中国农业科技导报 ›› 2022, Vol. 24 ›› Issue (5): 209-217.DOI: 10.13304/j.nykjdb.2021.0015
• 生物制造 资源生态 • 上一篇
魏艳晨1(), 陈吉祥1(
), 王永刚2, 孟彤彤3, 韩亚龙1, 李美1
收稿日期:
2021-01-07
接受日期:
2021-06-01
出版日期:
2022-05-15
发布日期:
2022-06-06
通讯作者:
陈吉祥
作者简介:
魏艳晨 E-mail:2542893966@qq.com;
基金资助:
Yanchen WEI1(), Jixiang CHEN1(
), Yonggang WANG2, Tongtong MENG3, Yalong HAN1, Mei LI1
Received:
2021-01-07
Accepted:
2021-06-01
Online:
2022-05-15
Published:
2022-06-06
Contact:
Jixiang CHEN
摘要:
为了解珍珠猪毛菜(Salsolapasserina)的生态适应机制,采用细菌16S rDNA高通量测序、纯培养方法及荧光染色激光共聚焦显微镜计数法研究了甘肃景泰地区荒漠草原珍珠猪毛菜根际土壤的细菌类群及其与土壤理化性质相关性,并与荒漠土壤进行对比。结果表明,珍珠猪毛菜根际土壤的养分含量显著高于荒漠土壤。猪毛菜根际土壤微生物检测到5 655 OUT,其中特有的为2 580个。根际土壤可培养细菌数和细菌总数分别为1.62×106 CFU·g-1和1.33×107个·g-1,高于非根际土壤(5.40 ×105 CFU·g-1和1.12×107 个·g-1);且2种土壤细菌的多样性存在显著差异。珍珠猪毛菜根际土壤中优势细菌门为放线菌门(Actinobacteria)、浮霉菌门(Planctomycetes)、变形菌门(Proteobacteria)、芽单胞菌门(Gemmatimonadetes)、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)和疣微菌门(Verrucomicrobia),占总细菌类群的97.7%;优势细菌属依次为红色杆菌属(Rubrobacter)、RB41、类诺卡氏菌属(Nocardioides)、链霉菌属(Streptomyces)、Pir4_lineage、芽孢杆菌属(Bacillus)、土壤红杆菌属(Solirubrobacter)、芽单胞菌属(Gemmatimonas)和小梨形菌属(Pirellula)。主要菌群及环境因子的相关分析表明,土壤养分含量、pH和含水率是影响土壤细菌群落组成的重要因子。
中图分类号:
魏艳晨, 陈吉祥, 王永刚, 孟彤彤, 韩亚龙, 李美. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217.
Yanchen WEI, Jixiang CHEN, Yonggang WANG, Tongtong MENG, Yalong HAN, Mei LI. Analysis of Bacterial Diversity in the Rhizosphere Soil of Salsolapasserina and Its Correlation with the Soil Physical and Chemical Properties[J]. Journal of Agricultural Science and Technology, 2022, 24(5): 209-217.
