Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (6): 58-69.DOI: 10.13304/j.nykjdb.2021.0692
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Lili WANG1,5(), Congpei YIN2(
), Feng LI3, Zhimin YANG3, Fangming LIU1, Baisong LIN1, Xiaojing LIU1, Haijun LIU4, Jing SUN4, Dongdong SHAN4, Jianghui CUI2,5(
), Zhenqing ZHANG4,5(
)
Received:
2021-08-12
Accepted:
2021-11-15
Online:
2022-06-15
Published:
2022-06-21
Contact:
Jianghui CUI,Zhenqing ZHANG
王莉莉1,5(), 殷丛培2(
), 李峰3, 杨志敏3, 刘芳明1, 林柏松1, 刘晓静1, 刘海军4, 孙靖4, 单东东4, 崔江慧2,5(
), 张振清4,5(
)
通讯作者:
崔江慧,张振清
作者简介:
王莉莉 E-mail:546156736@qq.com基金资助:
CLC Number:
Lili WANG, Congpei YIN, Feng LI, Zhimin YANG, Fangming LIU, Baisong LIN, Xiaojing LIU, Haijun LIU, Jing SUN, Dongdong SHAN, Jianghui CUI, Zhenqing ZHANG. Microbial Community Structure of Potato Rhizosphere Soil and Its Response to Drought Stress[J]. Journal of Agricultural Science and Technology, 2022, 24(6): 58-69.
王莉莉, 殷丛培, 李峰, 杨志敏, 刘芳明, 林柏松, 刘晓静, 刘海军, 孙靖, 单东东, 崔江慧, 张振清. 马铃薯根际土壤细菌群落结构及其对干旱胁迫的响应[J]. 中国农业科技导报, 2022, 24(6): 58-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://nkdb.magtechjournal.com/EN/10.13304/j.nykjdb.2021.0692
品种Variety | 处理Treatment | 净光合速率Pn/(µmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 气孔导度 Gs/(mol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) |
---|---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 22.00±2.12 a | 2.35±0.33 a | 13.83±1.10 a | 170.33±10.66 a |
T1 | 24.80±9.04 a | 2.27±0.21 a | 10.33±0.74 b | 178.53±16.03 a | |
T2 | 17.44±3.10 ab | 2.01±0.21 ab | 8.50±0.89 bc | 182.67±9.18 a | |
T3 | 13.91±1.08 b | 1.79±0.05 ab | 6.00±0.47 c | 195.41±9.50 a | |
夏波蒂 Shepody | T0 | 28.01±2.22 a | 2.79±0.16 a | 13.76±1.35 a | 137.42±11.03 b |
T1 | 18.63±3.66 a | 2.17±0.45 b | 11.67±1.06 ab | 159.00±3.65 ab | |
T2 | 14.73±2.00 b | 1.58±0.32 b | 8.87±1.51 bc | 173.14±7.11 a | |
T3 | 8.97±1.82 c | 1.03±0.11 c | 4.80±1.08 c | 180.00±13.12 a |
Table 1 Photosynthetic characteristics of potato leaves under different treatments
品种Variety | 处理Treatment | 净光合速率Pn/(µmol·m-2·s-1) | 蒸腾速率 Tr/(mmol·m-2·s-1) | 气孔导度 Gs/(mol·m-2·s-1) | 胞间CO2浓度 Ci/(µmol·mol-1) |
---|---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 22.00±2.12 a | 2.35±0.33 a | 13.83±1.10 a | 170.33±10.66 a |
T1 | 24.80±9.04 a | 2.27±0.21 a | 10.33±0.74 b | 178.53±16.03 a | |
