中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (10): 35-43.DOI: 10.13304/j.nykjdb.2022.0198
郭瑞锋1(), 任月梅1(
), 杨忠1, 刘贵山2, 任广兵1, 张绶1, 朱文娟1
收稿日期:
2022-03-15
接受日期:
2022-05-28
出版日期:
2022-10-15
发布日期:
2022-10-25
通讯作者:
任月梅
作者简介:
郭瑞锋 E-mail:guoruifeng229@126.com;
基金资助:
Ruifeng GUO1(), Yuemei REN1(
), Zhong YANG1, Guishan LIU2, Guangbing REN1, Shou ZHANG1, Wenjuan ZHU1
Received:
2022-03-15
Accepted:
2022-05-28
Online:
2022-10-15
Published:
2022-10-25
Contact:
Yuemei REN
摘要:
为促进谷子杂种优势的利用,提高杂交育种效率,采用 Illumina HiSeq 高通量测序技术对草甘膦铵盐处理后的谷穗进行转录组测序,分析筛选响应草甘膦铵盐的差异表达基因,同时测定谷穗抗性淀粉、可溶性糖等生理指标。结果表明,草甘膦铵盐处理后产生的雄性不育谷穗与未处理谷穗相比,共检测到797个差异表达基因,其中645个差异表达基因获得GO功能分类,主要集中在糖代谢与生物合成、激素代谢和生物合成以及细胞壁等方面,反映了谷穗对草甘膦铵盐处理响应基因的生物学功能。通过KEGG富集分析,共建立了138条通路,发现差异表达基因中涉及植物激素信号转导途径的最多,为19个;其次是淀粉和蔗糖代谢途径,为16个。经诱导产生雄性不育的谷穗样品中抗性淀粉、可溶性糖和赤霉素含量降低,生长素含量增加,与GO和KEGG富集分析得到的差异表达基因的表达模式相吻合。以上结果为筛选适宜的化学杀雄试剂提供了理论依据。
中图分类号:
郭瑞锋, 任月梅, 杨忠, 刘贵山, 任广兵, 张绶, 朱文娟. 草甘膦铵盐诱导谷子雄性不育的转录组分析[J]. 中国农业科技导报, 2022, 24(10): 35-43.
Ruifeng GUO, Yuemei REN, Zhong YANG, Guishan LIU, Guangbing REN, Shou ZHANG, Wenjuan ZHU. Transcriptomic Analysis of Mechanism of Foxtail Millet Male Infertility Induced by Glyphosate Ammonium Salt[J]. Journal of Agricultural Science and Technology, 2022, 24(10): 35-43.
样品编号 Sample code | 高质量序列 Clean read | 高质量序列碱基数 Base number of clean read | Q20/% | Q30/% | 比对序列 Total mapped read | |||
---|---|---|---|---|---|---|---|---|
数量 Number | 占比 Percentage/% | 数量 Number | 占比 Percentage/% | |||||
数量 Number | 占比 Percentage/% | |||||||
S1 | 42 672 248 | 98.99 | 6 424 467 638 | 98.69 | 96.12 | 90.79 | 36 768 433 | 86.16 |
S2 | 41 691 824 | 98.98 | 6 276 055 582 | 98.67 | 96.07 | 90.71 | 34 558 553 | 82.89 |
P1 | 44 638 924 | 99.18 | 6 719 144 472 | 98.87 | 96.36 | 91.24 | 35 018 847 | 78.45 |
P2 | 44 681 598 | 98.87 | 6 729 889 484 | 98.62 | 95.96 | 90.52 | 37 171 009 | 83.19 |
CK1 | 45 815 562 | 98.94 | 6 896 999 720 | 98.63 | 95.96 | 90.48 | 33 550 009 | 73.23 |
CK2 | 45 088 252 | 99.07 | 6 786 443 052 | 98.75 | 96.02 | 90.66 | 35 095 278 | 77.84 |
表1 原始数据统计
Table 1 Raw data statistics
样品编号 Sample code | 高质量序列 Clean read | 高质量序列碱基数 Base number of clean read | Q20/% | Q30/% | 比对序列 Total mapped read | |||
---|---|---|---|---|---|---|---|---|
数量 Number | 占比 Percentage/% | 数量 Number | 占比 Percentage/% | |||||
数量 Number | 占比 Percentage/% | |||||||
S1 | 42 672 248 | 98.99 | 6 424 467 638 | 98.69 | 96.12 | 90.79 | 36 768 433 | 86.16 |