理化因子 Physical and chemical factor | 根际土壤 RS | 非根际土壤 NR |
---|---|---|
全氮TN/(g·kg-1) | 0.15±0.012 1 a | 0.09±0.024 1 b |
全磷TP/(g·kg-1) | 0.20±0.001 7 a | 0.20±0.000 1 a |
全钾TK/(g·kg-1) | 19.96±4.320 2 a | 16.87±0.157 5 b |
速效氮AN/(mg·kg-1) | 14.61±0.565 6 a | 9.93±0.280 0 b |
速效磷AP/(mg·kg-1) | 0.12±0.001 8 a | 0.10±0.002 2 b |
速效钾AK/(mg·kg-1) | 0.28±0.004 3 a | 0.15±0.016 0 b |
pH | 8.26±0.264 6 b | 8.87±0.052 9 a |
含水量WC/% | 6.33±0.413 7 b | 7.65±0.307 6 a |
表1 珍珠猪毛菜根际和非根际土壤的理化性质
Table 1 Physicochemical properties of RS and NR
理化因子 Physical and chemical factor | 根际土壤 RS | 非根际土壤 NR |
---|---|---|
全氮TN/(g·kg-1) | 0.15±0.012 1 a | 0.09±0.024 1 b |
全磷TP/(g·kg-1) | 0.20±0.001 7 a | 0.20±0.000 1 a |
全钾TK/(g·kg-1) | 19.96±4.320 2 a | 16.87±0.157 5 b |
速效氮AN/(mg·kg-1) | 14.61±0.565 6 a | 9.93±0.280 0 b |
速效磷AP/(mg·kg-1) | 0.12±0.001 8 a | 0.10±0.002 2 b |
速效钾AK/(mg·kg-1) | 0.28±0.004 3 a | 0.15±0.016 0 b |
pH | 8.26±0.264 6 b | 8.87±0.052 9 a |
含水量WC/% | 6.33±0.413 7 b | 7.65±0.307 6 a |
样品 Sample | Chao1指数 Chao1 index | Shannon 指数 Shannon index |
---|---|---|
根际土壤RS | 6 461.13±584.37 a | 10.35±0.10 b |
非根际土壤NR | 5 524.19±297.09 a | 9.72±0.12 a |
表2 土壤细菌的多样性指数
Table 2 Diversity indices of soil bacteria
样品 Sample | Chao1指数 Chao1 index | Shannon 指数 Shannon index |
---|---|---|
根际土壤RS | 6 461.13±584.37 a | 10.35±0.10 b |
非根际土壤NR | 5 524.19±297.09 a | 9.72±0.12 a |
理化因子 Physical and chemical factor | 可培养细菌数量 Culturable bacteria count | 细菌总数 Total bacterial count |
---|---|---|
全氮 TN | 0.565 | 0.670 |
全磷 TP | 0.800 | 0.578 |
全钾 TK | 0.718 | 0.672 |
速效氮 AN | 0.396 | 0.738 |
速效磷 AP | 0.537 | 0.726 |
速效钾 AK | 0.413 | 0.745 |
pH | -0.950** | -0.022 |
含水率 WC | -0.309 | -0.115 |
表3 土壤可培养细菌和细菌总数与理化因子之间的相关性
Table 3 Correlation between the number of bacteria and soil physical and chemical properties
理化因子 Physical and chemical factor | 可培养细菌数量 Culturable bacteria count | 细菌总数 Total bacterial count |
---|---|---|
全氮 TN | 0.565 | 0.670 |
全磷 TP | 0.800 | 0.578 |
全钾 TK | 0.718 | 0.672 |
速效氮 AN | 0.396 | 0.738 |
速效磷 AP | 0.537 | 0.726 |
速效钾 AK | 0.413 | 0.745 |
pH | -0.950** | -0.022 |
含水率 WC | -0.309 | -0.115 |
理化因子 Physical and chemical factor | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao1指数 Chao1 index |
---|---|---|---|---|
全氮 TN | 0.798 | 0.863* | 0.532 | 0.522 |
全磷 TP | 0.717 | 0.764 | 0.348 | 0.357 |
全钾 TK | 0.583 | 0.673 | 0.156 | 0.165 |
速效氮 AN | 0.961** | 0.961** | 0.804 | 0.802 |
速效磷 AP | 0.945** | 0.973** | 0.705 | 0.704 |
速效钾 AK | 0.979** | 0.966** | 0.815* | 0.819* |
pH | -0.194 | -0.188 | 0.068 | 0.062 |
含水率 WC | -0.024 | -0.203 | 0.364 | 0.360 |
表4 细菌多样性与土壤理化因子之间的相关性
Table 4 Correlation between physical and chemical properties and diversity index of bacteria