T2 | 17.44±3.10 ab | 2.01±0.21 ab | 8.50±0.89 bc | 182.67±9.18 a | |
T3 | 13.91±1.08 b | 1.79±0.05 ab | 6.00±0.47 c | 195.41±9.50 a | |
夏波蒂 Shepody | T0 | 28.01±2.22 a | 2.79±0.16 a | 13.76±1.35 a | 137.42±11.03 b |
T1 | 18.63±3.66 a | 2.17±0.45 b | 11.67±1.06 ab | 159.00±3.65 ab | |
T2 | 14.73±2.00 b | 1.58±0.32 b | 8.87±1.51 bc | 173.14±7.11 a | |
T3 | 8.97±1.82 c | 1.03±0.11 c | 4.80±1.08 c | 180.00±13.12 a |
品种Variety | 处理 Treatment | 超氧化物歧化酶活性 SOD activity/(U·min-1) | 过氧化物酶活性 POD activity /(U·min-1) | 过氧化氢酶活性 CAT activity /(U·min-1) |
---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 118.04±8.77 b | 73.50±2.45 c | 5.38±0.20 b |
T1 | 123.74±6.62 b | 93.76±4.71 b | 6.70±0.61 ab | |
T2 | 145.98±7.02 b | 98.35±5.03 b | 8.01±0.30 a | |
T3 | 240.01±9.22 a | 119.98±6.73 a | 5.30±0.40 b | |
夏波蒂 Shepody | T0 | 44.98±5.66 c | 74.03±2.07 c | 4.66±0.31 a |
T1 | 58.06±4.08 b | 94.03±3.99 b | 4.76±0.58 a | |
T2 | 67.02±5.31 ab | 97.77±3.22 b | 4.72±0.57 a | |
T3 | 87.96±6.33 a | 118.03±4.14 a | 3.13±0.71 b |
Table 2 Enzyme activities of potato leaves under different treatments
品种Variety | 处理 Treatment | 超氧化物歧化酶活性 SOD activity/(U·min-1) | 过氧化物酶活性 POD activity /(U·min-1) | 过氧化氢酶活性 CAT activity /(U·min-1) |
---|---|---|---|---|
冀张薯8号 Jizhangshu 8 | T0 | 118.04±8.77 b | 73.50±2.45 c | 5.38±0.20 b |
T1 | 123.74±6.62 b | 93.76±4.71 b | 6.70±0.61 ab | |
T2 | 145.98±7.02 b | 98.35±5.03 b | 8.01±0.30 a | |
T3 | 240.01±9.22 a | 119.98±6.73 a | 5.30±0.40 b | |
夏波蒂 Shepody | T0 | 44.98±5.66 c | 74.03±2.07 c | 4.66±0.31 a |
T1 | 58.06±4.08 b | 94.03±3.99 b | 4.76±0.58 a | |
T2 | 67.02±5.31 ab | 97.77±3.22 b | 4.72±0.57 a | |
T3 | 87.96±6.33 a | 118.03±4.14 a | 3.13±0.71 b |
处理 Treatment | 有效序列数 Sequence number | 碱基数 Base number | 平均长度 Mean length/bp | 最短序列长度 Min. length/bp | 最长序列长度 Max. length/bp |
---|---|---|---|---|---|
对照土CK soil | 173 462 | 72 743 138 | 419.36 | 257 | 480 |
S-T0 | 150 075 | 62 852 665 | 418.84 | 276 | 472 |
S-T1 | 125 549 | 52 301 567 | 416.60 | 289 | 455 |
S-T2 | 159 305 | 66 521 294 | 417.57 | 243 | 476 |
S-T3 | 178 086 | 74 359 015 | 417.53 | 271 | 471 |
JZS-T0 | 171 403 | 71 496 233 | 417.13 | 214 | 468 |
JZS-T1 | 157 105 | 65 548 212 | 417.20 | 271 | 474 |
JZS-T2 | 161 144 | 67 378 509 | 418.09 | 240 | 504 |
JZS-T3 | 161 222 | 67 470 566 | 418.48 | 235 | 490 |
Table 3 Sequencing quantity of rhizosphere bacteria under different treatments