S2 | 41 691 824 | 98.98 | 6 276 055 582 | 98.67 | 96.07 | 90.71 | 34 558 553 | 82.89 |
P1 | 44 638 924 | 99.18 | 6 719 144 472 | 98.87 | 96.36 | 91.24 | 35 018 847 | 78.45 |
P2 | 44 681 598 | 98.87 | 6 729 889 484 | 98.62 | 95.96 | 90.52 | 37 171 009 | 83.19 |
CK1 | 45 815 562 | 98.94 | 6 896 999 720 | 98.63 | 95.96 | 90.48 | 33 550 009 | 73.23 |
CK2 | 45 088 252 | 99.07 | 6 786 443 052 | 98.75 | 96.02 | 90.66 | 35 095 278 | 77.84 |
样本对 Paired samples | 差异表达基因数量 Number of differentially expressed genes | ||
---|---|---|---|
上调Up | 下调Down | 总计Total | |
S1/CK1 | 296 | 501 | 797 |
S1/P1 | 56 | 113 | 169 |
P1/CK1 | 1 513 | 1 559 | 3 072 |
表2 差异表达基因数量
Table 2 Number of differentially expressed genes
样本对 Paired samples | 差异表达基因数量 Number of differentially expressed genes | ||
---|---|---|---|
上调Up | 下调Down | 总计Total | |
S1/CK1 | 296 | 501 | 797 |
S1/P1 | 56 | 113 | 169 |
P1/CK1 | 1 513 | 1 559 | 3 072 |
图1 差异表达基因GO富集分析注:*代表在P<0.05水平显著富集。
Fig. 1 Go enriched analysis of differentially expressed geneNote: * represents significant enrichment at P<0.05 level.
类别 Catergory | GO条目 GO term | 代谢节点编号 Metabolic node number | 差异表达基因数量 Number of DEGs | P值(校正后) P-value (corrected) | ||
---|---|---|---|---|---|---|
上调 Up-regulated | 下调 Down-regulated | 总计 Total | ||||
分子功能 Molecular function | 水解酶活性,作用于糖基键 Hydrolase activity, acting on glycosyl bonds | GO∶0016798 | 6 | 31 | 37 | 0.000 25 |
水解酶活性,水解O糖基化合物 Hydrolase activity, hydrolyzing O-glycosyl compounds | GO∶0004553 | 5 | 29 | 34 | 0.000 37 | |
氧化还原酶活性 Oxidoreductase activity | GO∶0016705 | 11 | 18 | 29 | 0.025 41 | |
铁离子结合 Iron ion binding | GO∶0005506 | 11 | 19 | 30 | 0.033 03 | |
糖跨膜转运蛋白活性 Sugar transmembrane transporter activity | GO∶0051119 | 6 | 4 | 10 | 0.036 38 | |
双加氧酶活性 Dioxygenase activity | GO∶0051213 | 6 | 9 | 15 | 0.044 21 | |
半乳糖苷酶活性Galactosidase activity | GO∶0015925 | 1 | 5 | 6 | 0.044 90 | |
生物过程 Biological process | 二糖生物合成过程 Disaccharide biosynthetic process | GO∶0046351 | 0 | 8 | 8 | 0.000 99 |
海藻糖生物合成过程 Trehalose biosynthetic process | GO∶0005992 | 0 | 7 | 7 | 0.002 67 | |
海藻糖代谢Trehalose metabolic process | GO∶0005991 | 0 | 7 | 7 | 0.003 73 | |
低聚糖生物合成过程 Oligosaccharide biosynthetic process | GO∶0009312 | 0 | 8 | 8 | 0.006 66 | |
激素代谢过程 Hormone metabolic process | GO∶0042445 | 2 | 11 | 13 | 0.011 38 | |
激素生物合成过程 Hormone biosynthetic process | GO∶0042446 | 2 | 2 | 4 | 0.032 92 | |