理化因子 Physical and chemical factor | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao1指数 Chao1 index |
---|---|---|---|---|
全氮 TN | 0.798 | 0.863* | 0.532 | 0.522 |
全磷 TP | 0.717 | 0.764 | 0.348 | 0.357 |
全钾 TK | 0.583 | 0.673 | 0.156 | 0.165 |
速效氮 AN | 0.961** | 0.961** | 0.804 | 0.802 |
速效磷 AP | 0.945** | 0.973** | 0.705 | 0.704 |
速效钾 AK | 0.979** | 0.966** | 0.815* | 0.819* |
pH | -0.194 | -0.188 | 0.068 | 0.062 |
含水率 WC | -0.024 | -0.203 | 0.364 | 0.360 |
门 Phylum | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
放线菌门Actinobacteria | -0.737 | -0.848* | -0.546 | -0.879* | 0.294 | -0.900* | 0.921** | 0.804 |
变形菌门Proteobacteria | 0.079 | -0.493 | 0.193 | 0.139 | 0.595 | -0.044 | 0.092 | 0.088 |
浮霉菌门Planctomycetes | -0.767 | 0.765 | 0.504 | -0.772 | -0.614 | 0.756 | -0.766 | -0.690 |
酸杆菌门Acidobacteria | 0.880* | 0.728 | 0.512 | 0.903* | 0.168 | 0.888* | -0.911* | -0.851* |
绿弯菌门Chloroflexi | 0.876* | 0.867* | 0.599 | 0.943** | -0.375 | 0.955** | -0.966** | -0.888* |
拟杆菌门Bacteroidetes | -0.471 | 0.349 | 0.178 | -0.466 | 0.698 | 0.411 | -0.467 | -0.472 |
表5 不同土壤细菌优势菌门与土壤理化因子的相关性
Table 5 Correlation of dominant communities of bacteria at the phylum level with soil physical and chemical factors
门 Phylum | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
放线菌门Actinobacteria | -0.737 | -0.848* | -0.546 | -0.879* | 0.294 | -0.900* | 0.921** | 0.804 |
变形菌门Proteobacteria | 0.079 | -0.493 | 0.193 | 0.139 | 0.595 | -0.044 | 0.092 | 0.088 |
浮霉菌门Planctomycetes | -0.767 | 0.765 | 0.504 | -0.772 | -0.614 | 0.756 | -0.766 | -0.690 |
酸杆菌门Acidobacteria | 0.880* | 0.728 | 0.512 | 0.903* | 0.168 | 0.888* | -0.911* | -0.851* |
绿弯菌门Chloroflexi | 0.876* | 0.867* | 0.599 | 0.943** | -0.375 | 0.955** | -0.966** | -0.888* |
拟杆菌门Bacteroidetes | -0.471 | 0.349 | 0.178 | -0.466 | 0.698 | 0.411 | -0.467 | -0.472 |
属 Genus | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
红色杆菌属Rubrobacter | 0.910* | 0.613 | 0.779 | 0.974** | -0.165 | 0.944** | -0.934** | -0.976** |
RB41 | 0.808 | 0.774 | 0.341 | 0.818* | 0.271 | 0.828* | -0.863* | -0.733 |
类诺卡氏菌属Nocardioides | -0.830* | -0.800 | -0.644 | -0.961** | 0.149 | -0.956** | 0.974** | 0.906* |
链霉菌属Streptomyces | -0.524 | -0.645 | -0.406 | -0.738 | -0.299 | -0.801 | 0.820* | 0.631 |
芽孢杆菌属Bacillus | -0.232 | -0.687 | -0.033 | -0.360 | 0.277 | -0.414 | 0.460 | 0.248 |
土壤红杆菌属Solirubrobacter | 0.550 | 0.124 | 0.791 | 0.681 | 0.043 | 0.541 | -0.541 | -0.762 |
芽单胞菌属Gemmatimonas | 0.555 | 0.163 | 0.609 | 0.660 | 0.484 | 0.579 | -0.582 | -0.688 |
Pelagibius | -0.890* | -0.865* | -0.604 | -0.953** | 0.338 | -0.958** | 0.972** | 0.901* |
表6 不同土壤细菌优势菌属与土壤理化因子的相关性
Table 6 Correlation of dominant communities of bacteria at the genus level with soil physical and chemical factors
