CHENG, Bo PENG, Ziting WANG, Jianyu WEI. Effect of Combined Application of Organic Fertilizer on Tobacco Leaf Quality in China: a Meta-analysis [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 164-175. |
[14] | Shaohao LU, Yongheng XIE, Liping XU, Chongsheng LIU, Zhaoming WU, Lina ZHANG, Gaoyan XU, Zhenjie ZHAO, Yang GAO. Differential Analysis of Aroma Components of Cigar Tobacco Leaves Based on OPLS-DA Model [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 176-186. |
[15] | Huabing LIU, Wei DANG, Qi LI, Xiaobing ZHANG, Zhiqiang XU, Yongjian ZHONG, Zhiguang REN, Yonggang ZHANG, Kailong YUAN, Hao YANG, Hui WANG, Jutao SUN. Study on Differences in Nitrogen Absorption and Assimilation among Tobacco Varieties [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 66-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||