细胞组分 Cellular component | 细胞壁Cell wall | GO∶0005618 | 6 | 20 | 26 | 0.008 61 |
外部封装结构 External encapsulating structure | GO∶0030312 | 6 | 20 | 26 | 0.011 89 | |
植物型细胞壁Plant-type cell wall | GO∶0009505 | 2 | 9 | 11 | 0.358 56 |
表3 差异表达基因显著富集的GO分类
Table 3 GO classification for the significant enrichment of differentially expressed genes
类别 Catergory | GO条目 GO term | 代谢节点编号 Metabolic node number | 差异表达基因数量 Number of DEGs | P值(校正后) P-value (corrected) | ||
---|---|---|---|---|---|---|
上调 Up-regulated | 下调 Down-regulated | 总计 Total | ||||
分子功能 Molecular function | 水解酶活性,作用于糖基键 Hydrolase activity, acting on glycosyl bonds | GO∶0016798 | 6 | 31 | 37 | 0.000 25 |
水解酶活性,水解O糖基化合物 Hydrolase activity, hydrolyzing O-glycosyl compounds | GO∶0004553 | 5 | 29 | 34 | 0.000 37 | |
氧化还原酶活性 Oxidoreductase activity | GO∶0016705 | 11 | 18 | 29 | 0.025 41 | |
铁离子结合 Iron ion binding | GO∶0005506 | 11 | 19 | 30 | 0.033 03 | |
糖跨膜转运蛋白活性 Sugar transmembrane transporter activity | GO∶0051119 | 6 | 4 | 10 | 0.036 38 | |
双加氧酶活性 Dioxygenase activity | GO∶0051213 | 6 | 9 | 15 | 0.044 21 | |
半乳糖苷酶活性Galactosidase activity | GO∶0015925 | 1 | 5 | 6 | 0.044 90 | |
生物过程 Biological process | 二糖生物合成过程 Disaccharide biosynthetic process | GO∶0046351 | 0 | 8 | 8 | 0.000 99 |
海藻糖生物合成过程 Trehalose biosynthetic process | GO∶0005992 | 0 | 7 | 7 | 0.002 67 | |
海藻糖代谢Trehalose metabolic process | GO∶0005991 | 0 | 7 | 7 | 0.003 73 | |
低聚糖生物合成过程 Oligosaccharide biosynthetic process | GO∶0009312 | 0 | 8 | 8 | 0.006 66 | |
激素代谢过程 Hormone metabolic process | GO∶0042445 | 2 | 11 | 13 | 0.011 38 | |
激素生物合成过程 Hormone biosynthetic process | GO∶0042446 | 2 | 2 | 4 | 0.032 92 | |
细胞组分 Cellular component | 细胞壁Cell wall | GO∶0005618 | 6 | 20 | 26 | 0.008 61 |
外部封装结构 External encapsulating structure | GO∶0030312 | 6 | 20 | 26 | 0.011 89 | |
植物型细胞壁Plant-type cell wall | GO∶0009505 | 2 | 9 | 11 | 0.358 56 |
图3 草甘膦铵盐处理后谷穗的淀粉和可溶性糖含量注:不同小写字母表示同一品种不同群体间在P<0.05水平差异显著。
Fig. 3 Contents of spike starch and soluble sugar after glyphosate ammonium treatmentNote: Different lowercase letters indicate significant differences between different groups of same variety at P<0.05 level.
图4 草甘膦铵盐处理后谷穗的GA和IAA含量注:不同小写字母表示同一品种不同群体间在P<0.05水平差异显著。
Fig. 4 Contents of GA and IAA in grain ears after glyphosate ammonium salt treatmentNote: Different lowercase letters indicate significant differences between different groups of same variety at P<0.05 level.