属 Genus | 全氮 TN | 全磷 TP | 全钾 TK | 速效氮 AN | 速效磷 AP | 速效钾 AK | pH | 含水率 WC |
---|---|---|---|---|---|---|---|---|
红色杆菌属Rubrobacter | 0.910* | 0.613 | 0.779 | 0.974** | -0.165 | 0.944** | -0.934** | -0.976** |
RB41 | 0.808 | 0.774 | 0.341 | 0.818* | 0.271 | 0.828* | -0.863* | -0.733 |
类诺卡氏菌属Nocardioides | -0.830* | -0.800 | -0.644 | -0.961** | 0.149 | -0.956** | 0.974** | 0.906* |
链霉菌属Streptomyces | -0.524 | -0.645 | -0.406 | -0.738 | -0.299 | -0.801 | 0.820* | 0.631 |
芽孢杆菌属Bacillus | -0.232 | -0.687 | -0.033 | -0.360 | 0.277 | -0.414 | 0.460 | 0.248 |
土壤红杆菌属Solirubrobacter | 0.550 | 0.124 | 0.791 | 0.681 | 0.043 | 0.541 | -0.541 | -0.762 |
芽单胞菌属Gemmatimonas | 0.555 | 0.163 | 0.609 | 0.660 | 0.484 | 0.579 | -0.582 | -0.688 |
Pelagibius | -0.890* | -0.865* | -0.604 | -0.953** | 0.338 | -0.958** | 0.972** | 0.901* |
1 | 魏桂英,陈少勇,张媛文.腾格里沙漠南缘沙尘暴气候变化特征——以甘肃省景泰县为例[J].干旱区研究,2015,32(6):1133-1139. |
WEI G Y, CHEN S Y, ZHANG Y W. Sandstorms changing characteristics in the south edge of the Tengger Desert—Jingtai County, Gansu Province as a case study [J]. Arid Zone Res., 2015, 32 (6):1133-1139. | |
2 | 康宝天,侯扶江,BOWATTESaman.祁连山高寒草甸和荒漠草原土壤细菌群落的结构特征[J].草业科学,2020,37(1):10-19. |
KANG B T, HOU F J, BOWATTE S. Characterization of soil bacterial communities in alpine and desert grasslands in the Qilian Mountain range [J]. Pratac. Sci., 2020, 37(1):10-19. | |
3 | 黄耀龙. 荒漠区两种典型荒漠植物根际细菌的分布特征及其富集模式[D].兰州:兰州大学,2018. |
HUANG Y L. Distribution and enrichment patterns of rhizosphere bacteria of two typical desert plants in the desert area [D]. Lanzhou: Lanzhou University, 2018. | |
4 | 单立山,苏铭,张正中,等.不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J].植物生态学报,2018,42(4):475-486. |
SHAN L S, SU M, ZHANG L Z, et al.. Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients [J]. Chin. J. Plant Ecol., 2018, 42(4):475-486. | |
5 | 李善家,王辉,苟伟,等.混生荒漠植物叶片功能性状与其根际微生物多样性的关系[J].生态环境学报,2020,29(9):1713-1722. |
LI S J, WANG H, GOU W, et al.. Relationship between leaf functional traits of mixed desert plants and microbial diversity in rhizosphere [J]. Ecol. Environ. Sci., 2020, 29(09):1713-1722. | |
6 | 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000:1-495. |
BAO S D. Analytical methods of soil agricultural chemistry [M]. Beijing: China Agriculture Press, 2000:1-495. | |
7 | MICHAEL B, FREDERIK H, FRANZISKA B, et al.. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry [J]. Appl. Environ. Microbiol., 2007, 73(10):3283-3290. |
8 | 张秀霞,张守娟,张涵,等.固定化微生物对石油污染土壤理化性质的调控作用[J].石油学报(石油加工),2014,30(6):1106-1112. |
ZHANG X X, ZHANG S J, ZHANG H, et al.. Control effect of immobilized microorganisms on physical and chemical properties of petroleum-contaminated soil [J]. Acta Petrol. Sin. (Petrol. Proc.), 2014, 30(6):1106-1112. | |