处理 Treatment | 有效序列数 Sequence number | 碱基数 Base number | 平均长度 Mean length/bp | 最短序列长度 Min. length/bp | 最长序列长度 Max. length/bp |
---|---|---|---|---|---|
对照土CK soil | 173 462 | 72 743 138 | 419.36 | 257 | 480 |
S-T0 | 150 075 | 62 852 665 | 418.84 | 276 | 472 |
S-T1 | 125 549 | 52 301 567 | 416.60 | 289 | 455 |
S-T2 | 159 305 | 66 521 294 | 417.57 | 243 | 476 |
S-T3 | 178 086 | 74 359 015 | 417.53 | 271 | 471 |
JZS-T0 | 171 403 | 71 496 233 | 417.13 | 214 | 468 |
JZS-T1 | 157 105 | 65 548 212 | 417.20 | 271 | 474 |
JZS-T2 | 161 144 | 67 378 509 | 418.09 | 240 | 504 |
JZS-T3 | 161 222 | 67 470 566 | 418.48 | 235 | 490 |
处理 Treatment | 测序深度 Sequencing depth coverage | 丰度指数 Richness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | ||||
---|---|---|---|---|---|---|---|---|
Sobs | Chao | ACE | Shannon | Simpson | Shannon | Simpson | ||
对照土CK soil | 0.956 3 | 2 871.00±46.89 a | 4 019.46±124.69 a | 4 226.19±454.79 a | 6.30±0.04 e | 0.007±0.001 b | 0.791±0.003 e | 0.049±0.005 cd |
S-T0 | 0.963 4 | 3 034.00±126.57 a | 4 300.03±193.64 a | 4 285.13±178.17 a | 6.64±0.04 b | 0.004±0.001 bcd | 0.828±0.007 b | 0.076±0.009 b |
S-T1 | 0.962 7 | 2 914.33±332.18 a | 4 168.09±393.31 a | 4 306.80±129.02 a | 6.75±0.03 a | 0.003±0.000 d | 0.846±0.008 a | 0.117±0.016 a |
S-T2 | 0.969 5 | 2 891.67±143.07 a | 4 154.81±341.77 a | 4 412.31±699.81 a | 6.49±0.04 cd | 0.004±0.000 bcd | 0.813±0.001 bcd | 0.078±0.002 b |
S-T3 | 0.972 9 | 3 093.67±146.73 a | 4 318.33±190.86 a | 4 331.86±175.96 a | 6.53±0.02 cd | 0.005±0.000 bcd | 0.813±0.002 cd | 0.066±0.001 bc |
JZS-T0 | 0.967 6 | 3 123.00±187.28 a | 4 409.18±296.88 a | 4 391.73±254.61 a | 6.46±0.12 d | 0.010±0.004 a | 0.802±0.015 de | 0.036±0.018 d |
JZS-T1 | 0.970 9 | 2 999.00±184.52 a | 4 260.66±277.70 a | 4 209.69±243.27 a | 6.58±0.03 bc | 0.004±0.000 cd | 0.822±0.003 bc | 0.085±0.010 b |
JZS-T2 | 0.970 0 | 3 011.67±127.44 a | 4 273.25±239.49 a | 4 240.67±228.24 a | 6.52±0.06 cd | 0.005±0.001 bcd | 0.814±0.009 bcd | 0.075±0.015 b |
JZS-T3 | 0.969 6 | 3 015.67±100.95 a | 4 256.61±110.02 a | 4 253.03±136.65 a | 6.45±0.07 d | 0.006±0.001 bc | 0.804±0.010 de | 0.054±0.009 cd |
Table 4 Alpha diversity index of rhizosphere soil samples in each treatment
处理 Treatment | 测序深度 Sequencing depth coverage | 丰度指数 Richness index | 多样性指数 Diversity index | 均匀度指数 Evenness index | ||||