1 | 赵治海,崔文生.谷子光(温)敏不育系821选育及其不育性与光、温关系的研究[J].中国农业科学,1996,29(5):23-31. |
ZHAO Z H, CUI W S. The selection of millet photo (thermo) sensitive sterile line 821 and a study on the relation of sterility to illumination and temperature [J]. Sci. Agric. Sin., 1996, 29(5):23-31. | |
2 | 李志华,景小兰,穆婷婷.谷子雄性不育性利用及存在问题[J].中国种业,2016(6):11-13. |
3 | 辛淑芳.谷子杂交技术——温汤去雄接触授粉法[J].内蒙古农业科技,1973(6):13-16. |
XIN S F. Foxtail millet hybrid technique-emasculation pollination with warm water [J]. Inner Mongolia Agric. Sci. Technol., 1973(6):13-16. | |
4 | 史宏,陈瑛,史关燕,等.谷子太阳能杀雄技术的研究[J].杂粮作物,2008,28(6):360-362. |
SHI H, CHEN Y, SHI G Y, et al.. Study of millet hybrid technique with the solar energy [J]. Rain Fed. Crops, 2008, 28(6):360-362. | |
5 | 黄雪清,高东迎,杨安南,等.化学杀雄剂Ⅲ号诱导水稻雄性不育过程中幼穗、颖花、花药中核酸和蛋白质代谢研究[J].作物学报,2001,27(6):827-831. |
HUANG X Q, GAO D Y, YANG A N, et al.. Metabolism of nucleic acid and protein in the anther, spikelet and young panicle of rice (Oryza sativa) after treatment with chemical hybridizing agent Ⅲ [J]. Acta Agron. Sin., 2001, 27(6):827-831. | |
6 | 刘宏伟,张改生,王军卫,等.化学杂交剂SQ-1诱导小麦雄性不育及与不同小麦品种互作效应的研究[J].西北农林科技大学学报(自然科学版),2003,31(4):15-18. |
LIU H W, ZHANG G S, WANG J W, et al.. Effect of male sterility on different wheat genotype induced by SQ-1 [J]. J. Northwest A&F Univ. (Nat. Sci.), 2003, 31(4):15-18. | |
7 | 官春云,王国槐.几种化学药物对油菜杀雄效果的研究[J].作物研究,1993,7(3):13-16. |
GUAN C Y, WANG G H. Study on male-sterility of rapeseed induced several chemical agents [J]. Crop Res., 1993, 7(3):13-16. | |
8 | 宋瑜龙,王亮明,张改生,等.杀雄剂SQ-1诱导谷子雄性不育研究[J].作物学报, 2011,37(9):1695-1700. |
SONG Y L, WANG L M, ZANG G S, et al.. Male sterility induced by chemical hybridizing agent SQ-1 in Setaria italica Beauv. [J]. Acta Agron. Sin., 2011, 37(9):1695-1700. | |
9 | 郭瑞锋,任月梅,杨忠,等.谷子化学杀雄剂筛选[J].作物杂志,2019(5):64-68. |
GUO R F, REN Y M, YANG Z, et al.. Screening test of millet chemical hybridization agents [J]. Crops, 2019(5):64-68. | |
10 | 张菡倩,秦玉莹,黄凯,等.植物在非生物胁迫下代谢组学与转录组学的研究进展[J].江西农业学报, 2022,34(1):71-78. |
ZHANG H Q, QING Y Y, HUANG K, et al.. Research progress in metabolomics and transcriptomics of plants under abiotic stress [J]. Acta Agric. Jiangxi, 2022, 34(1):71-78. | |
11 | 祁云霞,刘永斌,荣威恒.转录组研究新技术:RNA-Seq及其应用[J].遗传,2011,33(11):1191-1202. |
QI Y X, LIU Y B, RONG W H. RNA-Seq and its applications: a new technology for transcriptomics [J]. Hereditas, 2011, 33(11):1191-1202. | |
12 | 黄晓荣,张平治,吴新杰,等.植物内源激素测定方法研究进展[J].中国农学通报,2009, 25(11):84-87. |
HUANG X R, ZHANG P Z, WU X J, et al.. Review on plant endogenous hormones determination methods [J]. Chin. Agric. Sci. Bull., 2009, 25(11):84-87. | |