9 | NI J J, LI X J, XU M Y. A novel method to determine the minimum number of sequences required for reliable microbial community analysis [J]. J. Microbiol. Methods, 2017, 137(8):196-201. |
10 | 杨阳,刘秉儒.荒漠草原不同植物根际与非根际土壤养分及微生物量分布特征[J].生态学报,2015,35(22):7562-7570. |
YANG Y, LIU B R. Distribution of soil nutrient and microbial biomass in rhizosphere versus non-rhizosphere area of different plant species in desertified steppe [J]. Acta Ecol. Sin., 2015, 35(22):7562-7570. | |
11 | 李丽娟,李昌晓,陈春桦,等.三峡消落带适生植物根系活动调控土壤养分与细菌群落多样性特征[J].环境科学,2020,41(6):2898-2907. |
LI L J, LI C X, CHEN C H, et al.. Root activities of re-vegetated plant species regulate soil nutrients and bacterial diversity in the Riparian Zone of the Three Gorges Reservoir [J]. Environ. Sci., 2020, 41(6):2898-2907. | |
12 | H F L, M C S, DAVID S. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms [J]. Bioresour. Technol., 2004, 94(2):185-192. |
13 | C L, LI Y J, LIU X X, et al.. Identification of growth-promoting bacteria from rhizosphere of pastures and their effects on growth of Lotus corniculatus L. [J]. Agric. Biotechnol., 2019, 8(5):106-111. |
14 | L R, D Y Y, S L B. Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species [J/OL]. PLoS ONE, 2015, 10(3): e0120369 [2020-12-10]. . |
15 | KANRUVELAN M, NAMASIVAYAM V. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation [J]. Ecotoxicol. Environ. Saf., 2018, 157(8):40-60. |
16 | 范念斯,齐嵘,杨敏.未培养微生物的培养方法进展[J].应用与环境生物学报,2016,22(3):524-530. |
FAN N S, QI R, YANG M. Current technical progresses in the cultivation for uncultured microorganism [J]. Chin. J. Appl. Environ. Biol., 2016, 22(3):524-530. | |
17 | MANUEL A, SETH B, JORGE D. Carnivory does not change the rhizosphere bacterial community of the plant Drosera intermedia [J]. Appl. Soil Ecol., 2015, 92:14-17. |
18 | RU Y, WEI F. Effect of vegetation on soil bacteria and their potential functions for ecological restoration in the Hulun Buir Sandy Land, China [J]. J. Arid Land, 2020, 12(3):473-494. |
19 | 高雪峰,韩国栋,张国刚.短花针茅荒漠草原土壤微生物群落组成及结构[J].生态学报,2017,37(15):5129-5136. |
GAO X F, HAN G D, ZHANG G G. Soil microbial community structure and composition of Stipa Breviflora on the desert steppe [J]. Acta Ecol. Sin., 2017, 37(15):5129-5136. | |
20 | 刘洋,黄懿梅,曾全超.黄土高原不同植被类型下土壤细菌群落特征研究[J].环境科学,2016,37(10):3931-3938. |
LIU Y, HUANG Y M, ZENG Q C. Soil bacterial communities under different vegetation types in the loess plateau [J]. Environ. Sci., 2016, 37(10):3931-3938. | |
21 | 杨秉珣,刘泉,董廷旭.川西北不同沙化程度草地土壤细菌群落特征[J].水土保持研究,2018,25(6):45-52. |