---|---|---|---|---|---|---|---|---|
Sobs | Chao | ACE | Shannon | Simpson | Shannon | Simpson | ||
对照土CK soil | 0.956 3 | 2 871.00±46.89 a | 4 019.46±124.69 a | 4 226.19±454.79 a | 6.30±0.04 e | 0.007±0.001 b | 0.791±0.003 e | 0.049±0.005 cd |
S-T0 | 0.963 4 | 3 034.00±126.57 a | 4 300.03±193.64 a | 4 285.13±178.17 a | 6.64±0.04 b | 0.004±0.001 bcd | 0.828±0.007 b | 0.076±0.009 b |
S-T1 | 0.962 7 | 2 914.33±332.18 a | 4 168.09±393.31 a | 4 306.80±129.02 a | 6.75±0.03 a | 0.003±0.000 d | 0.846±0.008 a | 0.117±0.016 a |
S-T2 | 0.969 5 | 2 891.67±143.07 a | 4 154.81±341.77 a | 4 412.31±699.81 a | 6.49±0.04 cd | 0.004±0.000 bcd | 0.813±0.001 bcd | 0.078±0.002 b |
S-T3 | 0.972 9 | 3 093.67±146.73 a | 4 318.33±190.86 a | 4 331.86±175.96 a | 6.53±0.02 cd | 0.005±0.000 bcd | 0.813±0.002 cd | 0.066±0.001 bc |
JZS-T0 | 0.967 6 | 3 123.00±187.28 a | 4 409.18±296.88 a | 4 391.73±254.61 a | 6.46±0.12 d | 0.010±0.004 a | 0.802±0.015 de | 0.036±0.018 d |
JZS-T1 | 0.970 9 | 2 999.00±184.52 a | 4 260.66±277.70 a | 4 209.69±243.27 a | 6.58±0.03 bc | 0.004±0.000 cd | 0.822±0.003 bc | 0.085±0.010 b |
JZS-T2 | 0.970 0 | 3 011.67±127.44 a | 4 273.25±239.49 a | 4 240.67±228.24 a | 6.52±0.06 cd | 0.005±0.001 bcd | 0.814±0.009 bcd | 0.075±0.015 b |
JZS-T3 | 0.969 6 | 3 015.67±100.95 a | 4 256.61±110.02 a | 4 253.03±136.65 a | 6.45±0.07 d | 0.006±0.001 bc | 0.804±0.010 de | 0.054±0.009 cd |
分组Group | R值R value | P值P value |
---|---|---|
A | 0.416 7 | 0.001 |
B | 0.774 4 | 0.001 |
C | 0.907 2 | 0.001 |
Table 5 Analysis of similarties
分组Group | R值R value | P值P value |
---|---|---|
A | 0.416 7 | 0.001 |
B | 0.774 4 | 0.001 |
C | 0.907 2 | 0.001 |
Fig. 2 Effects of planted potato on bacterial diversityA:OTUs analysis;B:Relative abundance of dominant bacteria at phylum level;C:Differences between CK and rhizosphere soils;D:PCoA analysis.*,** and *** indicate significant differences at P<0.05,P<0.01 and P<0.001 levels,respectively.
Fig. 3 Bacterial community abundance in potato rhizosphere under drought stressA: OTUs analysis; B: Phylum level; C: Genus level in potato rhizosphere
Fig. 4 Difference and distribution of rhizosphere soils under drought stressNote:A—Phylum level; B—Genus level; C—PCoA analysis on Phylum level. *, ** and *** indicate significant differences at P<0.05, P<0.01 and P<0.001 levels, respectively.