13 | 曹丹,张红梅,杨海鹏,等.高温胁迫下不同玉米材料间的基因差异表达分析[J].甘肃农业大学学报,2021,56(1):42-49. |
CAO D, ZHANG H M, YANG H P,et al..A differential expression of genes between different maizematerials under high temperature stress [J]. J. Gansu Agric. Univ., 2021, 56(1):42-49. | |
14 | 李英贤,张爱民,黄铁城.小麦细胞质雄性不育与花粉组织内源激素的关系[J].农业生物技术学报,1996,4(4): 307-313. |
LI Y X, ZHANG A M, HUANG T C. Relationship between wheat cytoplasmic males terility and the content of endogenous hormones in the anther [J]. J. Agric. Biotechnol., 1996, 4(4):307-313. | |
15 | TANG R S, ZHENG J C, JIN Z Q, et al.. Possible correlation betweenhigh temperature-induced floret sterility and endogenous levels of IAA, GAs and ABA in rice (Oryza sativa L.) [J]. Plant Growth Regul., 2008, 54(1):37-43. |
16 | 解海岩,蒋培东,王晓玲,等.棉花细胞质雄性不育花药败育过程中内源激素的变化[J].作物学报,2006,32(7):1094 -1096. |
XIE H Y, JIANG P D, WANG X L, et al.. Changes of phytohormone contents in anther abortion of cytoplasmic male sterile cotton [J]. Sci. Agric. Sin., 2006, 32(7):1094 -1096. | |
17 | 张凯,乔新荣.化学杀雄剂2号诱导水稻雄性不育花药的内源激素变化特性[J].江苏农业科学,2016,44(8):95-96. |
ZHANG K, QIAO X R.Changes properties of endogenous hornones in rice male sterile anthers induced by chemical hybridizing agent Ⅱ [J]. Jiangsu Agric. Sci., 2016, 44(8):95-96. | |
18 | 巴青松,张改生,李桂萍,等.赤霉素与小麦生理型雄性不育的关系[J].麦类作物学报,2017,37(3):344-348. |
BA Q S, ZHANG G S, LI G P, et al.. Relationship between gibberellin and chemical induced male sterility in wheat [J]. J. Triticeae Crops, 2017, 37(3):344-348. | |
19 | 丁泽琴.茄子功能性不育的细胞学及内源激素变化研究[D].重庆:西南大学,2014. |
DING Z Q. The research on cytological and changes of endogenous hornones of functional male sterility eggplant [D]. Chongqing: Southwest University,2014. | |
20 | HORNER H, AR MILTON. Microsporogenesis in normal and cytoplasmicmale sterile pepper [J]. Am. J. Bot., 1973, 60(4):7-9. |
21 | 张爱民,李英贤,黄铁城,等.小麦雄性不育与内源激素关系的初步研究[J].农业生物技术学报,1996,4(1):56-61. |
ZHANG A M, LI Y X, HUANG T C, et al.. Relations between endogenous hormones and male sterility in wheat (Triticumaestivum): priliminary results [J]. J. Agric. Biotechnol., 1996,4(1):56-61. | |
22 | 刘玉.花铃期干旱胁迫影响棉花花粉育性的生理机制研究[D].南京:南京农业大学,2019. |
LIU Y. Effects of drought during flowering and boll-forming stage on cotton pollen fertility and related physiological metabolism in pollen [D]. Nanjing: Nanjing Agricultural University, 2019. | |
23 | 张琨,殷丽丽,韩志萍,等.黄花菜小孢子发育时期与花器官形态的关系[J].沈阳农业大学学报, 2020,51(4):482-487. |
ZHANG K, YIN L L, HAN Z P, et al.. Relationship between microspore development periods and floral organ morphology in daylily [J]. J. Shenyang Agric. Univ., 2020, 51(4):482-487. | |