YANG B X, LIU Q, DONG T X. Soil bacterial communities of grasslands with different desertification degrees in northwest Sichuan [J]. Res. Soil Water Conserv., 2018, 25(6):45-52. | |
22 | ZIEGLER M, ENGEL M, WELZL G. Development of a simple root model to study the effects of single exudates on the development of bacterial community structure [J]. J. Microbiol. Methods, 2013, 94(1):30-36. |
23 | LING N, DENG K Y, SONG Y, et al.. Variation of rhizosphere bacterial community in watermelon continuous mono-cropping soil by long-term application of a noval bioorganic fertilizer [J]. Microbiol. Res., 2014, 169(7-8):570-578. |
24 | YANG H, HU J, LONG X, et al.. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke [J]. Sci. Rep., 2016, 6(1):787-805. |
25 | 赵璇. 中国北方主要草地类型土壤放线菌多样性和群落结构的比较研究[D].长春:东北师范大学,2015:39-42. |
ZHAO X. Comparison of diversity and structure of soil Actinobacteria communities across the main grasslands in Northern China [D]. Changchun: Northeast Normal University, 2015:39-42. | |
26 | 胡杰,何晓红,李大平,等.鞘氨醇单胞菌研究进展[J].应用与环境生物学报,2007:13(3):431-437. |
HU J, HE X H, LI D P, et al.. Progress in research of Sphingomonas [J]. Chin. J. Appl. Environ. Biol., 2007(3):431-437. |
[1] | 肖淑婷, 颜安. 天山典型天然林土壤有机碳分布特征及其影响因素[J]. 中国农业科技导报, 2025, 27(8): 227-238. |
[2] | 田甜, 杨振奇, 郭建英, 要振宇, 赵天启, 刘心宇, 王子薇. 放牧强度对荒漠草原土壤团聚体稳定性及可蚀性的影响[J]. 中国农业科技导报, 2025, 27(5): 156-163. |
[3] | 马振华, 时倩茹, 宁欣杰, 魏宏杨, 王璨, 张静静, 张彪, 杨素勤. 生物质炭对镉铅污染土壤线虫群落的影响[J]. 中国农业科技导报, 2025, 27(2): 201-210. |
[4] | 张继东, 张亚雄, 程伟, 蒲莉, 柳路行, 王亚明. 生物质炭和有机肥配施对苹果重茬育苗地土壤理化性质和微生物群落特征的影响[J]. 中国农业科技导报, 2024, 26(8): 213-222. |
[5] | 刘霏霏, 何万荣, 孙强, 席琳乔, 廖结安, 韩路. 苜蓿绿肥对塔里木盆地苹果园土壤细菌多样性和功能的影响[J]. 中国农业科技导报, 2024, 26(8): 223-233. |
[6] | 杨娅琳, 吴峰婧琳, 陈健鑫, 武自强, 刘丽, 张东华, 马焕成, 伍建榕. 油茶根腐病根际土壤、根系内真菌群落结构和多样性分析[J]. 中国农业科技导报, 2024, 26(7): 121-135. |
[7] | 王子凡, 李燕, 张庆银, 王丹丹, 师建华, 耿晓彬, 田东良, 钟增明, 赵晓明, 齐连芬. 微生物菌剂对设施番茄主要病害及土壤微生物群落的影响[J]. 中国农业科技导报, 2024, 26(6): 102-112. |
[8] | 高丽敏, 顾泽辰, 贡雪菲, 崔联明, 郭东森, 周影, 王琳, 魏启舜. 果园生草对中国果树-土壤系统生产性能影响的Meta分析[J]. 中国农业科技导报, 2024, 26(4): 184-194. |
[9] | 张桐毓, 勾颖, 李琪, 杨莉. 人参锈腐病对人参品质和土壤相关因子的影响研究[J]. 中国农业科技导报, 2024, 26(3): 124-133. |
[10] | 周旭东, 韩天华, 申云鑫, 施竹凤, 贺彪, 杨明英, 裴卫华, 何永宏, 杨佩文. 4种轮作模式下长期连作烟田土壤微生态的响应特征[J]. 中国农业科技导报, 2024, 26(3): 174-187. |
[11] | 张二豪, 刘盼盼, 何萍, 简阅, 徐雨婷, 陈诚欣, 禄亚洲, 兰小中, 索朗桑姆. 甘青青兰根际土壤理化性质及微生物群落结构特征分析[J]. 中国农业科技导报, 2024, 26(3): 201-213. |
[12] | 马铭泽, 张帆, 王田, 李文芳, 毛娟, 陈佰鸿, 马宗桓. 不同肥料配施对樱桃园土壤及幼树生长的影响[J]. 中国农业科技导报, 2024, 26(11): 191-203. |
[13] | 方泰军, 侯璐, 白露超. 柴达木地区患根腐病枸杞根际土壤微生物多样性分析[J]. 中国农业科技导报, 2024, 26(1): 133-139. |
[14] | 郭靖捷, 任晓萌, 蒙仲举, 王涛, 祁帅, 宋佳佳, 宝孟克那顺, 韩胜利. 半干旱风沙草原区盐湖植物防护体系土壤理化性状特征[J]. 中国农业科技导报, 2024, 26(1): 182-192. |
[15] | 邵社刚, 李婷, 柳勇, 林兰稳, 张东, 倪栋, 李俊杰, 朱立安. 外源菌剂对稻秆腐解及微生物群落结构的影响[J]. 中国农业科技导报, 2023, 25(9): 166-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||