Fig. 5 Taxonomic analysis through phylogenetic tree and microbial functional featuresA: Phylogenetic analysis; B: Functional features of rhizosphere microbe
1 | AKSOY E, DEMİREL U, ÖZTÜRK Z N, et al.. Recent advances in potato genomics, transcriptomics, and transgenics under drought and heat stresses: a review [J]. Turkish J. Bot., 2015, 39:920-940. |
2 | BOUDSOCQ M, LAURIERE C. Osmotic signaling in plants: multiple pathways mediated by emerging kinase families [J]. Plant Physiol., 2005, 138:1185-1194. |
3 | XU Y, ZHENG X, SONG Y, et al.. NtLTP4, a lipid transfer protein that enhances salt and drought stresses tolerance in Nicotiana tabacum [J/OL]. Sci. Rep., 2018, 8:8873 [2021-07-10]. . |
4 | XU L, NAYLOR D, DONG Z, et al.. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria [J]. Proc. Natl. Acad. Sci. USA, 2018, 115(18):4284-4293. |
5 | YUAN Q, DRUZHININA I S, PAN X, et al.. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture [J]. Biotechnol. Adv., 2016, 34(7):1245-1259. |
6 | ZHANG L, ZHANG J, WEI Y, et al.. Microbiome-wide association studies reveal correlations between the structure and metabolism of the rhizosphere microbiome and disease resistance in Cassava [J]. Plant Biotechnol. J., 2021, 19(4):689-701. |
7 | HOU S, THIERGART T, VANNIER N, et al.. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light [J]. Nat. Plants, 2021, 7:1078-1092. |
8 | WAGNER M R, TANG C, SALVATO F, et al.. Microbe-dependent heterosis in maize [J/OL]. Proc. Natl. Acad. Sci. USA, 2021, 118(30): e2021965118 [2021-07-10]. . |
9 | EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, et al.. Structure, variation, and assembly of the root-associated microbiomes of rice [J]. Proc. Natl. Acad. Sci. USA, 2015, 112 (8):911-920. |
10 | GENG L L, SHAO G X, RAYMOND B, et al.. Subterranean infestation by Holotrichia parallela larvae is associated with changes in the peanut (Arachis hypogaea L.) rhizosphere microbiome [J]. Microbiol. Res., 2018, 211:13-20. |
11 | BAI Y, MULLER D B, SRINIVAS G, et al.. Functional overlap of the Arabidopsis leaf and root microbiota [J]. Nature, 2015, 528(7582): 364-369. |
12 | SAREH R, MAJID T, BAHRAM B, et al.. The role of plant growth-promoting rhizobacteria (PGPR) in improving iron acquisition by altering physiological and molecular responses in quince seedlings [J]. Plant Physiol. Biochem., 2020, 155:406-415. |
13 | VAROQUAUX N, COLE B, GAO C, et al.. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses [J]. Proc. Natl. Acad. Sci. USA, 2019, 116:27124-27132. |
14 | VRIES F T, GRIFFITHS R I, KNIGHT C G, et al.. Harnessing rhizosphere microbiomes for drought-resilient crop production [J]. Science, 2020, 368(6488):270-274. |
15 | XU L, DONG Z, CHINIQUY D, et al.. Genome-resolved metagenomics reveals role of iron metabolism in drought-induced rhizosphere microbiome dynamics [J/OL]. Nat. Commun., 2021, 12(1): 3209 [2021-07-10]. . |
16 | XU L, COLEMAN-DERR D. Causes and consequences of a conserved bacterial root microbiome response to drought stress [J]. Curr. Opin. Microbiol., 2019, 49:1-6. |
17 | 高玉坤,杨溥原,项晓冬,等.不同耐盐高粱品种全生育期对盐胁迫的响应[J].华北农学报,2020,35(6):113-121. |
GAO Y K, YANG P Y, XIANG X D, et al.. Response of different salt tolerant sorghum varieties to salt stress in the whole growth period [J]. Acta Agric. Boreali-Sin., 2020, 35(6):113-121. | |
18 | XU N, TAN G, WANG H, et al.. Effect of biochar additions to soil on nitr ogen leaching, microbial biomass and bacterial community structure [J]. Eur. J. Soil Biol., 2016, 74:1-8. |
19 | 抗艳红,龚学臣,赵海超,等.不同生育时期干旱胁迫对马铃薯生理生化指标的影响[J].中国农学通报, 2011, 27(15): 97-101. |
KANG Y H, GONG X C, ZHAO H C, et al.. Physiological and biochemical response of potato under the drought stress in different growth period [J]. Chin. Agric. Sci. Bull., 2011, 27(15):97-101. | |