24 | 王强.化学杀雄剂对棉花杀雄机理的研究[D].重庆:西南农业大学,2001. |
WANG Q. The research of chemical gametocide on the male-sterility mechnise in cotton [D]. Chongqing: Southwest University, 2001. | |
25 | LI Z J, CHENG Y F, CUI J M, et al.. Comparative transcriptome analysis reveals carbohydrate and lipid metabolism blocks in Brassica napus L. male sterility induced by the chemical hybridization agent monosulfuron ester sodium [J]. BMC Genomics, 2015, 16(1):1-19. |
26 | 郝媛媛.化学杀雄剂诱导小麦雄性不育系的物质代谢及光合特性研究[D].泰安:山东农业大学,2008. |
HAO Y Y. Analysis of material metabolism and photosynthetic characteristics of wheat from chemical hybridization agent [D]. Tai’an: Shandong Agricultural University, 2008. | |
27 | 杨晓丽.芝麻核雄性不育的超微结构观察、内源激素测定及相关基因的克隆研究[D].南京:南京农业大学,2008. |
YANG X L. Studies on ultrastructure features, endogenos phytohormones contents and relative genes isolation of male sterile sesame [D]. Nanjing: Nanjing Agricultural University, 2008. |
[1] | 刘雪晴, 王静, 阳宜, 吴慧琴, 王延宏, 王麓尧, 路佳伟, 张凯璇, 翟源, 成妍. 外源乙烯利对色素辣椒脱叶及产量的影响[J]. 中国农业科技导报, 2025, 27(8): 36-46. |
[2] | 薛新伟, 刘丹, 张姼, 韩雯毓, 穆安康, 于智坤, 杨帆, 温雅辉, 张家林, 张永平, 王显瑞. 86份谷子种质资源萌发期抗旱性综合评价及筛选[J]. 中国农业科技导报, 2025, 27(6): 39-51. |
[3] | 秦岭, 王艳珂, 陈二影, 杨延兵, 黎飞飞, 张梦媛, 管延安. ABA缓解谷子幼苗干旱胁迫生理特性分析[J]. 中国农业科技导报, 2025, 27(4): 36-44. |
[4] | 张余莽, 陈贵娟, 常洪艳, 王永恒, 刘淑霞, 应允秀. 水分胁迫下新型土壤保水剂对玉米苗期发育的影响[J]. 中国农业科技导报, 2025, 27(1): 201-210. |
[5] | 刘婷婷, 郝曦煜, 王辉, 冷静文, 宫世航, 刘伟. 吉林西部半干旱地区不同谷子品种产量与农艺性状的分析[J]. 中国农业科技导报, 2025, 27(1): 50-60. |
[6] | 鲁一薇, 夏雪岩, 赵宇, 崔纪菡, 刘猛, 黄玫红, 褚程, 刘建军, 李顺国. 缺钾胁迫下谷子转录组分析及相关基因挖掘[J]. 中国农业科技导报, 2024, 26(6): 30-44. |
[7] | 蒋沛含, 杨晓楠, 杨晨旭, 张爱军. 基于偏最小二乘回归的谷子冠层氮素含量高光谱估测研究[J]. 中国农业科技导报, 2024, 26(6): 91-101. |
[8] | 夏雪岩, 崔纪菡, 黄玫红, 郭帅, 刘猛, 赵宇, 鲁一薇, 赵文庆, 王京新, 李顺国. 谷子苗期氮高效转录组分析与基因挖掘[J]. 中国农业科技导报, 2024, 26(10): 41-57. |
[9] | 冀薇, 樊莹, 黄家兴, 杨慧鹏, 徐进, 李小英, 郭岳琴, 吴跃国, 李继莲, 姚军. 不同授粉强度对蓝莓柱头响应机制的转录组分析[J]. 中国农业科技导报, 2024, 26(10): 71-82. |
[10] | 李相吴, 刘自扬, 徐玉俊, 祝建波, 吴燕民. 真菌诱导子调控紫草素合成的分子机制探究[J]. 中国农业科技导报, 2024, 26(1): 78-88. |
[11] | 李瑞珍, 姚建民, 王忠祥, 高凤翔, 窦贵新, 杨瑞平, 刘钊, 张继, 张振宇. 全生物降解渗水地膜覆盖冬播谷子产量结构关系分析[J]. 中国农业科技导报, 2023, 25(5): 185-191. |
[12] | 黄丽芳, 龙宇宙, 李金芹, 董云萍, 王晓阳, 陈鹏, 王宪文, 闫林. 低温胁迫对小粒种咖啡幼苗生理特性的影响[J]. 中国农业科技导报, 2023, 25(2): 60-67. |
[13] | 陈炟, 巨吉生, 马麒, 徐守振, 刘娟娟, 袁文敏, 李吉莲, 王彩香, 宿俊吉. FeNPs对苗期棉花根系生长及其对干旱响应的影响[J]. 中国农业科技导报, 2023, 25(11): 49-57. |
[14] | 张会, 王越越, 赵波, 张丽玲, 郄倩茹, 韩渊怀, 李旭凯. 基于WGCNA的谷子苗期冷胁迫应答基因网络构建与核心因子发掘[J]. 中国农业科技导报, 2023, 25(10): 22-34. |
[15] | 焦雄飞, 于晋, 冯乐勇, 郭耀东, 樊丽生. 不同播期对谷子DUS测试性状的影响[J]. 中国农业科技导报, 2022, 24(8): 55-64. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||