20 | 黄文莉,马杰,江敏,等.干旱胁迫对马铃薯抗旱生理影响及相关基因的表达[J].分子植物育种,2021, 19(21):7213-7221. |
HUANG W L, MA J, JIANG M, et al.. Changes in drought resistance physiology and related gene expression of potato upon drought stresses [J]. Mol. Plant Breeding, 2021, 19(21):7213-7221. | |
21 | 曹逼力,李炜蔷,徐坤.干旱胁迫下硅对番茄叶片光合荧光特性的影响[J].植物营养与肥料学报,2016, 22(2):495-501. |
CAO B L, LI W Q, XU K, et al.. Effects of silicon on photosynthetic and fluorescence characteristics of tomato leaves under drought stress [J]. Plant Nutr. Fert. Sci., 2016, 22(2):495-501. | |
22 | 梁丽娜,刘雪,唐勋,等.干旱胁迫对马铃薯叶片生理生化指标的影响[J].基因组学与应用生物学,2018,37(3):1343-1348. |
LIANG L N, LIU X, TANG X, et al.. Effect of drought stress on physiological and biochemical indexes of potato leaves [J]. Genom. Appl. Biol., 2018, 37(3):1343-1348. | |
23 | 颜朗,张义正,方志荣,等.不同马铃薯基因型对根际细菌群落结构的影响[J].四川大学学报(自然科学版),2020,57(2):383-390. |
YAN L, ZHANG Y Z, FANG Z R, et al.. Effects of potato genotype on rhizosphere bacterial community structure [J]. J. Sichuan Univ. (Nat. Sci.), 2020, 57(2):383-390. | |
24 | GSCHWENDTNER S, ESPERSCHÜTZ J, BUEGGER F, et al.. Effects of genetically modified starch metabolism in potato plants on photosynthate fluxes into the rhizosphere and on microbial degraders of root exudates [J]. FEMS Microbiol. Ecol., 2011, 76:564-575. |
25 | BULGARELLI D, GARRIDO-OTER R, MUNCH P C, et al.. Structure and function of the bacterial root microbiota in wild and domesticated barley [J]. Cell Host Microbiol., 2015, 17:392-403. |
26 | DAI L, ZHANG G, YU Z, et al.. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil [J/OL]. Int. J. Mol. Sci., 2019, 20(9): 2265 [2021-07-10]. . |
27 | LUNDBERG D S, LEBEIS S L, PAREDES S H, et al.. Defining the core Arabidopsis thaliana root microbiome [J]. Nature, 2012, 488:86-90. |
28 | GAO Y K, CUI J H, REN G Z, et al.. Changes in the root-associated bacteria of sorghum are driven by the combined effects of salt and sorghum development [J]. Environ. Microbiome, 2021, 16:14-24. |
29 | DEBRUYN J M, NIXON L T, FAWAZ M N, et al.. Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil [J]. Appl. Environ. Microbiol., 2011, 77:6295-6300. |
30 | FOZO E M, QUIVEY R G J. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments [J]. Appl. Environ. Microbiol., 2004, 70:929-936. |
31 | 孙建平,刘雅辉,左永梅,等.盐地碱蓬根际土壤细菌群落结构及其功能[J].中国生态农业学报(中英文),2020,28(10):1618-1629. |
SUN J P, LIU Y H, ZUO Y M, et al.. The bacterial community structure and function of Suaeda salsa rhizosphere soil [J]. Chin. J. Eco-Agric., 2020, 28(10):1618-1629. | |
32 | VACHERON J, DESBROSSES G, BOUFFAUD M L, et al.. Plant growth-promoting rhizobacteria and root system functioning [J/OL]. Front. Plant Sci., 2013, 4: 356 [2021-07-10]. . |
33 | NUMAN M, BASHIR S, KHAN Y, et al.. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review [J]. Microbiol. Res., 2018, 209:21-32. |
34 | GUAN P, WANG J, LI H, et al.. SENSITIVE TO SALT1, an endoplasmic reticulum-localized chaperone, positively regulates salt resistance [J]. Plant Physiol., 2018, 178:1390-1405. |
35 | WU L, WANG J, WU H, et al.. Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture [J/OL]. Int. J. Mol. Sci., 2018, 19:2394 [2021-07-10]. . |
36 | 吴林坤,林向民,林文雄.根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J].植物生态学报,2014,38(3):298-310. |
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates [J]. Chin. J. Plant Ecol., 2014, 38(3):298-310. |
[1] | Gang ZHENG, Peng XU, Dongquan CHEN, Songmei YANG, Minsheng WU, Ranbing YANG. Design and Experimentation of Conveying and Separating Device for Fresh-eating Sweet Potato Harvester in Sandy Soil [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 104-112. |
[2] | Xinwei XUE, Dan LIU, Shi ZHANG, Wenyu HAN, Ankang MU, Zhikun YU, Fan YANG, Yahui WEN, Jialin ZHANG, Yongping ZHANG, Xianrui WANG. Comprehensive Evaluation and Screening of Drought Resistance of 86 Millet Germplasm Resources During Germination Period [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 39-51. |
[3] | Haohao YU, Xiangshu DONG, Hao ZHAO, Zhongxian LI, Faguang HU, Yanan LI, Yuqiang LOU, Feifei HE. Analysis of SNP Loci and Alternative Splicing Events in Coffea arabica L. Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 72-82. |
[4] | Jianglin LAN, Rongfeng XIAO, Jieping WANG, Haifeng ZHANG, Bo LIU. Effects of Integrated Microbiome Agent on Tomato Plant Growth and Rhizosphere Bacterial Community Diversity [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 173-181. |
[5] | Zhongzhong DOU, Yiqi LIU. Simulation Analysis of Arc-jaw Type Potato Precision Seed Discharger [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 110-119. |
[6] | ling QIN, Yanke WANG, Erying CHEN, Yanbing YANG, Feifei LI, Mengyuan ZHANG, Yanan GUAN. Analysis of Physiological Characteristics About ABA Alleviating Foxtail Millet Seedling Stage Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 36-44. |
[7] | Yixin CHEN, Xiubo YANG, Shijun TIAN, Cong WANG, Zhiying BAI, Cundong LI, Ke ZHANG. Response of GhCOMT28 to Drought Stress in Gossypium hirsutum [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 45-56. |
[8] | Yixuan ZHANG, Huifeng LI, Yongmei HUANG, Yanqing LI, Jinfeng HUA, Jie YIN, Tianyuan CHEN, Dong XIAO, Yunchuan MO. Separation and Identification of Metabolites and Metabolic Pathway Analysis in Different Vegetable Sweet Potato [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 62-69. |
[9] | Zhenyu XUE, Kangkang ZHANG, Yuanyuan ZHANG, Qiangqiang YAN, Lirong YAO, Hong ZHANG, Yaxiong MENG, Erjing SI, Baochun LI, Xiaole MA, Huajun WANG, Juncheng WANG. Screening and Functional Gene Detection of High-quality and Drought-resistant Wheat Germplasms [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 35-49. |
[10] | Wenjing MO, Hongsen CHEN, Fangze GUI, Ciqing HONG, Xinkai CAI, Xiong GUAN, Xiaohong PAN. Inhibition Mechanism of Water Extract from Spent Mushroom Substrateagainst Phytophthora infestans in potatoes [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 129-137. |
[11] | Yangyang DU, Yuanyuan BAO, Xiangyu LIU, Xinyong ZHANG. Effects of Tartary Buckwheat Rotation on Enzyme Activities and Microorganisms in Rhizosphere Soil of Cultivated Potato in Yunnan Province [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 192-200. |
[12] | Yahong ZHAO, Qianyu HU, Rong XIA, Zhijiang WANG, Yonghui XIE, Xianwen YE, Lei YU, Ying QI, Shaowu YANG, Zhiqin XUE, Zhixing WU, Feiyan HUANG, Tianhua HAN. Effects of Biochar Fertilizer on Rhizosphere Flora and Physicochemical Properties of Flue-cured Tobacco Susceptible to Root Knot Nematode [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 206-214. |
[13] | Qianya WEI, Xinqi LIN, Lamei LIANG, Zhongwei QIN, Yingzhi LI. Effects of Melatonin on Seed Germination and Seedling Growth of Chaotian Pepper Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 46-57. |
[14] | Yuan HE, Xiaotong GU, Liqing FENG, Huijun DUAN, Yongsheng TAO. Screening and Evaluation of Drought Resistance Index for Maize Hybrids During Seedling and Germination Stages [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 30-40. |
[15] | Wei LIU, Yuanyuan ZHAO, Xiaolong CHEN, Hongzhi SHI. Effects of Soil Moisture Content on Microbial Community Diversity and Abundance of Nitrogen Cycling Genes in Central Henan Tobacco-growing Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 214-225. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||